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Abstract Imagine a world in which damaged parts of the body – an arm, an eye, 
and ultimately a region of the brain – can be replaced by artificial implants capable 
of restoring or even enhancing human performance. The associated improvements 
in the quality of human life would revolutionize the medical world and produce 
sweeping changes across society. In this chapter, we discuss several approaches 
to the fabrication of fractal electronics designed to interface with neural networks. 
We consider two fundamental functions – stimulating electrical signals in the 
neural networks and sensing the location of the signals as they pass through the 
network. Using experiments and simulations, we discuss the favorable electrical 
performances that arise from adopting fractal rather than traditional Euclidean 
architectures. We also demonstrate how the fractal architecture induces favorable 
physical interactions with the cells they interact with, including the ability to direct 
the growth of neurons and glia to specific regions of the neural–electronic interface. 
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43.1 Introduction 

In 1752, Benjamin Franklin attached a metal key to the bottom of a dampened 
kite string and then flew the kite in a storm. It didn’t take long to go from his 
simple demonstration of harnessing electricity to applying it to living bodies. In 
1764, physician Charles Le Roy applied electricity to patients’ eyes, causing them 
to see flashes of light. In 1791, Luigi Galvani did the same to the muscles of frog 
legs, causing them to twitch [1]. Since then, two centuries of rapid development 
have led to today’s commercial electronics industry. Miniaturization has been the 
main driver of improvements. In addition to faster operation, the evolution from 
micro-electronics to nano-electronics facilitates novel methods for manipulating 
the flow of electricity. For example, our research group has investigated ballistic 
electronics [2], quantum electronics [3], spin electronics [4], and coulomb blockade 
[5]. However, developments such as these target the computing and communications 
industry rather than electronic interfaces with biological systems. 

Miniaturization offers surgeons the opportunity to implant devices in humans 
rather than relying on the crude external wires used by Le Roy and Galvani. 
For example, electronic devices have been implanted into human retinas with 
the aim of restoring vision to patients with degenerative retinal diseases [6–13]. 
More than 150,000 deep brain stimulation implant surgeries have been performed 
targeting neurological disorders such as Parkinson’s disease [14]. Furthermore, 
people with amputated limbs receive interactive prosthetic implants that restore 
mobility. In addition to enhancing the performance of medical devices, exploring 
neuron responses to implants can be used to investigate their fundamental behavior 
and the degree to which this behavior can be controlled. Such studies should also 
accommodate interactions with glia. Although neurons and glia were discovered 
around the same time, research on the latter has been slower to gain momentum [15] 
even though they are prevalent in the central nervous system [16] and play central 
roles in controlling neuronal network structure and functionality [17]. Specifically, 
whereas neurons are crucial for carrying the body’s electrical signals, glia are 
equally crucial because of their supporting role as the neurons’ life support system. 

Significantly, implants are frequently referred to as bionic devices in recognition 
of the importance of bio-inspiration and the need for biocompatibility at the cell– 
implant interface (“bion” is Greek for “unit of life”). Yet, Fig. 43.1 highlights a 
fundamental geometric mismatch between today’s conventional implants and the 
cells that they interact with. Confocal microscopy (Fig. 43.1a) can be used to 
construct three-dimensional models of neurons (Fig. 43.1b), allowing an analysis 
of their fundamental geometry [18–20]. Discussed in more detail in Chap. 44, this 
analysis shows that neurons belong to fractal geometry, featuring dendritic branches 
that repeat at increasingly fine-size scales. In contrast, the active area of typical 
implants is based on Euclidean geometry. The gray square shape shown in Fig. 
43.1c serves as an example. 

Fractal branches are prevalent in nature. When flying his kite in the storm, 
Franklin would have noticed the multi-scaled branches of the lightning around him,
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Fig. 43.1 (a) Confocal microscopy generates a stack of 200 μm × 200 μm horizontal sections 
(with vertical separations of 2 μm) of Golgi-Cox-stained neurons. (b) These sections are then 
computer-assembled into three-dimensional images for pattern analysis. A neuron’s basal dendrites 
from a rat’s hippocampus are shown for demonstration. (c) A schematic showing the square-shaped 
active area (light gray) of a conventional implant. (d) For our bio-inspired implants, the active area 
features branched patterns that repeat at different size scales 

along with the fractal trees that populate many natural environments. Animals also 
benefit from fractal branches in, for example, their bronchial trees and veins. In each 
case, as their branches spread out in space, the structure features two embedded 
fractal patterns – the branches and the gaps forming between them. Their structural 
relationship offers the potential to balance functionality with operational costs while 
also maintaining structural integrity. In this balancing process, the repeating patterns 
offer large interfaces to interact with light in the case of trees [21], oxygen in the 
case of bronchial trees [22], and neighboring cells in the case of neurons [18]. 

Even if Franklin had pondered the potential benefits of using a set of strings that 
copy lightning branches, the challenges of assembling this network would have been 
daunting enough to dampen his enthusiasm for such an experiment. In contrast, here 
we will present state-of-the-art approaches to fabricating fractal electronics suitable 
for implants. Adopting the principle of bio-inspiration, we will describe the use of 
fractal interconnects to establish a biophilic interface between the implants and the 
neuronal cells they interact with. A repeating H-pattern is shown as an example 
in Fig. 43.1d. We will consider fractal interconnects with two distinct electrical 
functions – electrodes that stimulate signals in the neurons and sensors that detect 
and track these signals as they pass through the body’s neural network. The superior 
electrical, optical, and physical properties of the fractal interconnects are expected 
to be generic. Future applications could therefore include interactions with neuronal 
cells in the brain, retina, and limbs.
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43.2 Fabrication of the Fractal Interconnects 

When neuronal cells interact with each other, they do so by exploiting both their 
physical and chemical environments. Our interconnects aim to do the same. We 
exploit carbon nanotubes (CNTs) as our interconnect material. A wealth of previous 
research has studied interactions of CNTs with many cell types, including neurons. 
Their density, stiffness, and topography can be controlled [23–25], and they can be 
synthesized on, or transferred to, flexible substrates [26, 27]. Due to a combination 
of their chemical composition and surface texture, CNTs promote neuronal adhesion 
and increase the number of processes and their growth [28–30]. Their nanoscale 
roughness has been proposed to mimic some of the extracellular matrix (ECM) 
properties [31, 32] and to enhance neurite outgrowth and elongation if the roughness 
variation matches the neuron process diameter [33]. CNT flexibility also likely plays 
a role, since neurons are known to readily adhere to and grow processes on softer 
substrates [34, 35]. 

