
Chapter 44 
Fractal Resonance: Can Fractal 
Geometry Be Used to Optimize 
the Connectivity of Neurons to Artificial 
Implants? 

C. Rowland, S. Moslehi, J. H. Smith, B. Harland, J. Dalrymple-Alford, 
and R. P. Taylor 

Abstract In parallel to medical applications, exploring how neurons interact with 
the artificial interface of implants in the human body can be used to learn about their 
fundamental behavior. For both fundamental and applied research, it is important to 
determine the conditions that encourage neurons to maintain their natural behavior 
during these interactions. Whereas previous biocompatibility studies have focused 
on the material properties of the neuron–implant interface, here we discuss the 
concept of fractal resonance – the possibility that favorable connectivity properties 
might emerge by matching the fractal geometry of the implant surface to that of the 
neurons. 

To investigate fractal resonance, we first determine the degree to which neurons 
are fractal and the impact of this fractality on their functionality. By analyzing three-
dimensional images of rat hippocampal neurons, we find that the way their dendrites 
fork and weave through space is important for generating their fractal-like behavior. 
By modeling variations in neuron connectivity along with the associated energetic 
and material costs, we highlight how the neurons’ fractal dimension optimizes these 
constraints. To simulate neuron interactions with implant interfaces, we distort the 
neuron models away from their natural form by modifying the dendrites’ fork and 
weaving patterns. We find that small deviations can induce large changes in fractal 
dimension, causing the balance between connectivity and cost to deteriorate rapidly. 
We propose that implant surfaces should be patterned to match the fractal dimension 
of the neurons, allowing them to maintain their natural functionality as they interact 
with the implant. 
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44.1 Introduction to Fractal Resonance 

Electronic implants in the human body have been the focus of broad interdisci-
plinary research. Functions include electrodes that stimulate electrical signals in the 
body’s neurons or that sense the locations of these signals as they pass through the 
neuronal networks that serve as the body’s electrical wiring. For both applications, 
the implant’s operation must be sustainable in terms of toxicity, durability, and 
efficiency. The factors that ensure biocompatibility can be pictured as three legs of a 
stool, with each leg playing a vital role for stability. The two legs that have received 
most attention are the chemical environment and physical textures established by 
the implant surface as it interacts with the cells. In this chapter, we will focus on the 
third leg – the electrode’s shape – and explore the potential of bio-inspired fractal 
designs. The repeating patterns of fractals are prevalent in nature and, in particular, 
define the geometric properties of the dendritic branches of our neuronal networks. 

Figure 44.1a shows an example of retinal cells interacting with a square-shaped 
electrode composed of a uniform layer of vertically aligned carbon nanotubes 
(VACNTs) grown to heights of approximately 25 μm from a metallic catalyst layer 
deposited on a smooth silicon dioxide (SiO2) substrate. Imaged using an in vitro co-
culture of neurons and glial cells, the former fluoresce red while the latter fluoresce 
green. This facilitates an investigation of their differing spatial distributions on 
the VACNT and SiO2 surfaces [1]. In addition to chemical compatibility, neuron 
growth is promoted on the VACNT surface [2] by a texture thought to resemble 
characteristics of the extracellular matrix [3–5]. In contrast, the glia grow and 
cover the smooth surfaces of the surrounding SiO2. The advantage of shaping the 
electrode is highlighted in Fig. 44.1b. The square shape has been replaced by an 
H-Tree, a well-known fractal pattern in which H-shaped branches repeat at different 
scales. Whereas the multi-scaled connected gaps between the branches encourage 
glial coverage, the long, inter-penetrating character of the branches ensures a close 
proximity between the glia and the neurons growing on the branches. This cell 
“herding” is highly beneficial because the glia act as the neurons’ life support system 
[6, 7]. The glia are therefore prevented from hindering neuron–electrode interactions 
but are sufficiently close to provide trophic and metabolic support. Described in 
detail in Chap. 43 [8], this fractal patterning also provides electrical, optical, and 
mechanical advantages for implant operations. 

Having successfully herded neurons onto the electrode’s fractal branches, are 
there further geometric strategies for promoting their growth and ability to transmit 
electrical signals? Notably, although the H-Tree serves as a simple demonstration 
of fractal scaling, its exact repetition of straight branches and ninety-degree turns 
contrasts dramatically with the natural fractal form of neurons. We, therefore, 
hypothesize that electrode branches that match the precise fractal characteristics
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Fig. 44.1 (a) A fluorescence 
image of retinal cells 
interacting with a VACNT 
electrode grown on a SiO2 
substrate measured at 17 days 
in vitro (green GFAP labeled 
glia, red β-tubulin III labeled 
neurons). (b) An analogous 
image of a zoom-in section of 
an H-Tree fractal electrode 
with a branch width of 
20 μm. The scale bars in (a) 
and (b) are 500 μm and  
100 μm, respectively. Cell 
imagining is performed in 
collaboration with M.-T. 
Perez (Lund University, 
Sweden) 

of the neurons they interact with will allow the neurons to flourish by closely 
resembling their natural behavior. This “fractal resonance” marks a shift from 
biocompatibility to biophilia. Rather than simply tolerating the presence of the 
electrodes, the goal is for the neurons to be attracted to them. 

A diverse range of previous experiments have demonstrated the impact of pat-
terning on neuron process (dendrites and axons) behavior [9]. Patterning strategies 
have varied from curving the surface [10, 11] to introducing shaped regions of 
surface texture such as parallel grooves [12–16] and zig-zag microtracks [17, 
18]. Whereas processes prefer the direction of minimum curvature [10, 11], the 
directional guidance induced by patterned textures depends on pattern width and 
depth, as well as neuron species and their stage of development. The sizes of the 
textured patterns in these studies span from sub-micron to micron-scale features
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(with widths, spacing, and depths ranging across the studies from 100 nm–350 μm, 
500 nm–1000 μm, and 14 nm–69 μm) fabricated on materials such as quartz, 
PDMS, and PMMA-covered silicon to name a few. As an example, Xenopus spinal 
neuron processes are found to grow parallel to grooves with depths ranging from 14 
to 100 nm and widths of 1, 2, and 4 μm [13]. In another study, the percentage of 
embryonic rat hippocampal neuron processes growing parallel to grooves increases 
with groove depth [19]. Intriguingly, whereas hippocampal neuron processes again 
grow parallel to wide, deep grooves, they grow perpendicular to narrow, shallow 
ones [13]. 

