UCLA has a really amazing resource for learning longitudinal data analysis in R using examples and data from Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence by Judith D. Singer and John B. Willett.
Tag: longitudinal
Time series modeling with MLM
library(dplyr)
library(ggplot2)
library(tidyr)
library(nlme)
library(knitr)
# Make sure you set your working dir to the location of the csv
# setwd('C:\\Users\\flournoy\\Downloads')
aDF<-read.csv('timeseries_DanceRandom_RAW_forRClub_28Apr2015.csv')
First, we’ll lengthen the data set so we get a row for every dwell time observations using tidyr::gather and some dplyr functions
We also want to know which slide number each dwell time observation is from as well as which within-element position it represents.
aDF_l<-aDF %>%
dplyr::select(-TDT,-Order) %>%
gather(slide,dt,-SubjID) %>%
mutate(slide_num=as.numeric(sub('X([0-9]+)','\\1',slide))) %>%
arrange(SubjID,slide_num) %>%
mutate(
element_position=rep(1:4,n()/4),
slide_num=slide_num-min(slide_num))
kable(head(aDF_l))
| SubjID | slide | dt | slide_num | element_position |
|---|---|---|---|---|
| 10 | X18 | 0.186 | 0 | 1 |
| 10 | X19 | 0.796 | 1 | 2 |
| 10 | X20 | 0.216 | 2 | 3 |
| 10 | X21 | 0.211 | 3 | 4 |
| 10 | X22 | 0.453 | 4 | 1 |
| 10 | X23 | 0.352 | 5 | 2 |
We can plot each participant’s curve dwell time curve:
ggplot(aDF_l,aes(x=slide_num,y=dt))+
geom_line(aes(group=SubjID),alpha=.05)+
coord_trans(ytrans='log10')+
geom_smooth(aes(group=NULL),method=loess,se=F)+
theme(panel.background=element_rect(fill='white'))
To test autocorrelation at different lags we’re going to make an expected correlation matrix structure for the residuals. For example, for a lag-1 autocorrelation structure we’re imposing a structure such that there will be a correlation between the size of the residual for slide 0 and slide 1 that is the same as the correlation between the residual for slide 1 and slide 2.
We’re really interested in the lag 4 correlation – that is, the correlation between the residual for slide i and slide i+4. In our case, the residual will be whatever is left over after we account for the mean (i.e., intercept) and the linear trend across the entire experiment of 720 slides.
First, set our autoregressive moving average options:
lag_4_pos_by_subj<-corARMA(
value=c(0,0,0,.2), # Initial values for lag 1-4
p=4,q=0, # We want 4 lags, and 0 moving averages estimated
form=~slide_num|SubjID) # slide_num is our time variable, grouped by SubjID
This uses our data to initialize a correlation matrix, which we only do for illustration purposes. nlme will do this automatically later on. The figure is what our expected residual correlation matrix looks like.
lag_4_pos_by_subj_initd<-Initialize(lag_4_pos_by_subj,data=aDF_l)
aMat<-corMatrix(lag_4_pos_by_subj_initd)
single_mat<-aMat$`10`
single_mat_l<-single_mat %>% as.data.frame %>%
mutate(y=1:n()) %>%
gather(x_col,value,-y,convert=T) %>%
mutate(
x=as.numeric(sub('V([0-9]+)','\\1',x_col)),
group=rep(1:10,each=51840))
single_mat_l %>%
filter(value > .01) %>%
ggplot(aes(x=x,y=y))+
geom_tile(aes(fill=(value)))+
# facet_wrap(~group,scales='free',shrink=T) +
theme(
line=element_line(color='white'),
panel.background=element_rect(fill='white'))
Now we can build and compare our models. We’ll test models with lag-1, -2, -3, and -4 AR structures.
