Effects of Environment and Relatedness on the Gut Microbiome of Ugandan Red Colobus Monkeys

Presenter(s): Tabor Whitney − Biology

Faculty Mentor(s): Nelson Ting

Oral Session 4S

Research Area: Biological Anthropology

Funding: Peter O’Day Fellowship

The gut microbiome consists of microbial communities that reside in the gastro-intestinal tract of living organisms. Variation in this system has been linked to health outcomes in human and animal models by affecting digestion, immune system development, and pathogen invasion. However, we still lack a complete understanding of the factors that shape gut microbiome variation, particularly in wild primates. The central aim of this research is to further test how forest fragmentation is associated with gut microbial diversity in the Ugandan red colobus monkey. We sequenced the 16S rRNA hypervariable V-4 region to characterize the gut microbiome from 106 genotyped individuals across eight social groups inhabiting different forest types within Kibale National Park and its surrounding area. We compared alpha diversity in the gut microbiome of individuals inhabiting fragmented versus continuous forest and did not find a simple relationship between gut microbial diversity and forest fragmentation. While individuals residing in some fragments had lower gut microbiome alpha diversity, those residing in well-protected fragments retained gut microbial diversity levels comparable to residents of continuous forest. Furthermore, we discovered numerous highly related red colobus monkey dyads between forests, which allowed us to assess the affects of genetic relatedness on gut microbial similarity. We found that environment plays a larger role than genetic relatedness in shaping the gut microbiome. Our research thus reinforces the role that environment plays in shaping within-species gut microbial variation with potential implications for the conservation of threatened populations in fragmented landscapes.