Although it has been suggested that CNT functionalization is necessary for bio-
compatibility, our research supports previous results demonstrating that appropriate 
degrees of texture and flexibility of our pristine CNTs are sufficient for neural 
network survival [36], which in turn favors recording and stimulation [37]. Previous 
studies demonstrating that electrically biased CNT electrodes stimulate neurons 
effectively [38, 39] and even boost their signal transmission [40, 41] indicate that 
our fundamental studies have large potential for translation to future applications. 

We employ two fabrication techniques to match the fractal geometry of the CNT 
interconnects and the neurons. Whereas all fractals exhibit repetition of patterns at 
multiple size scales, fractals can be grouped into two categories based on how the 
patterns repeat. For fractals prevalent in the body (e.g. neurons, veins, and bronchial 
trees), the statistical qualities of the patterns repeat at different scales. In contrast, 
the patterns of mathematically generated “exact” fractals repeat exactly at different 
scales. Consequently, whereas exact fractals look precisely the same at increasingly 
fine scales, “statistical” fractals simply look similar at different scales [42]. One 
of our fabrication techniques exploits the precision and control associated with the 
clean geometry of exact fractals. The other harnesses natural deposition processes 
to generate statistical fractals. 

Fractal dimension, D, is a central parameter for quantifying both types of fractal. 
This describes how the patterns occurring at different scales combine to build 
the resulting fractal shape [42]. For Euclidean shapes, dimension is described by 
familiar integer values – D = 1 for a smooth line and D = 2 for a completely filled 
area. The repeating patterns of a fractal line cause the line to begin to occupy more 
space than the Euclidean line. This occurs at multiple scales and results in a D value 
that has a non-integer value lying between 1 and 2. For each fabrication method, 
D can in principle be adjusted along with the size scales over which the fractal 
repetition occurs. This facilitates an investigation of the impact of these fractal 
parameters on the interconnects’ properties.
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Fig. 43.2 Scanning electron 
micrograph (SEM) images of 
patterned VACNT forests. (a) 
Top-down view of entangled 
VACNTs on the forest’s top 
surface. (b) and (c) are views  
of VACNT sidewalls taken at 
a 40◦ angle. Scale bars are 2, 
10, and 20 μm, respectively. 
The VACNT patterns are 
fabricated in collaboration 
with B. Alemán (University 
of Oregon, USA) 

To construct the exact fractals, we employ a vertically aligned CNT (VACNT) 
approach in which CNTs grow vertically to heights of approximately 25 μm from a  
metallic catalyst layer deposited on a smooth silicon dioxide (SiO2) substrate [43]. 
Crucially, they tangle into a conducting “forest” as they grow (Fig. 43.2). These 
forests can be shaped laterally by using lithography to define intricate patterns in 
the catalyst layer. In addition to establishing textured branches separated by smooth 
gaps, the high aspect ratios of the VACNTs will aid penetration into neural tissue 
[44]. The gap sizes span from a few μm up to ~4 mm to investigate both the 
individual and cell network interactions with the interconnects (retinal neuronal and 
glial cell bodies range from a few μm to ~30  μm, and glial and dendritic processes 
can be as large as a few hundred micrometers). The VACNT branch width is chosen 
to be WCNT = 20 μm to allow the somas of several neurons to attach to the VACNT 
surfaces and for their processes to grow out from the somas across the electrode 
surface. 

We choose the H-Tree (built from repeating H-patterns) for the lateral shape 
because it is an established branched fractal with well-defined scaling properties. 
As demonstrated in Fig. 43.3, D sets the rate of shrinkage of branch length between 
repeating levels with a higher D corresponding to a slower rate. In addition to D, 
the number of repeating levels m is varied (Fig. 43.3). Acknowledging that even 
these simple H-Trees are inherently complex, we also investigate interconnects 
consisting of rows and grids. We refer to these comparators as Euclidean designs 
because the gaps within each interconnect design have a single scale in contrast 
to the multi-scale character of the fractal design. For the rows, WCNT and the gap 
width, WSi, vary between interconnects and span from 25 to 100 μm. For the grids, 
WCNT = 25 μm to match the fractal design and WSi = 60 μm is chosen to ensure 
that each grid’s “cell” can accommodate several glial cell bodies.
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Fig. 43.3 The left column 
from top to bottom shows 
schematics of the fractal, row, 
and grid interconnects: 
(D = 1.1 and m = 4, labeled 
as 1.1–4), (D = 1.5 and 
m = 4, labeled as 1.5–4), 
(D = 2 and m = 4, labeled as 
2–4), (D = 2 and  m = 5, 
labeled as 2–5), (D = 2 and  
m = 6, labeled as 2–6), 
(Row), and (Grid). The right 
column shows SEM images 
of a region of the interconnect 
shown in the left column. The 
fractals and the first image of 
rows are shown from a top 
view, while the second row 
and grid images are taken at a  
40◦ angle. From top to 
bottom, the scale bars are 
100, 200, 400, 200, 200, 100, 
200, and 50 μm. The VACNT 
patterns are fabricated in 
collaboration with B. Alemán 
(University of Oregon, USA)
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Fig. 43.4 Fractal analysis of the CNT thin film network. (a) AFM images of typical networks. 
(b) To perform the fractal analysis, these images are converted to black and white bitmap images. 
(c) The associated box-counting fractal analysis plots in which the log of the minimum number of 
boxes, N(ε), required to cover the network is plotted against box size, ε. The arrows indicate 
the expected limits to assess D. The CNT films are fabricated in collaboration with N. Plank 
(University of Victoria, New Zealand) 