Create our different residual correlation matrices:
lag_1_pos_by_subj<-corARMA(
value=c(0),
p=1,q=0,
form=~slide_num|SubjID)
lag_2_pos_by_subj<-corARMA(
value=c(0,0),
p=2,q=0,
form=~slide_num|SubjID)
lag_3_pos_by_subj<-corARMA(
value=c(0,0,0),
p=3,q=0,
form=~slide_num|SubjID)
lag_4_pos_by_subj<-corARMA(
value=c(0,0,0,0),
p=4,q=0,
form=~slide_num|SubjID)
Build our null model (which includes a linear effect of time to account for that long linear trend we saw in the above plot).
nullModel<-lme(
dt~1+slide_num,
aDF_l,
random=~1|SubjID)
summary(nullModel)
## Linear mixed-effects model fit by REML
## Data: aDF_l
## AIC BIC logLik
## 31533.89 31566.97 -15762.95
##
## Random effects:
## Formula: ~1 | SubjID
## (Intercept) Residual
## StdDev: 0.4327605 0.4161845
##
## Fixed effects: dt ~ 1 + slide_num
## Value Std.Error DF t-value p-value
## (Intercept) 0.7002197 0.06860064 28759 10.20719 0
## slide_num -0.0005525 0.00001180 28759 -46.82514 0
## Correlation:
## (Intr)
## slide_num -0.062
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -2.83833764 -0.30453025 -0.06975014 0.16771644 88.41714587
##
## Number of Observations: 28800
## Number of Groups: 40
lag1Model<-lme(
dt~1+slide_num,
aDF_l,
random=~1|SubjID,
correlation=lag_1_pos_by_subj)
summary(lag1Model)
## Linear mixed-effects model fit by REML
## Data: aDF_l
## AIC BIC logLik
## 29359.82 29401.16 -14674.91
##
## Random effects:
## Formula: ~1 | SubjID
## (Intercept) Residual
## StdDev: 0.4325128 0.416731
##
## Correlation Structure: AR(1)
## Formula: ~slide_num | SubjID
## Parameter estimate(s):
## Phi
## 0.2730642
## Fixed effects: dt ~ 1 + slide_num
## Value Std.Error DF t-value p-value
## (Intercept) 0.7026000 0.06869298 28759 10.22812 0
## slide_num -0.0005573 0.00001561 28759 -35.69883 0
## Correlation:
## (Intr)
## slide_num -0.082
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -2.83058935 -0.30722993 -0.07147524 0.16737678 88.29390180
##
## Number of Observations: 28800
## Number of Groups: 40
anova(nullModel,lag1Model)
## Model df AIC BIC logLik Test L.Ratio p-value
## nullModel 1 4 31533.90 31566.97 -15762.95
## lag1Model 2 5 29359.82 29401.16 -14674.91 1 vs 2 2176.075 <.0001
Computing the next three models takes a really long time for each (90 minutes for lag-4), so I’ll parallelize it.
ar_lags<-list(
lag1=lag_1_pos_by_subj,
lag2=lag_2_pos_by_subj,
lag3=lag_3_pos_by_subj,
lag4=lag_4_pos_by_subj)
library(doParallel)
registerDoParallel(cores=4)
lag_models<-foreach(
corstruct=ar_lags,
.packages=c('nlme','dplyr'),
.export=c('nullModel'),
.combine=bind_rows,
.multicombine=T
) %dopar% {
aModel<-update(
nullModel,
correlation=corstruct)
aSummary<-summary(aModel)
as_data_frame(list(
model=list(aModel),
summary=list(aSummary)))
}
save(lag_models,file='lag_models.RData',compress=T)
print(lag_models)
## Source: local data frame [4 x 2]
##
## model summary
## 1 <S3:lme> <S3:summary.lme, lme>
## 2 <S3:lme> <S3:summary.lme, lme>
## 3 <S3:lme> <S3:summary.lme, lme>
## 4 <S3:lme> <S3:summary.lme, lme>
Now we can compare them…
lag_models %>%
mutate(Total_Lags=1:4) %>%
group_by(Total_Lags) %>%
do({
phis<-coef(.$model[[1]]$modelStruct$corStruct,unconstrained=F)
nphis<-paste('lag',1:length(phis))
data.frame(
lag=nphis,
phi=phis
)
}) %>%
spread(lag,phi) %>%
kable(digits=2)
## Warning in rbind_all(out[[1]]): Unequal factor levels: coercing to
## character
| Total_Lags | lag 1 | lag 2 | lag 3 | lag 4 |
|---|---|---|---|---|
| 1 | 0.27 | NA | NA | NA |
| 2 | 0.23 | 0.18 | NA | NA |
| 3 | 0.20 | 0.14 | 0.15 | NA |
| 4 | 0.18 | 0.12 | 0.11 | 0.19 |
kable(
cbind(