The above experiments focus mainly on the extent to which neurons can be 
manipulated by guiding the growth direction of their processes. In contrast, our 
bio-inspired approach aims to determine the conditions that encourage neurons 
to maintain their natural growth during these interactions. In parallel to medical 
applications, this exploration of how neurons interact with the interface of artificial 
implants can be used to learn about their fundamental behavior. Our own exper-
iments confirm that growth can be manipulated by forcing process growth along 
straight lines and through sharp turns [1, 18, 20]. For example, neurons follow the 
ninety-degree corners of the H-Tree branches in Fig. 44.1. Furthermore, Fig. 44.2a 
shows a zoom-in on the boundary between the VACNT and SiO2 regions of one of 
our electrodes. This reveals neuron processes following the straight boundary for 
long distances. 

However, away from the boundary, the unrestricted growth resumes a more 
natural weaving behavior. Similarly, in Fig. 44.2b and c, neurons follow a textured 
region patterned into a narrow zig-zag line. However, a close inspection of Fig. 
44.2b and c highlights processes leaving the lines to resume their natural growth 
pattern. 

Significantly, previous research on zig-zag microtracks reveals longer processes 
when compared to straight tracks [17]. Whereas the zig-zag’s increased surface area 
was suggested as the cause of the accelerated growth, does the introduction of the 
corners into the pattern also play a role? If we speculate that the corners act as 
a crude re-introduction of the processes’ natural weave into the unnatural straight 
line, then the next logical step would be to incorporate more corners at multiple 
scales. This concept drives the thought experiment of Fig. 44.3 which starts with 
the line (top), then introduces triangular corners and next repeats these triangles at 
multiple scales to generate the Koch curve (middle). Whereas the Koch curve is a 
well-known “exact” fractal that repeats its pattern precisely, natural fractals such as 
neurons mix randomness into this repetition such that only their statistical qualities 
repeat. Therefore, we do the same to generate the statistical version of the Kock 
Curve. Finally, because processes fork rather than follow one long line, we cut and 
paste to re-arrange the fractal line into a fractal forking pattern. 

Although following this evolution from Euclidean to fractal geometry would 
move our electrodes closer to the shapes of neurons, is this close enough to 
achieve fractal resonance? To answer this central question, we will have to answer 
more fundamental questions – to what extent are neurons fractal, what is the 
geometric origin of this fractality, and why do neurons adopt this fractal geometry?
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Fig. 44.2 (a) Fluorescence image of neurons (red) on the VACNT (top) and glia (green) on 
SiO2(bottom) at 17 days in vitro demonstrating neuron processes following the straight VACNT– 
SiO2 boundary. (b, c) Fluorescence images of neurons following textured patterns (indicated by 
the blue lines) of SU8 zig-zag lines deposited on a SiO2 surface. These images were recorded at 
3 days in vitro before glia start to cover the surface. The scale bars in (a) and (b) are both 25 μm. 
The scale bar in (b) also applies to (c). Cell imagining is performed in collaboration with M.-T. 
Perez (Lund University, Sweden) 

While answers to the first two questions will help realize electrode designs that 
achieve fractal resonance, the third addresses the positive consequences of the 
resonance. We speculate that resonance will allow neurons to maintain their natural 
functions during electrode interactions. Given that fractal growth is related to this 
functionality, we expect resonance will also encourage an enhanced growth of this 
functional neural system. 

Although many previous neuron investigations have quantified the scaling 
properties of neurons, this was done mainly to categorize neuron morphologies
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Fig. 44.3 Evolution from a 
straight line celebrating 
Euclidean geometry (top) to 
forked branches celebrating 
fractal geometry (bottom). 
See text for details 

[21–35] rather than quantify how neurons benefit from their fractal scaling. Why 
does the body rely on fractal neurons rather than, for example, the Euclidean 
wires prevalent in everyday electronics? Neurons form immense networks within 
the mammalian brain, with individual neurons exploiting up to 60,000 connections 
in the hippocampus alone [36]. In addition to their connections within the brain, 
they also connect to the retina’s photoreceptors allowing people to see and connect 
to the limbs allowing people to move and feel. Given this central role as the 
body’s wiring, we will focus on the importance of fractal scaling in establishing 
the connectivity between the neurons [37]. Previous analysis over small parts of
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Fig. 44.4 False-colored scanning electron micrograph (a) and fluorescence image (b) of neurons  
growing on a VACNT surface. The images are taken after 7 days in vitro. The scale bars in (a) and 
(b) are 20 μm and 100 μm, respectively. Cell imagining is performed in collaboration with M.-T. 
Perez (Lund University, Sweden) 

the neuron’s dendritic arbor identified the scale invariance of patterns as one of 
the geometric factors used to balance connectivity with its maintenance costs [38, 
39]. Their research built on Ramon y Cajal’s wiring economy principle from a 
century earlier which proposed that neurons minimize their wiring costs [40]. 
These costs include metabolic expenditures [41, 42], wire volume [43–45], and 
signal attenuation and delay [46–48]. We will build on these principles further by 
showing that distortions away from the neuron’s natural fractal form will result in a 
deterioration of the balance between function (connectivity) and the costs associated 
with building (mass) and maintaining (energy) the connectivity. Fractal resonance 
proposes that matching the electrode to this natural condition will allow neurons to 
operate efficiently while interacting with the implant. 

Figure 44.4 employs two techniques (false-colored scanning electron microscopy 
and fluorescence imaging) to image the growth of neurons on the uniform, two-
dimensional surface of CNT electrodes. Although restricted to the electrode’s 
two-dimensional plane, the growth behavior is unrestricted within this plane. 
Therefore, one possibility for investigating fractal resonance would be to fabricate 
electrodes that copy these growth patterns. Neurons interacting with these electrodes 
would therefore follow the unrestricted growth behavior. Our hypothesis could be 
confirmed by quantifying the deterioration in neuron performance for electrode 
shapes that move away from this fractal resonance condition. Favorable perfor-
mances could include enhanced adhesion, growth, health, and ultimately electrical 
stimulation. Intriguingly, the geometric framework of our hypothesis offers the 
possibility of a cleaner and more systematic demonstration ahead of these complex 
experiments. If the favorable functions of neurons originate from their geometry, 
then the networks of Fig. 44.4 could be converted into neuron models and the 
processes of these model neurons distorted mathematically to examine how these 
functions deteriorate. 

In addition to offering an appealing strategy for examining neuron interactions 
with the surfaces of implants, there are broader implications for our approach. 
For example, mathematical distortions could be used to investigate pathological
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deviations from neurons’ natural fractal condition. Accordingly, in this chapter, we 
will consider the general case of three-dimensional neurons and later discuss the 
implications for interactions with an electrode. We will use confocal microscopy 
to image rat neurons located in the hippocampus CA1 region and convert these 
into models. We will show that, despite being named after trees, dendrites are 
considerably different in their scaling behavior. Whereas trees have famously been 
modeled using a fractal distribution of branch lengths [49, 50], the ways in which 
the multiple-length dendrites fork and weave through space are important for 
determining their fractal character. 

