DRP Abstract

Derek J. DeRouen

April 2021

Title: Quadratic Reciprocity

Mentee and Mentor names:
Derek J. DeRouen, Mentee Sean Haight, Mentor
A brief summary of your talk topic:
Number theorists are often looking for integral solutions to equations. A first step is to investigate whether these equations have solutions modulo q for an odd prime q . The question this talk will focus on is, for odd primes p and q , does $x^{2} \equiv p(\bmod q)$ have an integer solution. In order to accomplish this we must implore the use of a tool named the Legendre Symbol written ($\frac{a}{b}$) such that:

$$
\left(\frac{a}{b}\right)=\left\{\begin{array}{cl}
1 & \text { if } \mathrm{a} \text { is a quadratic residue modulo } \mathrm{p} \\
-1 & \text { if } \mathrm{a} \text { is a quadratic non-residue modulo } \mathrm{p}
\end{array}\right.
$$

This leads us to be able to state the Law of Quadratic Reciprocity as Follows:

Let p and q be distinct odd prime numbers. Then

$$
\begin{aligned}
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) & =(-1)^{\left(\frac{p-1}{2}\right)\left(\frac{q-1}{2}\right)} \\
& =\left\{\begin{array}{cl}
1 & \text { if } p \equiv 1 \quad(\bmod 4) \text { or } q \equiv 1 \quad(\bmod 4) \\
-1 & \text { if } p \equiv q \equiv 3 \quad(\bmod 4)
\end{array}\right.
\end{aligned}
$$

We will discuss the prelims, proof, as well as the significance and applications.
Prerequisites required:
Elementary number theory is useful but not necessary.
Reference list:
Strayer, James K. Elementary Number Theory. Waveland Press, 2002.