list(Lags=c(1,2)),
anova(lag_models$model[[1]],lag_models$model[[2]])[,c(-1,-2)]),
row.names=F)
| Lags | df | AIC | BIC | logLik | Test | L.Ratio | p-value |
|---|---|---|---|---|---|---|---|
| 1 | 5 | 29359.82 | 29401.16 | -14674.91 | NA | NA | |
| 2 | 6 | 28486.57 | 28536.17 | -14237.28 | 1 vs 2 | 875.2539 | 0 |
kable(
cbind(
list(Lags=c(2,3)),
anova(lag_models$model[[2]],lag_models$model[[3]])[,c(-1,-2)]),
row.names=F)
| Lags | df | AIC | BIC | logLik | Test | L.Ratio | p-value |
|---|---|---|---|---|---|---|---|
| 2 | 6 | 28486.57 | 28536.17 | -14237.28 | NA | NA | |
| 3 | 7 | 27892.35 | 27950.22 | -13939.17 | 1 vs 2 | 596.2176 | 0 |
kable(
cbind(
list(Lags=c(3,4)),
anova(lag_models$model[[3]],lag_models$model[[4]])[,c(-1,-2)]),
row.names=F)
| Lags | df | AIC | BIC | logLik | Test | L.Ratio | p-value |
|---|---|---|---|---|---|---|---|
| 3 | 7 | 27892.35 | 27950.22 | -13939.17 | NA | NA | |
| 4 | 8 | 26898.26 | 26964.40 | -13441.13 | 1 vs 2 | 996.0902 | 0 |
We can look at the predicted correlation matrix:
predicted_ARMA<-corARMA(value=c(.18,.12,.11,.19),p=4,form=~slide_num)
predicted_ARMA_init<-Initialize(predicted_ARMA,data=predict_df)
corMatARMA<-corMatrix(predicted_ARMA_init)
corMatARMA %>%
as.data.frame %>%
mutate(x=1:n()) %>%
gather(y,value,-x,convert=T) %>%
mutate(y=as.numeric(sub('V(.*)','\\1',y))) %>%
filter(value > .01) %>%
ggplot(aes(x=x,y=y))+
geom_tile(aes(fill=(value)))+
theme(
line=element_line(color='white'),
panel.background=element_rect(fill='white'))
And we can produce simulated data with our fixed effects estimates for the linear trend as our mu and our correlation matrix as our Sigma for mvrnorm.
predict_df<-data.frame(slide_num=1:720)
predict_df$dt<-predict(
lag_models$model[[4]],
predict_df,
level=0)
library(MASS)
predict_df$dt_err<-mvrnorm(1,mu=scale(predict_df$dt),Sigma=corMatARMA)
Our predictions look like this:
predict_df %>%
ggplot(aes(x=slide_num))+
geom_line(aes(y=dt_err))+
theme(panel.background=element_rect(fill='white'))
Our data look like this:
aDF_l %>%
ggplot(aes(x=slide_num,y=dt))+
geom_line()+
facet_wrap(~SubjID,scale='free_y')+
theme(panel.background=element_rect(fill='white'))
Not bad, visually speaking. I suspect we could do better if we modeled the the underlying rate parameter for a Poisson process, but that’s a whole other can of worms.
Here’s what happens if we just dummy-variable each element position:
summary(update(nullModel,.~.+as.factor(element_position)))
## Linear mixed-effects model fit by REML
## Data: aDF_l
## AIC BIC logLik
## 31554.64 31612.51 -15770.32
##
## Random effects:
## Formula: ~1 | SubjID
## (Intercept) Residual
## StdDev: 0.4327605 0.4161319
##
## Fixed effects: dt ~ slide_num + as.factor(element_position)
## Value Std.Error DF t-value p-value
## (Intercept) 0.7135225 0.06873087 28756 10.38140 0.0000
## slide_num -0.0005524 0.00001180 28756 -46.81881 0.0000
## as.factor(element_position)2 -0.0202103 0.00693554 28756 -2.91402 0.0036
## as.factor(element_position)3 -0.0161110 0.00693557 28756 -2.32295 0.0202
## as.factor(element_position)4 -0.0170860 0.00693562 28756 -2.46351 0.0138
## Correlation:
## (Intr) sld_nm a.(_)2 a.(_)3
## slide_num -0.061
## as.factor(element_position)2 -0.050 -0.002
## as.factor(element_position)3 -0.050 -0.003 0.500
## as.factor(element_position)4 -0.050 -0.005 0.500 0.500
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -2.82219320 -0.30539798 -0.07029029 0.16628406 88.39624069
##
## Number of Observations: 28800
## Number of Groups: 40
Latent Growth Curves in R
This is based in part on Nicole’s code found in this post.