We will demonstrate that fractal dimension, D, is a highly appropriate parameter 
for quantifying the dendritic patterns because it incorporates dendritic length, 
forking, and weaving in a holistic manner that directly reflects the neuron’s fractal 
geometry. Serving as a measure of the ratio of fine to coarse-scale dendritic patterns, 
we will use D to directly map the competing functional and cost constraints. By 
investigating ~1600 distorted neuron models with modified dendrite length, forking, 
and weaving behavior, we propose that the neuron D values reflect a network 
cooperation that optimizes the balance between connectivity and cost constraints. 
The functions of neuron types that optimize at high D place a higher emphasis on 
connectivity, while low D neurons place a higher emphasis on cost. Remarkably, D 
captures this functional optimization even though the fractal scaling behavior occurs 
over a highly limited range of size scales. Electrodes that match the resonance 
condition for a particular neuron type will promote the growth of these neurons 
on the electrode and optimize their functional restraints. Extending this picture, we 
hypothesize that resonance will allow different neuron types to selectively grow 
on electrodes that most closely match their D values. Ultimately, this could allow 
different neuron types within a network to be directed to different parts of an 
implant. 

44.2 The Geometric Origin of Neuron Fractality 

Figure 44.5a shows a representative image obtained using confocal microscopy of 
CA1 pyramidal neurons in the coronal plane of the dorsal rat hippocampus. Axonal 
and dendritic arbors extend from neuron somas located in the stratum pyramidale 
(SP) of the CA1 region. Although the dendritic arbor features two component arbors 
(apical and basal), here we focus on the basal arbor. The arbor’s complex branching 
patterns extend into the neighboring stratum oriens (SO) where they collect signals 
from the axons of other neurons. Figure 44.5b (lower inset) shows an example of 
three-dimensional reconstruction of an arbor. We define a dendritic branch as any 
path in the neuron’s arbor that starts from the soma and ends at the tip of a dendrite 
(Fig. 44.5b – larger image). In our reconstruction, these branches are composed of 
a set of cylindrical segments that have a median width, W, and length, Ls, of 1.4  μm 
and 2.4 μm, respectively.
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Fig. 44.5 (a-top) Schematic diagram of a coronal slice through the hippocampus at Bregma 
−4.52 mm showing a selected location (red box) within the hippocampal CA1 region (darkened 
area); the pyramidale layer is denoted by the dashed line. (a-bottom) An example confocal 
micrograph taken from the selected location highlighted in (a-top) spanning the oriens (SO), 
pyramidale (SP), radiatum (SR), and stratum lacunosum-moleculare (SLM) strata. The red box in 
the micrograph highlights the approximate region occupied by the basal arbor of a single neuron. 
(b) The lower inset shows an example reconstruction of a neuron’s basal arbor with the neuron’s 
soma colored in cyan and its dendrites in black. The larger image shows an example of the paths 
taken by a neuron’s dendrites. S denotes the point where the dendrites initially extend out of the 
soma. B1 and B2 denote the points at which the dendrites bifurcate. E1, E2, and E3 denote the end 
points of the dendrites. (c-top) A dendritic branch from (b) beginning at S and ending at E1 showing 
four rulers of length LR (red) used in the coastline scaling analysis. (c-bottom) The same branch 
(c-top) where a chosen branch section of path length LP is highlighted in red and the Euclidean 
distance LD separating the ends of this path is shown by the dashed gray line 

In principle, each branch could extend into the SO layer following a perfectly 
straight line with dimension D = 1 or meander along a very winding trajectory 
that completely fills space with a dimension of D = 3. If the arbor instead features 
fractal dendrites, then each of these will be quantified by an intermediate D value 
lying between 1 and 3. Figure 44.5c introduces several key length scales that we will 
employ to measure D. Branches can be divided into a series of “rulers” – Euclidean 
straight lines of length LR. The displacement length, LD, represents the ruler length 
connecting two ends of a chosen section along a branch. In contrast, the path length 
of this section, LP, is approximately the total length of all rulers spanning the section 
when the ruler is set to the smallest resolution (which approximates the median Ls 
value). The fork length, L, (not shown) is defined as the path length between two 
forks in the branches. As an indicator of arbor size, the maximum fork length, Lmax, 
varies between 109 and 352 μm across all neurons, with a median value for L/Lmax 
of 0.24. 

Because many mathematical fractals are generated by scaling L, we start by  
comparing the neurons’ L behavior to that of H-Trees. Figure 44.6 shows the scaling 
relationship of N (the number of branches with a given L/Lmax) measured for a
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D = 1.4 H-Tree (Fig. 44.6a, c, and e) and a typical arbor (Fig. 44.6b, d, and f). 
We assign the branch section levels such that i = 1 corresponds to branch sections 
emerging from the soma, i = 2 to branch sections emerging from the first forks, 
etc., with neurons featuring a median of 7 levels (other common level assignments 
such as the Strahler scheme [51] generate similar findings to those below). The H-
Tree exhibits a well-defined reduction in L/Lmax as i increases (Fig. 44.6c) which 
translates into a power law decrease in N as L/Lmax increases (Fig. 44.6e). This 
power law behavior is expected since it generates the scale invariance of fractal 
geometry: the magnitude of the data line’s gradient in Fig. 44.6e equals the H-
Tree’s D value of 1.4. In contrast, this behavior is notably absent for the neuron: 
in Fig. 44.6d, L/Lmax does not exhibit a systemic reduction in i and, consequently, 
the Fig. 44.6f data does not follow a well-defined slope. This result demonstrates 
that the L distribution alone is insufficient for generating the fractal character of 
the branches – in addition to branch lengths, the angles that determine the forking 
behavior along with the way branches weave between the forks must also play a 
role. 

44.3 Fractal Dimension of the Branches 

A variety of scaling analyses have previously been applied to neurons [24, 27, 
28, 30, 39, 52–56]. Here we consider two fractal methods that accommodate the 
dendrite length, forking, and weaving contributions to the branch dimension – a 
traditional method employed in the first demonstration of nature’s fractality [57], 
and a novel method that examines the dendrites’ tortuosity [58, 59], T, across 
multiple scales. We label their measured branch dimension as DB. The high degree 
of agreement between the two methods in their measurement of DB emphasizes 
the appropriateness of characterizing the scaling properties of dendrites with this 
integrated approach. In addition to providing confirmation of DB, this second 
method also allows an examination of the relationship between DB and the scaling 
behavior of T. By doing so, we unite traditional and novel approaches to understand 
neuron geometry. 

