Abstract: This paper investigates the nature of the Federal Open Market Committee’s (FOMC’s) interest rate rule, with a focus on which variables have been relevant to the FOMC over the past 40 years. I consider a large number of potential variables, including alternate measures of inflation, aggregate real activity, and sectoral variables. Based on inclusion probabilities derived from Bayesian Model Averaging (BMA) over a sample from 1970-2007, I find that the FOMC responds to changes in unemployment rather than to changes in GDP growth. Additionally, I find that the FOMC reacts not only to inflation and aggregate output, but also to measures of sectoral activity, such as changes in commodity prices. Finally, I find that using BMA improves out-of-sample forecasting performance over baseline Taylor-type interest rate rules.
Full paper can be found here.