Supersymmetric Long Lived Particle Search Using Proton-Proton Collision Data and Simulations from the ATLAS Experiment

Presenter(s): Laura Nosler—Physics

Faculty Mentor(s): Laura Jeanty

Session 5: To the Moon and Back—Relativity Matters

Despite the wealth of information gained by high energy physics over the past few decades, there are still several fundamental gaps in our understanding of the universe . One theory that may provide answers to some of these questions is supersymmetry, which predicts the existence of new particles . In many variations of supersymmetry, some of these particles are expected to have comparatively longer lifetimes . Our research attempts to optimize searches for long lived particles by studying the properties of their signatures and comparing two different methods of reconstructing the energy missing after a collision, with the goal of understanding how the reconstruction algorithms behave for these new particles . To do this, we compare simulated data from proton-proton collisions detected by the ATLAS experiment at the Large Hadron Collider at CERN reconstructed with these two different algorithms and perform analyses that reveal their differences . The results we have found so far have displayed the differences in the efficiencies of these reconstruction methods in our search, revealing the impact these algorithms will have on our final results and allowing us to improve our sensitivity by tuning our selection routines . The final goal of our experiment is to gain a more comprehensive understanding of how to accurately identify these particles in real data, at which point we will extend our experiment to include non-simulated collision data from the ATLAS experiment .