We first employ a three-dimensional extension of a traditional method pioneered 
by Richardson [57] and then Mandelbrot [60] in their discovery of the fractal 
character of meandering coastlines. The ‘coastline method’ examines the branch 
at different resolutions through its employment of the rulers shown in the top panel 
of Fig. 44.5c. The branch is divided into a series of ruler lengths, and the branch’s 
fractal scale invariance is then revealed through the power law dependence of N, 
the number of rulers needed to span the branch’s entire length. The exponent of 
.N ∝ LR

−DBC is labeled the branch’s coastline fractal dimension, DBC, and is 
extracted from the log-log scaling plot shown in Fig. 44.7a. The coarse- and fine-
scale cutoffs of this fractal scaling are set by measurement limits. At the fine scale, 
we do not consider rulers smaller than 4 μm (which approaches the median value of 
Ls) because smaller rulers would start to detect the linear character of the cylindrical
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Fig. 44.6 (a) D = 1.4 H-Tree fractal with W = 1 μm (a) and an example basal arbor with median 
W = 1.4 μm (b). The branch level i is colored as follows: red (1st branch), orange (2nd), yellow 
(3rd), green (4th), blue (5th), and purple (6th). Histograms for an H-Tree (c) and neuron (d) plotting 
the number of branches N with a given value of L/Lmax. Panels (e) and (f) show the analysis of (c) 
and (d) plotted in log-log space 

segments rather than the fractal character of the meandering branches. At the course 
scale, we allow for rulers that span up to 40 μm, which provides an order of 
magnitude scaling. Accordingly, branches with an LE value less than 40 μm are  
excluded from our analysis. 

Normalizing LR using LE (the largest possible ruler length, connecting the soma 
S to the branch end point E) allows scaling plots for branches with different lengths 
to be plotted on a common x-axis. Figure 44.7b demonstrates that all of the branches 
within a given arbor condense onto a single line, indicating that they are quantified 
by a common fractal dimension, DBCN. To extract DBCN, we focus the fit on the 
black data corresponding to the scaling range of LR/LE shared by all branches within 
the arbor (i.e., the region over which all of the individual plots overlap). The inset 
employs a histogram to compare the mean DBC across all branches within the arbor,
〈DBC〉, (1.031 as indicated by the cyan line) with DBCN (1.032 as indicated by the 
red line). Figure 44.7c further demonstrates DBC’s lack of dependence on branch 
length by plotting the values of all the individual branches across all the neurons
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Fig. 44.7 (a) The coastline scaling plot of the number of rulers, N, spanning the branch versus 
the normalized ruler length, LR/LE, measured for a single branch within a selected neuron arbor. 
The red insets show examples of segmented versions of the branch corresponding to ruler lengths 
of 6.4 μm (left) and 34.7 μm (right). The slope of the line yields a coastline fractal dimension, 
DBC, of 1.036 ± 0.002. (b) The equivalent coastline scaling plot including all the branches within 
the selected neuron’s arbor. The black data correspond to the scaling range of LR/LE shared by all 
branches within the arbor, whereas the red data correspond to the range in which some branches 
do not contribute and are accordingly removed when fitting the data. The slope of the line yields 
a normalized coastline fractal dimension, DBCN, of 1.032 ± 0.003. The inset at the right shows a 
histogram of the number of branches, n, of a given  DBC within the neuron’s arbor. The vertical 
red and cyan lines correspond to DBCN and the mean coastline fractal dimension across all the 
branches within the neuron’s arbor, 〈DBC〉, respectively. (c) Coastline fractal dimension, DBC, 
plotted against branch length LB (measured in μm). The data, which have been binned along the 
x-axis, represent the mean values across all the branches of all the neurons within each bin. The 
error bars represent the standard error from the mean within each bin. The upper-right inset shows 
a zoom-in of a bifurcation in a neuron’s dendrites and demonstrates how the fork angle, φ, and the  
weave angle, θ , are measured. The other insets show the path of a single neuron branch for three 
values of the angle multiplier, α, where the location of the neuron’s soma is indicated by the black 
dot. The colors of the data shown in this plot correspond to the α values shown in the insets (see 
text for details)
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examined. DBC does not vary with LB within nor across neurons, where LB is the 
path length, LP, measured along a whole branch. 

All of the branches reveal surprisingly mild fractal characteristics quantified by 
low DBC values close to those expected for straight lines. In Fig. 44.7c, we also  
mathematically manipulate the branch weave and forking angles (details of this 
technique are reported elsewhere [61]). The weave angles, θ , are defined as the 
angles between connecting segments along the branch (Fig. 44.7c – right inset). 
We define the forking angles, φ, as the first of the branch weave angles for any 
branch not emanating from the neuron’s soma. Multiplying every θ and φ value 
by a common factor, α, changes the DBC value as follows. Values of α higher than 
1 increase the angles above their natural values and cause the neuron branches to 
curl up, causing DBC to rise because the amount of fine structure in the branch’s 
shape increases. Similarly, reducing α causes the branches to gradually straighten 
out, decreasing the amount of fine structure and causing DBC to drop. Figure 44.7c 
includes a visual demonstration of this curling process. We set the range of α values 
(0.5 to 2 in steps of 0.25) to ensure that branches rarely intersect and penetrate, 
ensuring a physically reasonable condition. 

Whereas the coastline method considers the entire length of the branch and 
examines how the branch properties change with measurement resolution, our 
second method considers the finest resolution and examines how the branch 
properties vary when investigating increasingly small sections of the branch. This 
second approach aligns with one of the traditional measures of tortuosity that 
quantifies the extent to which the meandering branch deviates from a straight 
trajectory. Several different tortuosity metrics have been used in previous studies of 
a variety of biological structures [39, 59, 62–65]. Due to its mathematical connection 
to fractal measurement, here we adopt the definition of tortuosity, T, as the ratio LP 
to LD (shown in Fig. 44.5c – bottom). Whereas LP captures the fractal tortuosity of 
the branch, LD represents the length of the straight, Euclidean line connecting the 
two ends of the chosen section along the branch. By measuring various path lengths 
and their corresponding displacement lengths along the branches of the neurons and 
averaging the resulting tortuosity across all of these branches, we are able to chart 
the relationship between T and LP using the scaling plot of Fig. 44.8 (plotted over 
the same scaling range used to measure DBC). We have previously shown that for 
fractal behavior, T is expected to follow the power law relationship with LP revealed 
in Fig. 44.8, with the slope S of the log-log plot related to branch fractal dimension 
using DBT = 1/(1 − S) [66]. Accordingly, increasing α results in a steeper slope of 
the data line. The inset of Fig. 44.8 confirms the intuition that the T value averaged 
across the data line will increase with α. 

