
 1 

GEOG 490/590   |  SPATIAL MODELING   |  SPRING 2015 
 

ASSIGNMENT 4: FEEDBACKS AND PATH DEPENDENCE 
 
 

Objectives:  (1) To learn excellent modeling technique by assembling a spatial model 
from its component sub-models.  (2) To observe how feedbacks and path dependence 
shape the outcome of model runs. 
 
Description: We will be building the model from Brown et al. (2005) Path dependence 
and the validation of agent-based spatial models of land use.  This is a model of 
urban development that illustrates how both feedbacks and path dependence can affect 
the spatial structure of development over time.  The model consists of several sub-
models, which you will build and test individually. 
 
 
 

INSTRUCTIONS 
 
PART 1:  SETTING UP YOUR MODEL SKELETON: 
 

1. Create new model.   

 
2. For this model, we want a 100 by 100 grid of patches.  Click on the “Settings” 

button on the top of the Interface tab in NetLogo and adjust the world settings to 
the following: 

 
 



 2 

3. This model has a number of parameters that we will adjust among model runs 
once the code is complete.  The function of each of these variables will become 
apparent as you fill out the model. Create the following sliders with minimum 
values of 0, maximum values of 1, and increments of 0.01: 

a.  distance_services_preference 
b.  aesthetic_quality_preference 
c.  neighborhood_density_preference 

 
4. Create a slider, ideal_density , with minimum 0.5, maximum 1.0, and 

increment 0.01. 

 
5. For some model runs, we will want to create an initial service center in the center 

of the world.  Create the following switch: 
a. initial_center?  

 
6. Create buttons for the methods setup , go , and go once .  Check the 

“Forever” box for go .  The go once  button setup window should look like this: 
 

 

 
PART II:  SETTING UP SUB-MODELS 
 

7. The agents in this model will all be patches, so we need to set up the appropriate 
patch variables.  A key aspect of developing a model is making sure your code is 
understandable, not only for yourself, but for others who will evaluate, use, and 
modify your model.  The best practice is to make heavy use of comments in the 
code.  Comments consist of strings of text incorporated into the code, which are 
ignored by the model interpreter.  Although the NetLogo language was designed 
to be intuitive to read, it is still necessary to include comments in human-readable 
language for ease of communication.  To make a comment in NetLogo, simply 
type a semicolon “;”.  All text following the semicolon will be ignored by the 



 3 

interpreter.  I have included comments in some of the code, and I encourage you 
to add your own comments to the rest to help make your code more 
understandable.  Use the following code to set up our initial patch variables 
paying attention to the descriptions of each variable in the comments: 

patches-own 
[ 
  status             ;; Current patch status: 
                     ;; (empty, home, attraction, 
                     ;; or service center). 
] 
 

8. You will need the following code to set up some global variables: 

globals[ 
  max_dist  ;; Maximum possible distance between two  
            ;; patches in the world 
  aes_min   ;; Minimum possible aesthetic value 
  aes_max   ;; Maximum possible aesthetic value 
  most_recent  ;;  Newest development 
  n_centers ;; Counter to keep track of service centers 
] 
 

9. You will recall from the Brown et al. paper that the agents in the model take into 
account three variables when choosing which empty locations to develop:  
aesthetic quality of the site, distance to service centers, and preferred 
neighbor density.  Let’s start with a model of aesthetic quality.  We’ll set up the 
model with two points of attraction located at the coordinates (25, 25) and (75, 
75): 

to setup 
  clear-all 
  reset-ticks 
  ask patches[ 
    set status "empty"  ;; Initialize all patches  
                        ;; to empty status. 
  ] 
  ask patch 25 25 [  
    set status "attraction" 
    set pcolor yellow 
  ] 
  ask patch 75 75 [  
    set status "attraction" 
    set pcolor yellow 
  ] 
end 

 



 4 

In the Interface tab, click the setup button to verify that the yellow points of 
attraction appear where you expect them to in the world grid. 
 

10. Next, we need to set the aesthetic quality for each patch, based on the proximity 
to a point of attraction.  First add the following patch variable:  
aesthetic_quality  and add a comment with an appropriate description. 
Add the following lines to your setup method:   

  set max_dist (sqrt (2 * ( world-height ^ 2))) 
       ;; Maximum possible distance between  
       ;; two patches in the world. 
 