To fabricate the statistical fractals, a thin horizontal film (spanning 3 mm × 7 mm  
with thickness varying between 1.5 and 10 nm depending on bundling) of CNTs 
is formed on a SiO2 substrate using a solution deposition technique [45–48]. 
To confirm that these randomly arranged CNTs self-assemble into a statistical 
fractal network, a standard box-counting technique is performed on atomic force 
microscope (AFM) images of the networks. Figure 43.4 shows three examples of 
10 μm × 10 μm images taken at different locations on the film. In each case, 
the image is covered with a mesh of identical squares (boxes). For a network to 
be considered fractal, the minimum number of boxes, N(ε), required to cover the 
network scales according to box size, ε, as  N(ε) ~  ε−D. The linearity of the plot 
indicates the networks are fractal. A higher D fractal corresponds to a steeper
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Fig. 43.5 Probability of 
percolation, %, (a) and fractal 
dimension, D, (b) of 100 and  
5 simulated CNT thin film 
networks for (a) and (b), 
respectively, as a function of 
stick density ρ. The top  
images show networks 
connected to measurement 
terminals located along the 
network’s perimeter 
(symbolized by eight yellow 
squares). The nonlinear 
character of the networks is 
highlighted by coloring 
according to the number of 
sticks needed to connect the 
upper left and lower right 
terminals to the given stick: 
red indicates sticks that are 
not connected to the network, 
yellow indicates a small 
number of sticks, and dark 
blue indicates a large number 

slope and therefore to the pattern occupying a larger number of fine-scale boxes. 
The observation limits are shown by the arrows. As expected, the lower limit of 
observation is set by the smallest feature size and the upper limit set by the counting 
statistics of the box-counting algorithm (20% of the total network size). 

The average tube lengths for the shown films are (from top to bottom) 1.6, 
1.9, and 1.9 (±0.5) μm with associated tube densities of 3.0 tubes (±0.5)/μm2, 
9.9 tubes (±0.9)/μm2 and 9.9 tubes (±0.9)/μm2, respectively. To demonstrate 
the relationship between density, r, and D more systematically, Fig. 43.5 shows 
the results of a Monte Carlo simulation of the deposition process [49] in which 
“sticks” (representing either individual or small bundles of CNTs) have a fixed 
length approximating to the tubes within our CNT network. The vertical dashed 
line indicates that the stick density ρc is necessary for an infinite system to reach
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its percolation threshold (i.e. to establish an electrical connection by at least one 
continuous path across the network). However, Fig. 43.5a plots the probability, 
%, that our finite-sized network will establish percolation and demonstrates that a 
higher density than the dashed line value is necessary to reliably establish electrical 
connectivity across the network. 

Figure 43.5b shows the average D for simulations and reveals a clear dependence 
on ρ. Near the percolation threshold, D changes rapidly and then saturates at higher 
densities. When interpreting the shape of this curve, recall that D is an indicator 
of the ratio of fine to course structure in the network. As more tubes are added to 
the network its fine structure increases, raising the D value. Taken together, Figs. 
43.4 and 43.5 demonstrate the potential of tuning the fabricated network’s D value 
using deposition density. Furthermore, the film could be patterned post-synthesis by 
etching away selected regions. Alternatively, the tip of an AFM could be scanned 
across the nanotube network while applying an electrical bias to the tip, which 
would cut the network into the desired fractal pattern. 

43.3 Functionality of the Fractal Interconnects 

Our interconnects are designed to serve two distinct electronic functions – inducing 
and detecting electrical signals in the neurons. For both functionalities, it is crucial 
to consider the impact of the fractal design on the mechanical, optical, and electrical 
properties of the neuron–implant interface along with its impact on cell health and 
growth. Adopting the philosophy that the implant is only as strong as its weakest 
link, we target the fundamental science that emerges when all of these properties are 
considered in unison. In terms of their mechanical properties, fractal circuits have 
been proposed for stretchable electronics [50] – the associated flexibility therefore 
presents the possibility of developing future interconnects that are conformal to the 
regions of the neural network in which they are implanted. In terms of optics, the 
surface coverage of the fractal interconnects is considerably less than the equivalent 
squares due to the multitude of gaps between the branches (Fig. 43.1c and d). This 
suggests that light can be easily transmitted through the fractal interconnect. This 
will be advantageous for future brain implants that utilize both optical and electrical 
stimulation [51]. Furthermore, the ability to shine light through the interconnects is 
crucial for the operation of retinal implants featuring interconnects positioned above 
photodiodes [52]. 

The interconnects’ electrical properties are central to the operation of both stim-
ulators and sensors. Electronic stimulation of neurons dates back to the pioneering 
studies of Le Roy and Galvani. The electrical fields from their electrodes set up 
potential differences across the neuron membrane, inducing ion flows that trigger 
a signal along the axon [53]. In Le Roy’s experiment, for example, this process 
induced signals in the retinal neurons that the brain interpreted as originating from 
the retina’s photoreceptors. The positive impact of adopting the fractal geometry 
becomes clear by returning to the schematic of Fig. 43.1c and d in which the gray
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Fig. 43.6 Simulations of electric fields generated by a shaped central electrode surrounded by a 
ground electrode (the latter is not shown for clarity). (a) Color plots showing a horizontal slice 
(at the central electrode’s top surface) of the three-dimensional voltage distribution for an H-
Tree central electrode. The four simulations show the field uniformity achieved by increasing the 
repetition levels from m = 1 to  m = 4. In each case, the applied voltage is 0.2 V and the frequency 
is 1 kHz. The left central color bar shows the maximum extracellular voltages reached during each 
oscillation which varies from 0 V (blue) to 0.2 V (red). (b) A color plot of the maximum change 
in electric potential across the membrane before and after stimulation for bipolar neurons above a 
square central electrode (left) and fractal central electrode (right) both for an applied bias of 0.2 V 
and a frequency of 1 kHz. The right central color bar displays the magnitude of the potential and 
varies from 0 V (black) to 50 mV (white). For visual clarity, only four of the nine neighboring 
neurons are shown. Images are drawn to scale: the neurons are 100 μm in height, and the soma is 
centered 30 μm above the surface 