Figure 44.9 plots the DBT values extracted from Fig. 44.8 against the correspond-
ing DBC values (averaged over all of the branches across all neurons) and reveals a 
remarkable agreement for the two approaches: the black line indicates the expected 
relationship, DBC = DBT. The two measurement techniques provide confirmation of 
the branch fractal dimension, an important capability in light of the importance of 
distinguishing the branches mild (i.e. low fractal dimension) fractal behavior from 
the Euclidean behavior characterized by integer dimensionality. Due to the lower
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Fig. 44.8 Scaling plot of tortuosity, T, against path length, LP, (measured in μm) for seven values 
of α as indicated by the upper-right color bar. The data shown represent binned averages of T 
across all possible paths within all of the branches across all neurons. The upper-left inset shows 
how the average value of tortuosity across the LP range examined in the main plot, TAve, increases 
with α. (Figure taken from reference [66]) 

Fig. 44.9 Coastline fractal dimension, DBC, plotted against tortuosity fractal dimension, DBT, for  
seven values of α. The lower-right color bar indicates the α value of the corresponding data. The 
black line indicates DBC = DBT 

scatter observed in the scaling plots of the individual branches [66], we will use 
DBC rather than DBT values later in this chapter.
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44.4 Fractal Dimension of the Arbor 

Having established the fractal behavior of the individual branches using two 
techniques, we now similarly apply two fractal techniques to quantify the arbor 
properties. As the individual branches spread out in space, the resulting arbor 
properties depend on two embedded fractal patterns – the branches and the gaps 
forming between them (as highlighted by Figs. 44.5b and 44.6b). The first method 
relates to Sholl analysis, which is a traditional approach to assessing the complex 
interplay of the branches in neuron arbors. 

Sholl analysis can be performed by counting the number of intersections of 
dendritic branches with concentric rings (in two dimensions) or spheres (in three 
dimensions) of increasing radii centered at a neuron’s soma. In our study [67], we 
develop a modified version of the traditional three-dimensional Sholl analysis that 
calculates the number of intersections, NI, of a neuron’s dendritic branches with 
concentric spheres of increasing radii, r, averaged across spheres centered at 25 
randomly selected locations on a neuron’s arbor. These locations are restricted to 
being within a distance of RA/.

√
2 of the center of mass of the arbor, where RA is 

the arbor’s radius [39]. This sampling of many local origins rather than just one 
origin centered on the soma accommodates potential variations arising from some 
parts of the neurons possessing different structural qualities than others. Restricting 
the selection of local origins to be within RA/.

√
2 reduces the number of spheres 

that have large portions extending beyond the arbor’s periphery. This approach also 
allows alignment with the cumulative mass fractal analysis which similarly samples 
many locations [24]. 

To perform the cumulative mass fractal analysis (also referred to as the mass-
radius method) of a neuron’s arbor, we calculate Lin, the total length of all dendrites 
within concentric spheres of increasing radii, r, averaged across randomly selected 
sphere centers using the same process as the modified Sholl analysis. The range of r 
examined also matches that used in the modified Sholl analysis. Figure 44.10 shows 
the relationship between NI and r. As  r increases, we see NI initially increase to a 
maximum of 21 at r = 73 μm, followed by a decrease as r nears the mean arbor 
radius of 98 μm. While the increase reflects the fractal character of the repeating 
patterns established by the dendrites [39, 54], the decrease is a consequence of the 
measurement technique – it reflects the increased chance of the larger outer sphere 
surfaces reaching beyond the space occupied by the dendrites. However, its onset 
can be impacted by any changes in the fractal character toward the neuron periphery. 
Figure 44.10 also shows the results of the cumulative mass analysis by plotting Lin 
against r and reveals a gradual increase that slows in the range of r accompanied by 
the decrease in NI. 

For a neuron with fractal branches, the mass dimension, DM, of its arbor can be 
measured from this cumulative mass analysis using the following relationship [24, 
54]: 

.Lin ∼ rDM



892 C. Rowland et al.

Fig. 44.10 The results of a modified Sholl analysis (red) measuring the average number of 
intersections of dendrites, NI, with a sphere surface of radius r, and a cumulative length analysis 
(blue) measuring the total length of all dendrites, Lin, within a sphere of the same radius. These 
curves represent the mean behavior across a set of basal arbors and the shaded region around each 
curve shows the standard error from the mean. The inset shows an example neuron’s basal arbor 
with its arbor radius, RA, denoted by the red dashed ring and example sphere radii used in the 
analyses denoted by the concentric cyan rings. The black dashed line at 98 μm indicates the mean 
arbor radius 

DM is referred to as the mass fractal dimension because it measures the change in 
the cumulated mass of the object as a function of the size of the region considered 
(relating length to mass assumes that the branch width does not vary substantially, 
which is a reasonable approximation for the cylindrical segments of our neurons). 
Thus, the slope of a double logarithmic plot of Lin versus r provides a quantitative 
value of DM. However, once the radius of a sphere reaches a large enough value 
that the entire arbor is contained within the sphere, Lin will become equal to LT, the  
sum of all of the fork lengths within the arbor. As such, this power law scaling only 
holds over a finite range of r. Our selection of the scaling range for the fit is chosen 
to be consistent with the scaling range examined in our second fractal analysis, the 
box-counting technique. 

Whereas the cumulative mass method provides a link to neuroscience through its 
relationship to the Sholl analysis, the box-counting method is as traditional method 
adopted from fractal studies. Similar to the coastline method counting the number 
of rulers as ruler size is reduced, the analogous arbor analysis replaces the rulers 
with boxes to accommodate the fact that the arbors feature multiple branches. The 
box-counting technique then determines the amount of space occupied by the arbor 
by inserting it into a three-dimensional grid of the boxes and counting the number 
of boxes, Nbox, occupied by the branches. This count is then repeated across a range 
of box sizes, Lbox. We can use the following relationship to determine the arbor’s 
‘covering’ fractal dimension, DA: 

.Nbox ∼ Lbox
−DA
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As with the branch measurements, the arbor power -law scaling will only hold over 
a finite range due to the arbor’s physical size and the limited resolution of the 
reconstructions. At the fine-size scale, we limit Lbox to W. This avoids resolution 
effects arising from the segment shapes. At the coarse scale, we limit Lbox to be less 
than one-fifth of the largest extent of the arbor in the x, y, or  z directions to ensure 
sufficient counting statistics. Within these limits, a straight line can be fitted for all 
sets of points that range over at least an order of magnitude on the log-log plot of 
Nbox versus Lbox and the fit with maximal R2 is chosen to measure DA. 