First, reading in the data:
library(foreign)
library(dplyr)
library(tidyr)
library(ggplot2)
library(lavaan)
library(semPlot)
library(knitr)
setwd('/home/jflournoy/code/sem_in_r/')
pdr2<-read.spss("PDR Wave 2.sav", to.data.frame=T)
# pdr4<-read.spss("PDR Wave 4.sav", to.data.frame=T)
Generate a time variable
This indexes each call for each family.
pdr2_time <- pdr2 %>%
group_by(FAMILY) %>% #do the count by family
arrange(YEAR,MONTH,DAY) %>% #sort by date
mutate(callindex=1:n()) #create call index that's 1:end for each family
head(pdr2_time[,c('FAMILY','callindex')])
## Source: local data frame [6 x 2]
## Groups: FAMILY
##
## FAMILY callindex
## 1 TP001 1
## 2 TP001 2
## 3 TP001 3
## 4 TP001 4
## 5 TP001 5
## 6 TP001 6
Create composite score of kid bex
pdr2_time_bxtrans<-pdr2_time %>% ungroup %>%
mutate_each(
funs(as.numeric(!(.=='DID NOT OCCUR'))),
P31201:P31240)
To break down the above statement:
pdr2_time gets sent to ungroup, which removes the grouping by FAMILY we did above, and that gets sent to mutate_each. This takes a range of columns that we define in the second argument as P31201:P31240 which reads ‘from P31201 to P31240’.
The meat of mutate_each is what goes in the first argument, within the function funs(). You can list a bunch of functions here if you wanted to mutate all the columns in a number of different ways. The period character, ., represents the column that will be passed to that function. In this case, we just check if each element of the column is ‘DID NOT OCCUR’, and if so, we negate it (giving us FALSE) and then as.numeric it giving us ‘0’. If the response is any other option, we get a ‘1’, which is what we want. Importantly, this will return NA if the data is NA.
If you want to learn more ?mutate_each. Moving on now…
head(pdr2_time_bxtrans)
## Source: local data frame [6 x 63]
##
## FAMILY RESP MONTH DAY YEAR INT WEEKDAY P31201 P31202 P31203 P31204
## 1 TP001 3 7 22 2004 4H WEDNESDAY 0 1 1 0
## 2 TP001 3 7 23 2004 4H THURSAY 0 1 1 0
## 3 TP001 3 7 27 2004 4H MONDAY 0 1 1 0
## 4 TP001 3 7 28 2004 4H TUESDAY 0 1 1 0
## 5 TP001 3 8 3 2004 4H MONDAY 0 1 1 0
## 6 TP001 3 8 4 2004 4H TUESDAY 0 1 1 0
## Variables not shown: P31205 (dbl), P31206 (dbl), P31207 (dbl), P31208
## (dbl), P31209 (dbl), P31210 (dbl), P31211 (dbl), P31212 (dbl), P31213
## (dbl), P31214 (dbl), P31215 (dbl), P31216 (dbl), P31217 (dbl), P31218
## (dbl), P31219 (dbl), P31220 (dbl), P31221 (dbl), P31222 (dbl), P31223
## (dbl), P31224 (dbl), P31225 (dbl), P31226 (dbl), P31227 (dbl), P31228
## (dbl), P31229 (dbl), P31230 (dbl), P31231 (dbl), P31232 (dbl), P31233
## (dbl), P31234 (dbl), P31235 (dbl), P31236 (dbl), P31237 (dbl), P31238
## (dbl), P31239 (dbl), P31240 (dbl), P31241 (fctr), P31242 (fctr), P31242A
## (fctr), P31242B (fctr), P31242C (fctr), P31242D (fctr), P31243 (fctr),
## P31243A (fctr), P31243B (fctr), P31243C (fctr), P31243D (fctr), P31244
## (dbl), P31245 (dbl), WAVE (dbl), PILOT1 (fctr), callindex (int)
Now we can create the composite variable using a sum. There is missing data, so that should be delt with, but we’ll ignore that for now.