interconnect serves as the stimulating electrode. Our simulations of the electrostatic 
properties of electrodes show that a significant amount of electrical charge resides on 
the sidewalls of the electrodes [54]. The simulations in Fig. 43.6 demonstrate that 
the increase in sidewall charge with m results in increasingly uniform fields such 
that a m = 4 fractal electrode’s electric field is as uniform as that of an electrode 
without gaps. Consequently, the gaps can let light through without disrupting the 
field. Compared to traditional Euclidean electrode designs such as grids and squares, 
the large boundaries inherent in fractal patterns generate a large surface area at the 
sidewalls. The enhanced electrical capacitance then results in larger stimulating 
electric fields. For the 20 μm × 20 μm electrodes designed for retinal implants, 
our simulations demonstrate that voltage biases that stimulate all of the neighboring 
neurons when applied to the fractal electrode stimulate less than 10% of them when 
applied to the equivalent square electrodes (Fig. 43.6) [55]. This fractal advantage 
translates to electrodes applicable to brain stimulation applications. 

The growth conditions that we use for the VACNTs generate multi-walled 
CNTs that are metallic [56] and therefore ideal for electrode applications (due to 
their low resistances, metals minimize variations in electrostatic potential across 
the electrode). In Fig. 43.7, we show how the large-scale H-Tree design (which 
purposely spreads across millimeter scales to interact with large neural networks) of
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Fig. 43.7 Potential electrode designs for brain and retinal stimulation purposes. (a) For brain 
stimulation purposes, the large-scale fractal pattern (gray) serves as the active electrode bounded 
by a rectangular ground electrode (pink). (b) For retinal stimulation purposes, the large-scale 
fractal pattern serves as the ground electrode (pink) with an array of small holes inserted along 
its branches. (c) The zoom-in on a fractal branch in (b) shows three holes within the branch of the 
ground fractal electrode. Each hole features an active square electrode (gray) positioned above a 
photodiode layer (dark blue) separated from the ground fractal electrode by an insulating region 
(light blue) 

Fig. 43.3 could be used for neuron stimulation applications. Translation of these 
designs into brain or retinal stimulating implants would need to feature active 
electrodes that accommodate the high resolutions required for these applications
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(the active electrodes of retinal and brain implants are typically of the order of 
~20 μm and ~10 μm, respectively) [11, 57]. 

Here, we consider several potential approaches to achieving this. The simplest 
translation would be to employ the fractal electrode as the active electrode bounded 
by a rectangular ground electrode featuring a gap to allow passage of the active 
electrode to a voltage source (Fig. 43.7a). In this application, the voltage source 
would bias the active electrode and the electric field generated between the active 
and the ground electrode would be used to stimulate the neurons. However, the 
active electrode would need to be scaled down or subdivided into component 
electrodes to match the sizes of the typical brain implants. A more appealing 
approach, applicable to retinal implants, would use the large-scale fractal as the 
ground electrode with an array of small holes defined along its branches (Fig. 43.7b). 
Each hole would then encapsulate an active square electrode deposited above a 
photodiode layer that is separated from the ground electrode by an insulator [54, 58]. 
In this application, light-induced charge in the photodiode migrates up to the active 
electrode and generates the electric field between this and the ground electrode. The 
square active electrodes could be replaced by fractal electrodes to further increase 
their electrical capacitance and hence their ability to stimulate the neurons [54, 55]. 

In terms of electronic sensors, the simultaneous occurrence of many neuronal 
signals makes tracking individual signals extremely difficult. This problem is anal-
ogous to the “cocktail party problem” when the listener tries to focus on a specific 
conversation among the background “chatter” from many guests. To accomplish 
this task, recordings from the conventional sensors are analyzed using waveform 
analysis or triangulation to determine signal location. Waveform analysis relies 
on a priori information about signals’ temporal characteristics (their waveforms) 
to identify unique signatures of individual neurons. In vivo, this is limited by: 
(1) isolating thousands of signals, (2) waveform variability within each neuron, 
and (3) electrode drift with time [59]. Triangulation works by measuring the 
waveform variation between different sensors in the array. However, errors in 
uniquely identifying thousands of signals present critical problems for triangulation 
algorithms [60]. Our fractal sensor avoids all of the aforementioned limitations by 
uniquely identifying neuronal signals without post-measurement analysis and its 
reliance on a priori information about waveforms. This is achieved by incorporating 
a fractal conduction network [49]. 

A common approach to conventional electronic sensors features a semiconductor 
channel that conducts electricity between source and drain terminals. The electric 
potential generated by neuron signals depletes electrons in the channel, leading 
to a measurable resistance change. Unfortunately, this traditional design offers 
little flexibility for improvement. For example, gains in measurement resolution by 
reducing device size are inevitably coupled with larger measurement noise due to 
increased resistance. Our bio-inspired design is shown in Fig. 43.8. Current is passed 
between pairs of measurement terminals through a fractal distribution of conducting 
channels (this active region is symbolized by the light gray square). Depletion of a 
local region of this network will induce a re-arrangement of current through the 
network. The nonlinear signature of this re-arrangement is expected to generate an
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Fig. 43.8 Illustrative examples of neurons (blue) acting as electrostatic gates on the active layer 
(light gray) on an insulating substrate (dark gray) of a multi-electrode field effect transistor (FET) 
probe using 16 electrodes (gold) to serve as source and drain. Five different neuronal positions and 
magnitudes, shown per column, lead to unique sets of current measurements. The top-down (a) 
and side projections (b) of 10  μm (dark blue) or 7 μm (light blue) neurons. (c) The unique surface 
potentials associated with the (x, y, z) coordinates of neurons in each case. (d) The associated 
normalized current changes, �I/I0 = (I − I0)/I0, through specific electrodes in each case. I0 is 
the electrode’s current with no stimulus. (e) The current signatures (for three currents) are shown 
for one neuron at different locations and signal strengths (purple = small signal, magenta = large 
signal). (Figure taken from Ref. [47]) 

exponential sensitivity of the measured resistance to the location of the depletion 
region and hence to the neuronal signal. Combining the measurements from the 
various terminal pairs creates an emergent knowledge greater than the sum of the 
individual measurements. This is achieved through a calibration library that, in real
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time, converts the multiple resistance values into unique values for the position and 
size of each signal’s depletion pattern. Returning to the cocktail party analogy, the 
resulting enhanced sensitivity is equivalent to giving the party guests hearing aids. 
The calibration library is equivalent to the guests working as a team, comparing 
notes about previous parties. 