In Fig. 44.11, we compare the scaling plots for the two fractal methods. Figure 
44.11a shows the measurement of the arbor mass dimension, DM, while Fig. 44.11b 
shows the measurement of the arbor covering dimension, DA, for the same neuron. 
Although the dimension measurements of both methods are in agreement with one 
another, we note that the results of the linear regression in the box-counting analysis, 
yielding DA = 1.40 ± 0.01 (R2 = 0.9993), correspond to a better fit than the results 
of the cumulative mass analysis, yielding DM = 1.42 ± 0.05 (R2 = 0.9926). A 
comparison across all neurons shows the mean DA is lower than the mean DM value 
(1.41 and 1.47, respectively). We note that DM and DA belong to a spectrum of 
dimensions, and their magnitudes can be compared using a multi-fractal analysis 
[53, 68]. In our case, the box-counting analysis serves as a more global measure 
of fractality because it accommodates the whole arbor, while the cumulative mass 
analysis is biased toward the central section (through its restriction of the local 
sphere centers to be within RA/.

√
2 of the center of mass of the arbor). If the dendrites 

start to, for example, straighten or fork less toward the arbor periphery, a dimension 
that measures the whole arbor would be expected to be lower than one that focuses 
on the central region. 

Although the differences between DA and DM are relatively small for our 
neurons, based on this potential effect and also on the relative qualities of the 
associated fits (Fig. 44.11), we will focus on DA later in the chapter. However, 
both dimensions highlight two intriguing qualities: (1) the spatial interaction of the 
branches and gaps in the arbor generates a significantly larger fractal complexity 
than that displayed by the individual branches, (2) given that the arbor fractal 
dimension could assume values up to 3, the fractal complexity is nevertheless 
relatively low when compared to the capacity of some mathematical fractals to fill 
space. 

44.5 Connectivity Analysis 

We now investigate the impact of changing fractal dimension on the neuron’s 
potential to connect to other neurons. We begin this discussion by considering 
the relationship between the arbor and branch dimensions. Figure 44.12b plots the 
DA measurements across all the neurons and their mean branch fractal dimension,
〈DBC〉, for different α values. The fact that both increasing and decreasing α results 
in a rise in DA can be understood in terms of the interplay of the fractal branches
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Fig. 44.11 (a) A scaling plot of the cumulative length analysis showing the total dendritic length, 
Lin, within a sphere plotted against its radius, r. The left inset shows rings with a radius of 5 μm at  
3 example locations on a neuron, while the right inset shows spheres with a radius of 25 μm at the  
same locations. (b) A scaling plot of the number of boxes occupied by a neuron, Nbox, plotted with 
respect to the size of the boxes, Lbox. The left inset shows a representation of the space occupied 
by a neuron at a box size of 3.1 μm, while the right inset shows the same neuron at a box size of 
20.3 μm. (Figure taken from reference [67]) 

and gaps. The branches self-avoid at the natural condition of α = 1 and so move 
closer together when α is either increased or decreased. This is demonstrated in Fig. 
44.12b insets which show an example arbor for the natural case (middle) and for 
lower (left) and higher (right) α values. This generates an increase in the ratio of 
fine to coarse structure and a corresponding rise in DA. In terms of the sensitivity of 
U-shaped curve to changes in their 〈DBC〉 values, we draw attention to the curve’s 
asymmetry. Distortions that increase the dendrites’ weaving and forking angles lead 
to small increases in DA compared to the sharper rises observed for distortions that 
reduce these angles. In particular, arbors featuring dendrites close to the Euclidean 
condition are highly sensitive to distortions. For example, the small reduction in
〈DBC〉 from 1.02 (α = 0.75) to 1.01 (α = 0.5) is accompanied by an increase in
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Fig. 44.12 Top: RPV (red) 
and RPA (blue) plotted against 
the mean coastline fractal 
dimension, 〈DBC〉. Bottom.  
Arbor fractal dimension, DA, 
plotted against 〈DBC〉 for 
seven values of α as indicated 
by the lower-right color bar. 
The shown data represent the 
mean of DA and 〈DBC〉 across 
all arbors at each α value, 
with the error bars indicating 
the standard error from the 
mean. The three upper insets 
show an example neuron’s 
dendritic arbor for three 
values of α as indicated by 
the color of the arbor. The top 
and bottom plots share the 
same x-axis 

DA from 1.42 (α = 0.75) to 1.46 (α = 0.5). Relative to the dendrites, the arbor’s 
dimension increases approximately fourfold. 

Figure 44.12a plots the 〈DBC〉 dependence of two connectivity efficiency factors, 
RPV and RPA, which relate the neuron’s connectivity to the costs of building and 
operating this connectivity, respectively. To understand these parameters, we first 
consider connectivity in detail. Previous studies have established that the arbor’s 
physical structure is sufficient for describing the connection process, with chemical 
steering playing a relatively minor role [69, 70]. In particular, the arbor’s dendritic 
density [45, 71–73] and resulting physical profile [39] are powerful indicators of its 
potential to connect to other neurons. When viewed from a particular orientation, we 
define the arbor’s profile, P, as the total projected area of its branches. Large profiles 
will therefore result in the increased exposure of synapses, which are responsible for 
receiving signals from other neurons. When calculating the profile from the dendrite 
images, we incorporate an extra layer surrounding the branches to account for the 
outgrowth of dendritic spines – small protrusions that contain the majority of the 
dendrite synapses. We then normalize this projected surface area of the dendrites 
using their total surface area, As, to accommodate for the range in neuron sizes 
and associated surface areas. The current study adopts the general approach of 
averaging P/As across all orientations of the dendritic arbor to allow for the fact 
that axons originating from within the CA1 region connect to the dendritic arbors 
from every direction [74]. The profile variation with orientation can be visualized by 
projecting the P/As values obtained for each orientation onto a spherical surface. For 
the profile spheres included in Fig. 44.13, the neurons are viewed from a common 
direction which corresponds to the middle point on the sphere’s surface. For the 
natural neuron, the orientation for which P/As peaks is marked by the black dot. 
Typically, this peak occurs in the direction that the Schaffer collateral axons enter
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Fig. 44.13 The upper images 
show an example neuron for 
α = 0.25 (left), 1 (middle), 
and 1.75 (right). The lower 
images show the equivalent 
profile spheres, where the 
black dot represents the 
orientation with maximal 
P/As for the middle neuron 
and the bar indicates the 
colors ranging from high to 
low P/As values 

from the CA2 region [36] and so maximizes the connectivity of our natural neurons 
to those incoming axons. 