pdr2_time_bxtrans$bextot<-pdr2_time_bxtrans %>%
select(P31201:P31240) %>% rowSums(na.rm=T)
summary(pdr2_time_bxtrans$bextot)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000 1.000 4.000 5.307 8.000 26.000
hist(pdr2_time_bxtrans$bextot)
We have a call-index varibale, but if you want a time index that is really the number of days since they were first contacted, here’s how to do that.
pdr2_time_bxtrans_t2<-
pdr2_time_bxtrans %>%
mutate(formd_date=as.Date(paste(MONTH,DAY,YEAR,sep='/'),"%m/%d/%Y")) %>%
group_by(FAMILY) %>%
arrange(YEAR,MONTH,DAY) %>%
mutate(days_since_1st=formd_date-min(formd_date))
Some descriptive plots
Let’s see what we’re working with.
First, the raw data – a line for every family:
pdr2_time_bxtrans_t2 %>% filter(callindex < 33) %>%
ggplot(aes(x=callindex,y=bextot))+
geom_line(aes(group=FAMILY),alpha=.1)+
theme(panel.background=element_rect(fill='white'))
Next, a smoothed loess curve for every family:
pdr2_time_bxtrans_t2 %>% filter(callindex < 33) %>%
ggplot(aes(x=callindex,y=bextot))+
geom_smooth(aes(group=FAMILY),method=loess,se=F)+
theme(panel.background=element_rect(fill='white'))
Finally, the first plot again, but with a group-level smoothed curve – a line, and a second and third degree polynomial just to see what that looks like:
pdr2_time_bxtrans_t2 %>% filter(callindex < 33) %>%
ggplot(aes(x=callindex,y=bextot))+
geom_line(aes(group=FAMILY),alpha=.05)+
geom_smooth(method=lm,formula=y~poly(x,1),color='dark orange',se=F)+
geom_smooth(method=lm,formula=y~poly(x,2),color='red',se=F)+
geom_smooth(method=lm,formula=y~poly(x,3),color='black',se=F)+
theme(panel.background=element_rect(fill='white'))
From the plot it looks like either a linear or quadratic would capture this pretty well.
Widen the data by call index
Now we can make a wide data file to examine the trend of bextot.
pdr2_bex_w_by_index<-
pdr2_time_bxtrans_t2 %>% select(FAMILY,bextot,callindex) %>%
filter(callindex<33) %>% # just the first 32 to minimize missingness
mutate(callindex=paste('call',formatC(callindex, width = 2, format = "d", flag = "0"),sep='_')) %>%
spread(callindex,bextot)
Make R make the lavaan model code
let’s make the lavaan code. We don’t want to write out each ‘call_N’ var, so we can do it programatically
(allthecallnames<-grep('call',names(pdr2_bex_w_by_index),value=T))
## [1] "call_01" "call_02" "call_03" "call_04" "call_05" "call_06" "call_07"
## [8] "call_08" "call_09" "call_10" "call_11" "call_12" "call_13" "call_14"
## [15] "call_15" "call_16" "call_17" "call_18" "call_19" "call_20" "call_21"
## [22] "call_22" "call_23" "call_24" "call_25" "call_26" "call_27" "call_28"
## [29] "call_29" "call_30" "call_31" "call_32"
(callnameswith_i_weights<-paste('1*',allthecallnames,sep=''))
## [1] "1*call_01" "1*call_02" "1*call_03" "1*call_04" "1*call_05"
## [6] "1*call_06" "1*call_07" "1*call_08" "1*call_09" "1*call_10"
## [11] "1*call_11" "1*call_12" "1*call_13" "1*call_14" "1*call_15"
## [16] "1*call_16" "1*call_17" "1*call_18" "1*call_19" "1*call_20"
## [21] "1*call_21" "1*call_22" "1*call_23" "1*call_24" "1*call_25"
## [26] "1*call_26" "1*call_27" "1*call_28" "1*call_29" "1*call_30"
## [31] "1*call_31" "1*call_32"
Centering is really important for interpretting the linear effect in the presence of a quadratic. The intercept and linear slope term here are interpreted only at the first timepoint, though one can easily calculate the expected value of a point at any timepoint.
