Presenter(s): Casey Bisted
Faculty Mentor(s): James Hutchison & Tawney Knecht
Poster 60
Session: Sciences
The increase of carbon dioxide in the atmosphere has caused irreversible environmental effects, so reduction of this atmospheric carbon dioxide is necessary to prevent further environmental damage. Nano-catalysts are a promising new avenue in green chemistry as their small size and large surface area allows for less material usage as well as potentially superior chemical properties compared to their bulk counterparts. Bulk In2O3 has basis as a promising carbon dioxide reduction catalyst due to it being a poor hydrogen evolution reaction catalyst. Thus, In2O3 nanoparticles could be promising in carbon dioxide reduction.
By molecularly linking In2O3 nanoparticles to a boron doped diamond electrode via a molecular linker, the size dependence of In2O3 nanoparticles on the reduction of carbon dioxide can be determined. To enable this size dependence testing, a system to test this size dependence is developed and assembled. This system consists of In2O3 nanoparticles bound to a boron doped diamond electrode via an amine terminated carbon chain electrodeposited onto the boron doped diamond. It is hypothesized that smaller In2O3 nanoparticles will be more efficient carbon dioxide catalysts due to their increased surface area to volume ratio that promote a larger amount of active sites.Knowledge of the carbon dioxide reduction activity of a size range of In2O3 fills in a piece of the puzzle of about how to eliminate atmospheric carbon dioxide and reduce climate change effects.