Considering the fundamental operational principles in more detail, the 16 
terminals allow for 15 independent measurements of the current in the channel. The 
simulations shown in Fig. 43.8 quantify the sensitivity of these 15 measurements to 
the location and magnitude of the electric field generated by neurons firing (their 
positions are indicated by the blue circles in Fig. 43.8a and b). Serving as a control, 
the results shown are for a uniform semiconductor channel. Five example neuron 
scenarios, numbered 1–5, are shown by column in Fig. 43.8. For each scenario, the 
resulting potentials at the sensor surface and the current between six terminals are 
calculated (Fig. 43.8c and d, respectively). The six current measurements show the 
unique current signature for each of the neuron configurations, allowing the sensor 
to distinguish the signal’s origin and magnitude for each neuron. 

The library plot shown in Fig. 43.8e is based on just three current measurements 
for one neuron at different locations and signal strengths. In future applications, 
once a library is established a search algorithm could then be used to convert the 
15 measured current values into the positions and magnitudes for each neuron 
present. The accuracy of the sensor will depend on the degree to which scenarios 
can be distinguished in the library and this is determined by how the data points 
fill the available space. In particular, degeneracies (i.e. two scenarios occupying the 
same data location) will increase if data points occupy only a small fraction of the 
current space. If the uniform channel is replaced by a statistical fractal network, 
the nonlinearity of the current re-arrangement produces enhanced sensitivity of the 
measured current to the location of the depletion region and hence to the neuron 
signal. This will increase the spread of data in the current space, increasing our 
ability to distinguish between the unique current signatures of different neuronal 
scenarios. 

The CNT films used to generate the statistical fractals are ideal for the sensor 
network because the percentage of metallic and semiconductor CNTs in the network 
can be adjusted with the growth conditions. This composition along with tube 
density are key parameters for determining the most sensitive network, and this is 
the subject of ongoing simulations and measurements of fabricated fractal networks. 
In particular, the junctions between the semiconductor and metallic CNTs form 
Schottky barriers and their large associated resistances cause currents to divert 
through neighboring routes. These form “pinch points” in the network which can 
radically impact the current when depleted by a neuronal signal.
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43.4 The Biophilic Interface 

Building on the advantageous mechanical, optical, and electrical properties pro-
posed so far, the interconnects also provide a crucial biocompatibility function. We 
have already highlighted how the CNTs’ chemical composition and their surface 
textures encourage neuronal adhesion and growth. This close proximity of an abun-
dance of healthy neurons to the textured surface will enhance neuron stimulation for 
electrodes and enhance signal detection for sensors. This is analogous to attracting 
the party guests that you want to talk to and listen to. In contrast, smooth surfaces 
are known to trigger an accumulation of glial cells [35, 61, 62], to the extent of 
sometimes forming a protective layer called a glial scar [44]. Whereas the presence 
of individual glial cells is a signature of health (because they serve as the neurons’ 
life support system), the scar pushes the neurons away from the smooth surface of 
conventional implants reducing their ability to stimulate or sense the neurons. 

Defining a physical fractal pattern in the implant’s surface exploits this difference 
in the responses of the two cell types and in doing so introduces an extra 
functionality – the ability to selectively direct neurons and glia to different locations 
on the interconnect. Although this is advantageous for both sensing and stimulating 
implants, here we will describe the H-Tree electrode of Fig. 43.3 in detail. Our 
aim is for neurons to adhere in large numbers to the textured VACNT branches 
and for glial cells to primarily cover the smooth surface of the SiO2 gaps between 
them. Because of this cell “herding,” the glia will be prevented from hindering 
neuron–electrode interactions but will be sufficiently close to provide the trophic 
and metabolic support necessary for the nearby neurons to maintain health and 
to transmit electrical signals. The electrode branches will take on the role of the 
physical scaffold normally provided by the glial cells when supporting neurons, 
ensuring neuron-rich electrodes that maximize stimulation. 

Building on a broad range of CNT compatibility studies (including in vitro [36, 
63], rat in vivo [58], and human ECG tests [64]), we focus on in vitro experiments 
due to the controlled environment in which fluorescence microscopy can be used to 
examine cell behavior and cell–electrode interactions as they evolve over 17 days 
in vitro (DIV). In our experiments, implants are lowered into a retinal co-culture of 
neurons and glia and imaged as the cells interact with the electrodes [43]. To prepare 
the culture, the retina is first removed from the outer epithelium of neonatal mice 
and placed in a culture medium containing enzymes, which is then mechanically 
agitated to dissociate the retinal cells. Subsequent staining allows the various retinal 
cells to be analyzed separately. DAPI (blue) fixes to the cell nuclei (allowing a 
total cell count), GFAP (green) attaches to glial cells, and β-tubulin III (red) binds 
to neuron microtubules. Based on our long-term goal of neuron stimulation and 
the fact that neuronal processes have a high density of stimulation sites, we focus 
our quantitative analysis of the neurons on the density of their processes (i.e. total 
length of the dendrites and axons within a given surface area). Based on their role 
of promoting neuron homeostasis and survival, we focus the glial analysis on their
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Fig. 43.9 False-colored 
SEM image highlighting cell 
bodies (blue) and process 
(orange) behavior for textured 
VACNT and smooth SiO2 
regions. The scale bar is 
50 μm 

surface coverage density (referred to hereafter as “coverage,” i.e. the surface area 
covered by glia normalized to the total area available). 