(callnameswith_s_weights<-paste(0:31,'*',allthecallnames,sep=''))
## [1] "0*call_01" "1*call_02" "2*call_03" "3*call_04" "4*call_05"
## [6] "5*call_06" "6*call_07" "7*call_08" "8*call_09" "9*call_10"
## [11] "10*call_11" "11*call_12" "12*call_13" "13*call_14" "14*call_15"
## [16] "15*call_16" "16*call_17" "17*call_18" "18*call_19" "19*call_20"
## [21] "20*call_21" "21*call_22" "22*call_23" "23*call_24" "24*call_25"
## [26] "25*call_26" "26*call_27" "27*call_28" "28*call_29" "29*call_30"
## [31] "30*call_31" "31*call_32"
(callnameswith_q_weights<-paste((0:31)^2,'*',allthecallnames,sep=''))
## [1] "0*call_01" "1*call_02" "4*call_03" "9*call_04" "16*call_05"
## [6] "25*call_06" "36*call_07" "49*call_08" "64*call_09" "81*call_10"
## [11] "100*call_11" "121*call_12" "144*call_13" "169*call_14" "196*call_15"
## [16] "225*call_16" "256*call_17" "289*call_18" "324*call_19" "361*call_20"
## [21] "400*call_21" "441*call_22" "484*call_23" "529*call_24" "576*call_25"
## [26] "625*call_26" "676*call_27" "729*call_28" "784*call_29" "841*call_30"
## [31] "900*call_31" "961*call_32"
(i_weights_collapsed<-paste(callnameswith_i_weights,collapse=' + '))
## [1] "1*call_01 + 1*call_02 + 1*call_03 + 1*call_04 + 1*call_05 + 1*call_06 + 1*call_07 + 1*call_08 + 1*call_09 + 1*call_10 + 1*call_11 + 1*call_12 + 1*call_13 + 1*call_14 + 1*call_15 + 1*call_16 + 1*call_17 + 1*call_18 + 1*call_19 + 1*call_20 + 1*call_21 + 1*call_22 + 1*call_23 + 1*call_24 + 1*call_25 + 1*call_26 + 1*call_27 + 1*call_28 + 1*call_29 + 1*call_30 + 1*call_31 + 1*call_32"
(s_weights_collapsed<-paste(callnameswith_s_weights,collapse=' + '))
## [1] "0*call_01 + 1*call_02 + 2*call_03 + 3*call_04 + 4*call_05 + 5*call_06 + 6*call_07 + 7*call_08 + 8*call_09 + 9*call_10 + 10*call_11 + 11*call_12 + 12*call_13 + 13*call_14 + 14*call_15 + 15*call_16 + 16*call_17 + 17*call_18 + 18*call_19 + 19*call_20 + 20*call_21 + 21*call_22 + 22*call_23 + 23*call_24 + 24*call_25 + 25*call_26 + 26*call_27 + 27*call_28 + 28*call_29 + 29*call_30 + 30*call_31 + 31*call_32"
(q_weights_collapsed<-paste(callnameswith_q_weights,collapse=' + '))
## [1] "0*call_01 + 1*call_02 + 4*call_03 + 9*call_04 + 16*call_05 + 25*call_06 + 36*call_07 + 49*call_08 + 64*call_09 + 81*call_10 + 100*call_11 + 121*call_12 + 144*call_13 + 169*call_14 + 196*call_15 + 225*call_16 + 256*call_17 + 289*call_18 + 324*call_19 + 361*call_20 + 400*call_21 + 441*call_22 + 484*call_23 + 529*call_24 + 576*call_25 + 625*call_26 + 676*call_27 + 729*call_28 + 784*call_29 + 841*call_30 + 900*call_31 + 961*call_32"
model <- paste(
' i =~ ',i_weights_collapsed,'\n\n',
' s =~ ',s_weights_collapsed,'\n\n',
' q =~ ',q_weights_collapsed,sep='')
cat(model)
