Presenter : Alexander Schachtner
Mentor : Benjamin McMorran
Major : Physics
Poster 4
We use focused ion beam nanofabrication to manufacture forked diffraction gratings capable of producing electron beams with helical wavefronts and orbital angular momentum (OAM). A vast number of unique beam modes carrying OAM can be produced through manipulation of grating fork number or position. Generally these gratings are milled such that they produce a phase shift in the beam and are used with high energy electrons (300keV) in a TEM to investigate the quantum or magnetic properties of the electron or image magnetic materials. Our latest work focuses on manufacturing gratings that produce only an amplitude shift, which opens up imaging capability to lower energy electrons (5-30 keV) and thus expands their use to a wider range of commercially available SEMs. We use these amplitude gratings to show the relationship between the number/position of forks and OAM inherited by the beam. This work could lead to advances in imaging capability, and also creates a widely accessible and scalable demonstration of the quantum properties of the electron which can be leveraged by any science program with SEM access.