Figure 43.9 employs false coloring of an SEM image to highlight some of the 
basic properties of the neurons as they interact with the textured VACNT and 
smooth SiO2 surfaces. Somas (colored blue) join to form clusters on both surfaces, 
and these are connected via processes (orange) to form a network that spans both 
surfaces. Figure 43.10 shows representative fluorescence microscopy images of 
fractal electrodes along with Euclidean rows and grids to highlight common neuron 
and glial behaviors across various electrode shapes. Whereas glial cells are observed 
in the gaps, the VACNT electrodes are sufficiently high to act as barriers that are 
never traversed and therefore present the potential to guide glial coverage across the 
SiO2 surface. On the rare occasions that they attach to the VACNT surfaces, they 
exhibit a more branched morphology than in the gaps. On the even rarer occasions 
that they coincide with 90◦ corners in the VACNT pattern, they are not restricted by 
these turns. In terms of neuronal growth, their processes are generally considerably 
longer and form more complex networks on the VACNTs. The relatively simple 
networks on the SiO2 surfaces feature fewer but larger clusters. The neuronal 
processes tend to follow the top and the bottom edges of the electrodes upon 
reaching them and are able to climb up or down the sidewalls to connect cell clusters 
that exist on both surfaces. 

Figure 43.11 provides more detailed observations of the cell responses to the 
fractal electrodes. This is facilitated by categorizing the gaps into three regions 
based on the cell behavior in these regions. The columns show example images 
of the neurons and glia, along with schematic representations immediately below 
these images: the electrode region (Fig. 43.11a, e, i-1, and j-1), the “boundary” 
region (Fig. 43.11b, f, i-2, and j-2), the “cluster” region (Fig. 43.11c, g, i-3, and 
j-3), and the “desert” region (Fig. 43.11d, h, i-4, and j-4). The deserts are furthest 
away from the electrodes and feature a few individual neurons and small clusters 
with weak processes, along with a scattering of glial cells. Nearer to the electrodes, 
neurons aggregate into larger clusters physically connected to each other by bundles 
of processes and accompanied by significant numbers of glia. These are labeled
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Fig. 43.10 Representative examples of fluorescence images of retinal cells interacting with the 
row, grid, and fractal electrodes at 17 DIV (green = GFAP labeled glia; red = β-tubulin III 
labeled neurons; blue = DAPI labeled nuclei). Glia on the VACNT surfaces of the (a) row, (b) 
grid, and (c) fractal electrodes. Glia on the SiO2 surfaces of the (d) row, (e) grid, and (f) fractal 
electrodes. Neuron processes following the VACNT patterns of the (g) row, (h) grid, and (i) fractal 
electrodes. Neuron clusters and processes on the SiO2 surfaces of (j) row, (k) grid, and (l) fractal 
electrodes. Electrode edges are highlighted with white lines except for panels (g), (h), and (i) which  
concentrate on the behavior of processes along the edges because the lines would have obscured 
these processes. Scale bars are 50 μm in (a)–(e) and (g)–(k) and 100 μm in (f) and (l)
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Fig. 43.11 Examples of fluorescence images of retinal cells interacting with the fractal electrodes 
at 17 DIV (green = GFAP labeled glia; red = β-tubulin III labeled neurons). (a) The rare 
occurrence of glia following the 90◦ turn of a 2–6 electrode branch. (b) Glial coverage in the 
gap of a 2–6 electrode. (c) Glial coverage in the gap of a 1.1–4 electrode close to its branches. 
(d) Individual glia in a desert region away from the branches of a 1.1–4 electrode. (e) Neurons 
and their processes on a 2–6 electrode’s branches. (f) Neuron clusters and processes in a boundary 
region interacting with the neurons on the nearby branches of a 2–6 electrode. Neuronal processes 
were semi-automatically traced using the Fiji simple neurite tracer and were false-colored. (g) 
Neuron clusters and processes forming a cluster neural network in the gaps of a 1.1–4 electrode. 
(h) Individual neurons in a desert region of a 1.1–4 electrode far from the branches. (i) and (j) 
Schematic of the glial and neural network regions. (i-1) and (j-1) The electrode with few glial cells 
and multiple processes connecting individual neurons and small- to medium-sized clusters. (i-2) 
and (j-2) show the “boundary” region featuring small to medium glial coverage regions and clusters 
connecting to each other and to neurons on the electrodes using multiple processes. (i-3) and (j-3) 
show the “cluster” region featuring larger glial coverage and clusters with bundles of processes 
connecting them. (i-4) and (j-4) show the “desert” region furthest from electrodes featuring very 
few glial cells, mostly individual neurons and very few processes. (k) Merged fluorescence image 
of glia and neurons on a 2–4 electrode showing all the different regions. Scale bars on (a)–(c), (f), 
and (g) are 100 μm, on (d) and (h) are 200 μm, and on (e) and (k) are 50  μm. The electrode edges 
are highlighted in cyan in (a)–(c), (e)–(g), and (k). Schematic panels were created in BioRender. 
(Figure taken from Ref. [41])
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as cluster regions in recognition of their typically larger clusters compared to the 
other regions. Many of these cluster networks are connected to neurons on the 
electrodes via the boundary regions, which form in some places along the electrode– 
gap interface. These boundary regions are composed of small- to medium-sized 
clusters and accompanied by occasional glial coverage. Figure 43.11k captures these 
various behaviors in one wide field of view and emphasizes that the cell–electrode 
interactions are far more subtle than the term “herding” would suggest. 