## i =~ 1*call_01 + 1*call_02 + 1*call_03 + 1*call_04 + 1*call_05 + 1*call_06 + 1*call_07 + 1*call_08 + 1*call_09 + 1*call_10 + 1*call_11 + 1*call_12 + 1*call_13 + 1*call_14 + 1*call_15 + 1*call_16 + 1*call_17 + 1*call_18 + 1*call_19 + 1*call_20 + 1*call_21 + 1*call_22 + 1*call_23 + 1*call_24 + 1*call_25 + 1*call_26 + 1*call_27 + 1*call_28 + 1*call_29 + 1*call_30 + 1*call_31 + 1*call_32
##
## s =~ 0*call_01 + 1*call_02 + 2*call_03 + 3*call_04 + 4*call_05 + 5*call_06 + 6*call_07 + 7*call_08 + 8*call_09 + 9*call_10 + 10*call_11 + 11*call_12 + 12*call_13 + 13*call_14 + 14*call_15 + 15*call_16 + 16*call_17 + 17*call_18 + 18*call_19 + 19*call_20 + 20*call_21 + 21*call_22 + 22*call_23 + 23*call_24 + 24*call_25 + 25*call_26 + 26*call_27 + 27*call_28 + 28*call_29 + 29*call_30 + 30*call_31 + 31*call_32
##
## q =~ 0*call_01 + 1*call_02 + 4*call_03 + 9*call_04 + 16*call_05 + 25*call_06 + 36*call_07 + 49*call_08 + 64*call_09 + 81*call_10 + 100*call_11 + 121*call_12 + 144*call_13 + 169*call_14 + 196*call_15 + 225*call_16 + 256*call_17 + 289*call_18 + 324*call_19 + 361*call_20 + 400*call_21 + 441*call_22 + 484*call_23 + 529*call_24 + 576*call_25 + 625*call_26 + 676*call_27 + 729*call_28 + 784*call_29 + 841*call_30 + 900*call_31 + 961*call_32
Fit the model!
fit <- growth(model, data=pdr2_bex_w_by_index)
Here’s the model we fit:
semPaths(fit)
And here’s the summary:
summary(fit)
## lavaan (0.5-18) converged normally after 169 iterations
##
## Used Total
## Number of observations 72 100
##
## Estimator ML
## Minimum Function Test Statistic 838.225
## Degrees of freedom 519
## P-value (Chi-square) 0.000
##
## Parameter estimates:
##
## Information Expected
## Standard Errors Standard
##
## Estimate Std.err Z-value P(>|z|)
## Latent variables:
## i =~
## call_01 1.000
## call_02 1.000
## call_03 1.000
## call_04 1.000
## call_05 1.000
## call_06 1.000
## call_07 1.000
## call_08 1.000
## call_09 1.000
## call_10 1.000
## call_11 1.000
## call_12 1.000
## call_13 1.000
## call_14 1.000
## call_15 1.000
## call_16 1.000
## call_17 1.000
## call_18 1.000
## call_19 1.000
## call_20 1.000
## call_21 1.000
## call_22 1.000
## call_23 1.000
## call_24 1.000
## call_25 1.000
## call_26 1.000
## call_27 1.000
## call_28 1.000
## call_29 1.000
## call_30 1.000
## call_31 1.000
## call_32 1.000
## s =~
## call_01 0.000
## call_02 1.000
## call_03 2.000
## call_04 3.000
## call_05 4.000
## call_06 5.000
## call_07 6.000
## call_08 7.000
## call_09 8.000
## call_10 9.000
## call_11 10.000
## call_12 11.000
## call_13 12.000
## call_14 13.000
## call_15 14.000
## call_16 15.000
## call_17 16.000
## call_18 17.000
## call_19 18.000
## call_20 19.000
## call_21 20.000
## call_22 21.000
## call_23 22.000
## call_24 23.000
## call_25 24.000
## call_26 25.000
## call_27 26.000
## call_28 27.000
## call_29 28.000
## call_30 29.000
## call_31 30.000
## call_32 31.000
## q =~
## call_01 0.000
## call_02 1.000
## call_03 4.000
## call_04 9.000
## call_05 16.000
## call_06 25.000
## call_07 36.000
## call_08 49.000
## call_09 64.000
## call_10 81.000
## call_11 100.000
## call_12 121.000
## call_13 144.000
## call_14 169.000
## call_15 196.000
## call_16 225.000
## call_17 256.000
## call_18 289.000
## call_19 324.000
## call_20 361.000
## call_21 400.000
## call_22 441.000
## call_23 484.000
## call_24 529.000
## call_25 576.000
## call_26 625.000
## call_27 676.000
## call_28 729.000
## call_29 784.000
## call_30 841.000
## call_31 900.000
## call_32 961.000
##
## Covariances:
## i ~~
## s -0.266 0.154 -1.721 0.085
## q 0.004 0.004 1.008 0.313
## s ~~
## q -0.001 0.000 -2.018 0.044
