Diseased regions of the retina (a) can be replaced by electronic implants which convert light into electrical signals (b). The surface of our implants feature fractal electronics (c) which match the shape of the fractal neurons (d) that they pass their signals to. Designed to enhance communication with neurons, our fractal electronics are radically different to traditional electronics (e).
Imagine a world in which damaged parts of the body – an arm, an eye, or even a region of the brain – can be replaced by artificial implants capable of restoring or even enhancing human performance. The associated improvements in the quality of life would revolutionize the medical world and produce sweeping changes across society. This imagined world can be brought into reality by optimizing the fundamental science at the interface between the artificial and biological systems. In this project, we simulate, fabricate and test a novel electronic-nerve interface. Our bio-inspired ‘interconnects’ have the same geometry as the nerves they interface with. This will radically improve electrical stimulation of nerves in the human retina, allowing victims of retinal diseases to see in greater detail and under more realistic lighting conditions compared to retinal implants using conventional interconnects. Implants using our interconnects will also be capable of color vision. The ultimate aim is to restore vision to the point that recipients can read text and facial expressions – crucial capabilities for functioning in society.
Simulated images of a dog when viewed using a healthy eye (left), using a fractal implant (middle) and using one of today’s conventional implants (right)
The retinal implant project started in 2014 when Taylor’s research group won an InnoCentive Prize, beating over 950 competing ideas. This was followed by two invitations to the White House and a $1.8M award from the W.M. Keck Foundation and the University of Oregon. The technology was patented in 2015.
Computer simulations (left image) quantify the successful transfer of signals from our implant to the neurons. Three-dimensional images of neurons (middle image) allow us to build implants that match their fractal shapes. A scanning electron microscope image shows a retinal neuron (purple) adhering to the textured surface of our implant (right image).
Selected Publications and Media:
-
- Evolution of Retinal Neuron Fractality When Interfacing with Carbon Nanotube Electrodes. Bioengineering, 2024, 11(8), 823
- Fractal Resonance: Can Fractal Geometry be used to Optimize the Connectivity of Neurons to Artificial Implants?, Fractal Geometry of the Brain II, Springer 2024
- Fractal Electronics for Stimulating and Sensing Neural Networks, Fractal Geometry of the Brain II, Springer 2024
- The Sensitivity of Neuron Arbor Geometry to the Fractal Properties of their Dendrites, Fronteirs in Network Physiology 3, 1072815 (2023)
- Comparison of fractal and grid electrodes for studying the effects of spatial confinement on dissociated retinal neuronal and glial behavior, Scientific Reports, 12, 15713 (2022)
- Investigating Fractal Analysis as a Diagnostic Tool That Probes the Connectivity of Hippocampal Neurons, Frontiers in Human Physiology, Frontiers in Physiology, Fractal Physiology (2022)
- Controlled assembly of retinal cells on fractal and Euclidean electrodes, PLOS ONE, 17(4): e0265685 (2022)
- Investigation of Fractal Carbon Nanotube Networks for Biophilic Neural Sensing Applications, Nanomaterials, 11, 636 (2021)
- Fractal analysis of time-series data sets: Methods and Challenges. Chapter to “Fractal Analysis” IntechOpen, 2019
- How neurons exploit fractal geometry to optimize their network connectivity. Nature: Scientific Reports 11, 2332 (2021), DOI: 10.1038/s41598-021-81421-2
- Physical Guidance of Cultured Retinal Neurons Using Zig-zag Surface Patterns, American Journal of Biomedical Science and Research, 11, 219, (2020), DOI: 10.34297/AJBSR.2020.11.001629
- The roles of an aluminum underlayer on the biocompatibility and mechanical integrity of vertically aligned carbon nanotubes for interfacing with retinal neurons, Micromachines, 11, 546, 2020
- Modelling the Improved Visual Acuity Using Photodiode Based Retinal Implants Featuring Fractal Electrodes, Frontiers in Neuroscience, 12 (277), 1-14, doi: 10.3389/fnins.2018.00277, (2018)
- Developing bio-inspired Implants to restore sight (a summary)
- Fractal Impact Market Analysis
- Fractal Electrodes as a Generic Interface for Stimulating Neurons, Nature: Scientific Reports, vol. 7, 6717 (2017), DOI:10.1038/s41598-017-06762-3
- Fractal Interfaces for Stimulating and Recording Neural Implants, Dissertation by William J. Watterson
- Fractal Electrodes for Interfacing Neurons to Retinal Implants, Dissertation by Rick D. Montgomery
- Bio-inspired Electronics for Interfacing Artificial Implants to Living Systems
Project Proposal funded by the WM Keck Foundation (2016-18) - Fractal Electronics as a Generic Interface to Neurons, chapter in “The Fractal Geometry of the Brain”, Springer, 2016
- Artificial Vision: Vision of Beauty, Feature Article Physics World 22 (May 2011)
- Artificial Retinas Project. Richard Taylor, head of the Artificial Retinas Project, discusses project research. Movie produced by Matt Alpert.
- Artificial Retinas Project Radio (mp3 file)
- Fractal Interconnects for neuro-electronic interfaces and implants using same, Patent awarded July 2015.