The formation of these regions can be understood by recognizing the importance 
of surface adhesion for neuron development and their ultimate survival. In particular, 
neurons can aggregate into clusters reminiscent of small-world networks – so named 
because each node is connected to all other nodes through a small number of 
connecting neuronal processes, a strategy that can maximize signal transmission 
efficiencies [65, 66]. Initially, our neurons extend their processes in search of 
neighboring cells and reach a maximal complexity state featuring large numbers of 
nodes (individual cells and clusters) and links (neuronal processes) between them 
[43]. An analysis of 3, 7, and 17 DIV suggests that this peak complexity occurs 
around 7 DIV for our networks [43]. The network then starts to optimize as it shifts 
dominance from mostly neuron–substrate to neuron–neuron interaction forces also 
playing a large role [67]. The nodes then decrease in number as the largest clusters 
absorb their smaller neighbors. The links connecting them also decrease, with some 
processes joining together to form bundles [68] and others pruned [69]. This fine-
tuning results in cluster regions displaying small-world-like networks. In contrast, 
neuron processes close to the electrode branches experience strong cell–VACNT 
adhesion forces that compete with the neuron–neuron forces, slowing down cluster 
formation and resulting in boundary regions. Neurons anchored to the VACNT 
surfaces secrete chemical signals [70]. This encourages strong interaction between 
neurons on the VACNTs and in the nearby gaps, leaving the gaps furthest away 
from electrodes to form deserts almost devoid of neurons. These developments 
are supported by glial cells which proliferate through cell division and growth, 
following chemical cues [70] that increase their surface coverage close to the 
neuron-rich cluster and boundary regions [71, 72]. This glial coverage supports not 
only neuronal survival and process development but also migration along glial fibers 
[73, 74] toward the electrodes. 

To consider how the fractal properties of the electrodes influence the cell growth 
and assembly behavior (e.g. glial cell division and neuron process bundling and 
pruning), we introduce geometric parameters that relate these behaviors to the 
fractal geometry of their environment [43]. The fractal electrode design integrates 
two sets of related, multi-scaled patterns – the branches and the gaps – and our 
investigations show that both impact the cell organization favorably. The repeating 
patterns of the branches build long edges that interface with the gaps, and their 
interpenetrating nature is further amplified by their meandering character. We 
quantify these two branch characteristics by their total edge length En and Tortuosity 
T. We quantify the gaps by their proximities to the branches (P is the reciprocal of 
the distance between each gap pixel and its nearest branch pixel, averaged across all 
pixel locations in the gap) and various measures of gap areas. For example, Ac is the
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maximum connected area of the gaps and characterizes the “openness” of the gap 
patterns for glial cells to cover before being blocked by intruding electrode branches 
[43]. 

Fractals with high D and m provide large En, T, and P but low Ac. These 
characteristics are predicted to encourage boundary regions and reduce desert 
regions, since there are no large gaps far away from branches. In contrast, fractals 
with low D and m generate low En, T, and P values but high Ac. These fractals are 
expected to minimize boundary regions, and their vast empty gaps will encourage 
deserts. Forming between the boundary and desert regions, we expect the growth 
of cluster regions to be encouraged for mid-D and m electrodes. Taken together, 
these effects suggest that fractals with mid to high D with four to five repeating 
levels will promote the most favorable cell interactions. They will enhance glial 
coverage inside the multi-scaled gaps without restricting the glia and will also 
prevent the creation of deserts. These glia will contribute to fuel the formation 
of the neural networks in the cluster regions. The large VACNT edge length of 
these fractals in close proximity to the SiO2 gaps enhances the growth of neuronal 
processes in the boundary region connecting the cluster neural networks to those 
on the VACNT branches. These predictions are confirmed by qualitative inspection 
of the fluorescence images coupled with a detailed experimental analysis of the 
dependence of the cell measurements (GSi, GCNT, NSi, and NCNT – defined as glial 
covering area or neuron process length on each surface divided by the total area of 
that surface) on the fractal parameters [43]. 

Within this model, the advantage of H-Tree fractals over Euclidean rows and 
grids lies in the fact that they provide a connected electrode with an abundance 
of edges for neurons to follow while also allowing glial cells to cover the nearby 
interconnected, multi-scaled gaps. For example, Fig. 43.12 presents the balance 
of electrode proximity with gap openness by plotting P vs Ac for the fractal and 
Euclidean patterns. The high P and low Ac values of the Euclidean electrodes 
studied in our experiments (represented by the filled red and green symbols) are 
predicted to be dominated by boundary behavior. However, if Euclidean electrodes 
with larger gaps had been fabricated to match the fractal Ac values, their low P 
values are predicted to be dominated by deserts. In contrast, the fractals achieve 
relatively high P and Ac values simultaneously. In terms of the optimal balance of P 
and Ac, we note that the cluster-dominated fractals (i.e. mid to high D with four to 
five repeating levels) lie in the middle region of blue data. 

To examine how these cell responses translate to the electrodes’ ability to “herd” 
(i.e. for neuron processes to adhere predominantly to the electrodes and in contrast 
for the glia to accumulate in the gaps), we introduce key quantitative measures to 
build on these qualitative observations. We define N as the ratio of the total neuron 
process length on the electrode (NCNT) to that on the combination of the electrode 
and gap surfaces (i.e. NCNT + NSi), where NCNT and NSi have been normalized 
relative to the surface areas of the electrode and SiO2, respectively [43]. Similarly, 
we introduce G as the ratio of the glial coverage area in the gaps (GSi) to that 
on the electrode and gap surfaces combined (i.e. GCNT + GSi), where GCNT and 
GSi have also been normalized to the surface areas of the electrode and SiO2,
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Fig. 43.12 Simulation plots of mean proximity, P, against the connected area, Ac, for fractal 
(blue), grid (green), and row (red) electrodes. D and m are varied for the fractals, and the WSi 
values are varied for the rows and the grids. In each case, the filled symbols represent electrodes 
studied experimentally. The insets show fluorescence microscopy images of glia in the SiO2 gaps 
of the fractal electrodes. Scale bars are 500 μm 

respectively [43]. Adopting these measures, N and G values greater than 0.5 indicate 
successful guiding of neuronal processes and glial cells to the desired VACNT and 
SiO2 surfaces, respectively. We also introduce the multiplication parameter GN to 
quantify the combined herding power. 

Figure 43.13a shows a scatterplot of N vs G along with the equivalent binned data 
in Fig. 43.13b. Here, we group the electrodes into their three geometric categories – 
fractals, grids, and rows – and note that a more detailed analysis of the dependence 
of these categories on their parameters (e.g. D, m, WSi, etc.) is presented elsewhere 
[43, 75]. In Fig. 43.13c–e, we also plot histograms of the percentage of electrodes 
within each electrode category that have given G, N, and GN values. In terms of 
overall herding, the fractal electrodes deliver the best GN performance (see Ref. 
41 for discussions of statistical analysis). This is as expected. For example, cluster-
dominated fractals generate both low NSi and large GSi values. In contrast, the grids 
have the lowest GSi values because their disconnected gaps prevent the expansion 
of glial coverage. 