P/As exhibits an inverse relationship with DA because the increased fine structure 
of high DA neurons causes branches to block each other and so reduces the overall 
profile [61]. This blocking effect is important for capturing the neuron’s connectivity 
because multiple connections of an axon to the same dendritic arbor are known to 
generate redundancies [39]. Therefore, if a straight axon from an incoming neuron 
connected to an exposed branch, subsequent connections to blocked branches 
wouldn’t increase the connectivity and should be excluded. Another well-known 
fractal effect is that high DA fractals increase the ratio of the object’s surface 
area As to its bounding area Ab [23, 49] (i.e. the surface area of the volume 
containing the arbor, as quantified by its convex hull). Figure 44.14a combines the 
‘blocking area effect’ with the ‘increased surface area effect’ by plotting P/Ab (i.e. 
the multiplication of P/As and As/Ab) against  DA. In effect, P/Ab quantifies the large 
surface area of the arbor while accounting for the fact that some of this area will be 
blocked and therefore excluded from the profile P. Normalizing P using Ab serves 
the additional purpose of measuring the arbor’s potential connectivity in a way that 
is independent of its size. Accordingly, P/Ab serves as a connectivity density and is 
an effective measure of the neurons’ capacity to form a network. 

Figure 44.14a–c examine this connectivity density along with the associated 
costs. The clear rise in P/Ab revealed by Fig. 44.14a highlights the functional 
advantage offered by high DA branches – incoming axons from other neurons will 
experience the dendritic arbor’s large connectivity density. Note that the plotted 
connectivity density is for individual neurons. Because of the inter-penetrating 
character of dendritic arbors from neighboring neurons, the collective connectivity 
density will be even larger due to their combined profiles. If this functionality was 
the sole driver of neuron morphology, then all neurons would therefore exploit high 
DA values approaching 3. Yet, the arbors cluster around relatively low values of 
DA ~ 1.41 (as shown by the histogram in Fig. 44.14f), suggesting that there are 
additional, negative consequences of increasing DA.
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Fig. 44.14 Left column. Dependences of P/Ab (a), As/Ab (b), and Vm/Vb (c) on  DA. The  
underlying red data include both natural and distorted neuron arbors, the cyan lines correspond 
to binned averages of the data, and the black curves correspond to third-degree polynomial fits to 
the data. Right column. (d) RPA (the ratio of the derivatives of the fits to P/Ab and As/Ab) plotted  
against DA. (e) RPV (the ratio of the derivatives of the fits to P/Ab and Vm/Vb) plotted against DA. 
(f) Histogram of n, the number of natural neurons with a given DA value 

Considering the arbor’s “operational” cost, it is well known from allometric 
scaling relationships that metabolic costs generally increase with mass [75, 76]. 
Specifically, previous research proposed that the amount of ATP expended by 
neurons increases with As [39, 42]. By plotting As/Ab, Fig.  44.14b therefore charts 
how the normalized energy cost increases with DA. In Fig.  44.14c, we plot the ratio 
of the volume occupied by the branches, Vm, to the neuron’s bounding volume, 
Vb (i.e., the arbor’s convex hull volume). For high DA dendrites, the tighter weave 
angles along with forking angles that bring branches closer together result in more 
densely packed structures. This produces the observed rise of Vm/Vb. Assuming 
constant tissue density, Vm is proportional to the neuronal mass. The rise in Vm/Vb 
therefore quantifies the increase in mass density and associated ‘building’ costs of 
high DA neurons. 

The distinct forms of Fig. 44.14a–c are highlighted using third-degree polyno-
mial fits (black) which closely follow the binned average values of the data (cyan).
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To explore how the fractals balance these factors, in Fig. 44.14d and e, we consider 
the ratios of the rates of change of connectivity with operating cost: 

. RPA =
d

dDA

(
P
Ab

)

d
dDA

(
As
Ab

)

and with building cost: 

. RPV =
d

dDA

(
P
Ab

)

d
dDA

(
Vm
Vb

)

as simple optimization indicators with the prediction that peaks in RPA and RPV 
indicate the DA value at which the optimal balance occurs. We note that RPA and 
RPV both peak at around the natural neurons’ prevalent DA value. Consequently, 
although high DA offers superior connectivity for the neurons, the positive conse-
quences of increasing DA beyond the peak rapidly diminish in terms of the mass 
costs of establishing connectivity. Simultaneously, the negative consequences of 
increasing DA rapidly rise in terms of the energy costs of establishing connectivity. 

Note that the red data in Fig. 44.14a–c feature both natural and distorted neurons, 
and these are not distinguished to emphasize that the two groups follow a common 
behavior. Distortions shift a neuron’s DA value along the common black line. Figure 
44.12a shows how these distortions cause the neuron to deviate away from the 
optimized form. The data in Fig. 44.12a are generated by first using Fig. 44.12b 
to convert the 〈DBC〉 values for each α value to their associated DA values and 
then using Fig. 44.14d and e to convert these DA values to their corresponding RPA 
and RPV values. As shown by the falling RPA and RPV values, the balance between 
connectivity and cost deteriorates as the DA value moves to the higher, unnatural 
values. Significantly, the largest sensitivities of RPA, RPV, and DA all occur at the 
smallest 〈DBC〉 values. Figure 44.12 therefore captures the importance of the fractal 
resonance hypothesis. If a neuron that looks like the middle image of the bottom 
panel interacts with electrodes shaped like the left and right images, then it will 
experience the deterioration shown in the top panel. 

44.6 Conclusions 

In this chapter, we proposed the fractal resonance hypothesis for the interface 
between implants and neurons. This hypothesis declares that favorable properties 
emerge by matching the geometries of the two interacting surfaces. An appealing 
analogy can be found with aircraft landing on a runway. Aircraft move most 
efficiently along straight trajectories, and straight runways therefore accommodate
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this Euclidean behavior. In contrast, neurons weave and fork in a multi-scaled 
manner as they approach our electrodes, and therefore we aim to accommodate their 
fractal growth with fractal electrode designs. We have shown that neuron growth 
establishes connections to other neurons while balancing the building and operating 
costs of these connections. For neuron types with high DA values, this balance favors 
connectivity while for those with low DA values costs are more important for their 
functionality. By matching the dimensions of the implant and neurons, the aim is to 
promote unrestricted growth that maintains the necessary connectivity–cost balance 
to maintain their functions as they interact with the artificial surface. In a way, we 
are using geometry to ‘convince’ the neurons that they are interacting with artificial 
versions of themselves. 