##
## Intercepts:
## call_01 0.000
## call_02 0.000
## call_03 0.000
## call_04 0.000
## call_05 0.000
## call_06 0.000
## call_07 0.000
## call_08 0.000
## call_09 0.000
## call_10 0.000
## call_11 0.000
## call_12 0.000
## call_13 0.000
## call_14 0.000
## call_15 0.000
## call_16 0.000
## call_17 0.000
## call_18 0.000
## call_19 0.000
## call_20 0.000
## call_21 0.000
## call_22 0.000
## call_23 0.000
## call_24 0.000
## call_25 0.000
## call_26 0.000
## call_27 0.000
## call_28 0.000
## call_29 0.000
## call_30 0.000
## call_31 0.000
## call_32 0.000
## i 7.402 0.417 17.760 0.000
## s -0.261 0.038 -6.913 0.000
## q 0.005 0.001 5.015 0.000
##
## Variances:
## call_01 16.731 3.107
## call_02 9.807 1.915
## call_03 11.202 2.087
## call_04 9.089 1.700
## call_05 17.265 3.023
## call_06 15.249 2.667
## call_07 18.412 3.178
## call_08 15.511 2.684
## call_09 16.776 2.886
## call_10 10.061 1.764
## call_11 12.751 2.208
## call_12 14.664 2.524
## call_13 12.104 2.097
## call_14 13.257 2.289
## call_15 11.621 2.017
## call_16 7.045 1.257
## call_17 10.488 1.828
## call_18 11.085 1.927
## call_19 9.291 1.628
## call_20 8.794 1.545
## call_21 11.203 1.945
## call_22 11.655 2.020
## call_23 7.416 1.316
## call_24 7.003 1.249
## call_25 10.300 1.800
## call_26 13.740 2.377
## call_27 13.083 2.275
## call_28 8.501 1.526
## call_29 8.287 1.507
## call_30 8.291 1.533
## call_31 7.677 1.469
## call_32 10.034 1.899
## i 9.498 2.095
## s 0.042 0.017
## q 0.000 0.000
Starting with this growth model, we could now add in predictors and outcomes for the latent i, s, and q variables.
// add bootstrap table styles to pandoc tables $(document).ready(function () { $('tr.header').parent('thead').parent('table').addClass('table table-condensed'); });
SEM in R: Adding a time index and recoding the Bahevioral Scores
#' First, reading in the data:
#'
library(foreign)
setwd('C:/Users/flournoy/Downloads')
pdr2<-read.spss("PDR Wave 2.sav", to.data.frame=T)
pdr4<-read.spss("PDR Wave 4.sav", to.data.frame=T)
head(pdr2)
summary(pdr2)
#' ## Generate a time variable
#'
#' This indexes each call for each family. This time variable
#' will be important later for widening the data for SEM.
#'
library(dplyr)
pdr2_time <- pdr2 %>%
group_by(FAMILY) %>% #do the count by family
arrange(YEAR,MONTH,DAY) %>% #sort by date
mutate(callindex=1:n()) #create call index that’s 1:end for each family
head(pdr2_time)
#' ## Create composite score of kid bex
#'
#' Scores Found in (cols 8:47).
library(car)
#?recode
## recode all of the kid behavior items into numeric variables in one go
# ignore difference between “occurred, stressed” and “occurred, not stressed”
# (if it occurred at all, it gets a 1; if it didn’t occur, it’s a 0)
# the defaults for as.XX.result are both TRUE; if you leave it that way,
# it will return character variables.
pdr2_time[,8:47]<-sapply(pdr2_time[,8:47],
function(x)
{x<-recode(x,"'DID NOT OCCUR'='0'; else = '1'",
as.factor.result=F, as.numeric.result=T)})
head(pdr2_time)
str(pdr2_time)
#' Now we can create the composite (sum) variable
#'
pdr2_time$bextot<-rowSums(pdr2_time[,8:47],na.rm=F)
summary(pdr2_time$bextot)