Intriguingly, inspection of N reveals that the grids perform the best in terms of 
neuron herding. This can be understood by returning to Fig. 43.13a and b, where the 
dashed vertical line represents a threshold GT in glial herding at G ~ 0.95, beyond 
which no Euclidean electrodes are observed. The superior neuron herding of the 
grids over the fractals is in part due to a collapse of the fractal NCNT value in the 
high (G > GT) regime. This is likely due to changes in G. Notably, in addition to 
some fractals supporting GSi values larger than those reached in the low regime, 
GCNT also drops when moving to the high regime. This results in GCNT values 
significantly lower than those of the grids. It is possible that a small presence of glia
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Fig. 43.13 (a) Scatterplot of N (neuron herding) vs G (glial herding) at 17 DIV for the row (red), 
fractal (blue), and grid (green) electrodes where each data point represents one electrode. (b) 
Binned average of the N vs G plot at 17 DIV for the row, fractal, and grid electrodes. In both 
cases, we note data that are statistical outliers have been excluded from the plots. Histograms of 
the percentage of electrodes with a given (c) G, (d) N, and (e) GN values at 17 DIV for the row, 
fractal, and grid electrodes 

Fig. 43.14 NCNT vs GSi for 
the 2-5 fractals 

is required on the VACNT surface to support neurons and the high regime fractals 
fall below this minimum level. The low GCNT might result from the sparse cross 
sections of some of the fractals, and this could be addressed by fabricating future 
H-Trees featuring wider branches. 

A central question to herding concerns the amount of glial coverage needed in 
the gaps to keep neurons healthy and functional on the VACNT electrodes. In order 
to study the correlation between the glia inside the SiO2 gaps and neurons on the 
VACNT electrodes, we plot NCNT vs GSi in Fig. 43.14 for the 2-5 fractal electrodes. 
By comparing variations within the fractal electrode, neuron process growth can be 
taken as an indicator of health because all other geometric factors are constant. NCNT 
increases with GSi with the shown linear fit described by an R2 of 0.63. We use this 
fit to highlight the following key observations. Firstly, the data trend suggests that an



43 Fractal Electronics for Stimulating and Sensing Neural Networks:. . . 871

Fig. 43.15 (a) H-Tree fractal electrode with three magnification levels. (b) Optimal electrode 
design based on the cut and rotated parts of the electrode shown in (a). The whole design is bounded 
with the red rectangle to ensure electrode connectivity 

absence of glia (i.e. GSi = 0) impedes the growth of neuron processes substantially. 
However, the data does not reveal a distinct lower limit (i.e. a GSi value below which 
NCNT falls to zero). This is backed up by qualitative observations showing that there 
are some VACNT regions that support processes even in the absence of nearby glia. 
Secondly, when variations in GSi within the culture result in more glia, this increased 
presence promotes neuronal growth. Our 17 DIV fractal system operates within a 
regime in which there is no upper limit – the more glia the better. 

The absence of an upper limit suggests that refined electrode designs that increase 
GSi will further boost neuron health and perhaps even remove the need for the small 
presence of glia on the VACNT surface. As an example of refinement, rather than 
branches spreading out from the origin as done in the H-Tree used in our study 
(Fig. 43.15a), the branches shown in Fig. 43.15b spread from a boundary inward. 
Removing branches from the central section of the design creates a completely 
connected SiO2 gap region while keeping the proximity of the gaps to the electrodes 
roughly comparable to the original fractal electrode. We predict that optimized 
designs will ensure that a larger number of neuronal processes reside within the 
stimulating fields generated when the electrode branches are electrically biased. 
The stimulated processes will connect to neurons in the gaps that resemble small-
world networks, improving the electrode’s ability to stimulate the surrounding 
retinal neurons more efficiently. Furthermore, in contrast to implants that use anti-
inflammatory drugs to inhibit glial scarring on their electrode [76], glial cells will 
be confined to the gaps between our electrodes where their proximity to the neurons 
will ensure the neurons’ health, prolonging the stability and functionality of the 
retina–implant interface.
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43.5 Conclusions 

In this chapter, we have discussed some of the key favorable properties of fractal 
interconnects designed to interact with neural networks. The term “interconnect” 
emphasizes the multi-functional character of this interface. Accordingly, we have 
considered their mechanical, optical, and electrical properties along with their 
ability to promote positive cell interactions. These properties are applicable to 
interconnects used to stimulate and sense signals in the neural network. Future 
experiments will be aimed at confirming the enhanced performance of fractal 
designs over conventional Euclidean designs – in particular, quantifying their 
electrical and biophilic advantages. Our approach of integrating computer modeling 
with in vitro studies allowed controlled investigations to establish the fundamental 
performances of these inherently complex systems. However, a vital step forward 
will be to focus on transferring these studies to the in vivo environment. 

Fractal implants have much to offer. Brain implants could be used to address 
a number of pathological conditions including Parkinson’s disease. In addition, 
they could also radically improve other stimulation techniques to improve learning 
and cognition, visual perception, working memory, and motor control [77]. Retinal 
implants could be used to regain vision lost due to diseases such as macular 
degeneration or retinitis pigmentosa. The long-term potential impact of fractal 
interconnects could also stretch well beyond improving implants designed to 
interact with the human brain, retina, and limbs. In addition to stimulating and 
sensing naturally occurring neurons, they could be applied to retinal STEM cells 
in both in vitro and in vivo investigations. 

Complementing the above medical applications, the central question asked in this 
chapter – what do we gain by building interconnects that match the fractal properties 
of the cells they interact with – also addresses the basic science of cell behavior and 
electricity. Fueled by technology, the prospect of fractal implants demonstrates how 
far electronics has come from the days of Franklin harnessing electricity from the 
clouds, and Le Roy and Galvani applying it to the human body. 
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