The prospect of fractal resonance holds great promise for implants whether their 
function is to stimulate neurons or sense their signals. Both functions benefit from 
preserving neuron growth and function. Although long term, the ultimate practical 
aim for fractal resonance is for each neuron process to automatically seek out and 
grow along a fractal branch on the implant’s surface. We also aim for ‘selective’ 
growth, whereby targeted types of neurons could grow on specific branches. This 
would be powerful for implants interacting with networks featuring multiple types 
and would allow them to be assembled in different regions of the implant. 

Although the aircraft analogy is appealing in its simplicity, the reality of fractal 
resonance will be driven by optimization curves such as the one shown in Fig. 
44.12 for our CA1 pyramidal neurons from the coronal plane of the dorsal rat 
hippocampus. We anticipate that the U-shaped relationship between DB and DA 
will be generic to neuron types with arbors composed of fractal branches that self-
avoid. For neurons with a spread of DA values, we expect an analogous behavior to 
that shown in Fig. 44.14f whereby RPA and RPV peak at DA values closely matching 
the histogram peak, indicating that the majority of neurons exist near the optimizing 
condition. 

In terms of distortions away from the natural fractal condition, it is informative to 
examine the symmetry of the U shape. For the hippocampal neurons of the current 
study, the natural condition (α = 1) centered around DB = 1.04 and distortions 
that reduced the fractal weave of the branches resulted in relatively large changes 
to the arbor fractal characteristics as the branches neared the Euclidean condition 
of straight lines. Based on this observation, we anticipate that neuron types with 
naturally occurring low DB values that are distorted in a manner that reduces 
their weave or forking angles will experience large changes in their arbor fractal 
characteristics and associated functionality. This, however, assumes a similar arbor 
density to the neurons examined in the current study – this behavior may not be seen 
for sparsely branching neurons. It is also intriguing to consider neurons with large 
naturally occurring DB values and examine whether distortions through increases in 
their weave and forking angles would experience a similar sensitivity to DB. 

In addition to neurons peaking at different DA values depending on function, the 
size of the peak might be expected to vary also. It is interesting to note that if we 
created neurons that are mathematically restricted to a two-dimensional plane, their 
optimization curves would be perfectly flat. It is therefore vital for future studies
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to analyze a broad range of neurons to consider the variety of optimization curves, 
including comparisons of neuron dendrites that spread out in planes (such as the 
plexiform layers of the retina [77]) to neurons that spread out into the volume 
surrounding an interface. Based on this need, we are automating our optimization 
procedure so that it can be applied to neuron images provided by the online 
repository NeuroMorpho.Org [78]. 

Based on these discussions, the practical challenge of achieving fractal resonance 
lies in the fabrication methods capable of matching fractal geometries. Although not 
the focus of this chapter, we will finish by highlighting two promising approaches, 
the details of which can be found elsewhere [1, 2, 20, 79, 80]. The images shown 
in Fig. 44.15 are fabricated from VACNTs. As noted in the introduction, their nano-
scale texture (shown in Fig. 44.15b and c) has been proposed to mimic some of the 
properties of the extracellular matrix [3–5]. This has been shown to enhance neurite 
outgrowth and elongation if the roughness variation matches the neuron process 
diameter [81]. Given the clear multi-scaled character of this texture, a powerful 
future approach would be to increase the texture amplitude to generate three-
dimensional structures that are fractal patterns that extend in both the lateral and 
height directions. This would offer the possibility of matching the fractal character 
of three-dimensional neurons and implant surfaces. 

In Fig. 44.15d, we provide a demonstration of the patterning capabilities of 
the VACNT technique. We can pattern features down to the micron-size scale, 
in principle allowing a replication of patterns such as those shown in Fig. 44.4. 
However, this lithographic technique is practically intensive given the complexity 
of the patterns being replicated. A more appealing approach would be to harness a 
natural growth process that self-assembles fractal structures. Figure 44.16b shows 
statistical fractals grown using diffusion-limited aggregation that look strikingly 
similar to, for example, retinal ganglion cells (Fig. 44.16c). Using this technique, 
a beam of metallic clusters (each with a diameter of ~50 nm) is deposited on a 
substrate in an ultra-high vacuum chamber. These clusters then grow into fractal 
islands called nanoflowers [79]. Figure 44.16a charts this growth process, showing 
the small ellipsoidal islands that initially form (plotted on the graph’s left side) 
and the islands with fractal branches that they grow into (right side). The islands’ 
fractal morphology and size can be adjusted by varying deposition conditions such 
as temperature, deposition rate, and flux. Fortuitously, neighboring islands naturally 
self-avoid rather than merge, allowing arrays of disconnected fractal patterns to be 
grown efficiently. Whereas the shown patterns are grown on graphite, we have also 
self-assembled fractals on insulating surfaces [80]. The demonstrations shown in 
Figs. 44.15 and 44.16 highlight that fractal resonance is practically possible and 
therefore represent a potential new era for implants in which bio-inspired fractal 
designs interface more effectively with neuronal networks in the body.
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Fig. 44.15 (a) Scanning 
electron micrograph image 
generated using a 
stereoscopic technique 
showing a VACNT branch 
imaged at an angle. (b) The  
VACNT side profile 
quantifying the surface 
texture. The y-axis spans 
from 23.5 to 24.5 μm and the  
x-axis spans from 0 to 90 μm. 
(c) A top-down view of a 
neuron process adhering to 
the texture of the VACNT top 
surface. (d) A top-down view 
of the lithographic patterning 
capability. The scale bars in 
(c) and (d) are 2 μm and  
100 μm, respectively. The 
VACNTs are fabricated in 
collaboration with B. Alemán 
(University of Oregon, USA)
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Fig. 44.16 (a) A plot of log (island perimeter, P) versus log (island area, A), as measured from a 
digital scanning electron micrograph image of antimony patterns deposited on a graphite substrate. 
Each data point represents an individual pattern. The dotted line is a guide to the eye, showing the 
behavior expected for purely ellipsoidal (i.e. non-fractal) pattern. The critical radius, rc, represents 
the point at which the data deviate from this behavior, indicating the formation of fractal branches. 
(b) Atomic force microscopy image of a fractal pattern. (c) For comparison, we show the dendritic 
arbor of a mouse retinal ganglion cell. The fractals shown in (a–b) are fabricated in collaboration 
with S.A. Brown (University of Canterbury, New Zealand). The neuron shown in (c) is adapted 
from data publicly available on NeuroMorpho.Org [78, 82] 
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