11. The following method will calculate the aesthetic quality for each patch (be sure 
to add a call to calculate_aesthetic_quality  to the end of your 
setup method): 

 
to calculate_aesthetic_quality 
  ask patches[ 
    set aesthetic_quality max list  
      0  
      (max_dist - distance min-one-of patches  
        with [status = "attraction"]  
        [distance myself]) / max_dist 
  ] 
  set aes_min min [aesthetic_quality] of patches 
  set aes_max max [aesthetic_quality] of patches   
end 
 

12. Visualization of model parameters is an important way to make sure your code 
behaves as expected.  One of the strengths of NetLogo is that it is relatively 
straightforward to visualize model parameters.   Each patch has a value for its 
aesthetic quality, and we will use the built in function scale-color  to 
visualize the relative aesthetic qualities of all the empty patches (lighter colors 
correspond to higher aesthetic values).  Create a button called 
show_aesthetic_quality , and paste the corresponding method into your 
model code. 

to show_aesthetic_quality 
  ask patches[ 
    if status = "empty"[ 
      set pcolor scale-color green  
        aesthetic_quality aes_min aes_max 
    ] 
  ] 



 5 

end 
 
Experiment with the show_aesthetic_quality  method and make sure 
you understand what is being displayed in the world grid. 

 
13. Now that we have created our submodel for calculating and visualizing the 

aesthetic quality, let’s create methods to calculate and display the distance from 
service centers.  Make sure that the switch initial_center?  is set to “On”.  
Next we will add code to our setup  method to create an initial service center: 

  ask patches [set distance_to_service 1] 
   
  if initial_center? = true [ 
    ask patch 50 50 [ 
      set status "center" 
      set pcolor green 
    ] 
    ask patches [calculate_service_distance] 
    set n_centers 1 
  ] 
 

14. Create a new patch variable distance_to_service .  Create a button 
show_distance_to_service . Now to calculate and visualize the 
distance to the nearest service center for each patch: 

to calculate_service_distance 
  if n_centers > 0 [ 
    set distance_to_service  
      1 - (distance (min-one-of patches with  
        [status = "center"] [distance myself]) / 
max_dist) 
  ] 
end 
 
to show_distance_to_service 
  let service_min min [distance_to_service] of patches 
  ifelse count patches with [status = "center"]  > 0 
  [   
    ask patches [calculate_service_distance] 
    ask patches[ 
      if status = "empty" [ 
        set pcolor scale-color green distance_to_service 
service_min 1 
      ] 
    ] 
  ] 
  [ 



 6 

    ask patches [ 
      if status = "empty" [ set pcolor green] 
    ] 
  ]  
end 
 
 

Add a call to the method calculate_service_distance  to your setup  
method; 

  ask patches [calculate_service_distance] 
   

Experiment with visualizing the distance to service for the patches.  Is this 
behavior what you expected?  How is the pattern different from that of the 
aesthetic value?  What happens if you turn initial_center  to off and rerun 
setup? 
 

15. We need to combine information about the distance to services as well as the 
aesthetic quality to calculate the attractiveness of empty patches for potential 
development.  We’ll formulate a utility function that uses the parameters 
distance_services_preference  and 
aesthetic_quality_preference  to weight the importance of both 
factors.  We will add neighborhood density to this calculation after we introduce 
development.  We will create a utility function based on equation 1 from the 
Brown et al. paper: 
 

𝒖𝒙𝒚 =   𝒒𝒙𝒚
𝜶𝒒×𝒔𝒅𝒙𝒚

𝜶𝒔𝒅× 𝟏− 𝜷𝒏𝒅 − 𝒏𝒅𝒙𝒚
𝜶𝒏𝒅 

 
where 𝒒𝒙𝒚

𝜶𝒒 is the aesthetic quality weighted by the parameter 
aesthetic_quality_preference , 𝒔𝒅𝒙𝒚

𝜶𝒔𝒅 is the preference for proximity 
to service centers weighted by distance_services_preference,  and 
𝟏− 𝜷𝒏𝒅 − 𝒏𝒅𝒙𝒚

𝜶𝒏𝒅 is the neighborhood density weighted by 
neighborhood_density_preference.   
 

16. First add a patch variable, utility , and add a button show_utility .  Our 
initial utility methods will be: 
 

to calculate_utility 
  calculate_service_distance 



 7 

  set utility (aesthetic_quality ^ 
aesthetic_quality_preference) * (distance_to_service ^ 
distance_services_preference) 
end 
 
to show_utility 
  ask patches [calculate_utility] 
  let utility_min min [utility] of patches 
  let utility_max max [utility] of patches 
  ask patches[ 
    if status = "empty"[ 
      ifelse utility_min = utility_max 
        [set pcolor blue] 
        [set pcolor scale-color blue utility utility_min 
utility_max] 
    ] 
  ] 
end 

 
Move the sliders for the service distance and aesthetic quality preferences to 0.5.  
Make sure that initial_center  is switched back to “On”.  Compare the 
patterns of aesthetic quality, distance to services, and utility.  How are the three 
related?  Explain what happens to the utility when you change the relative 
weights of distance to services and aesthetic quality. 

PART 3: BEGIN DEVELOPMENT 
 

17.  Now it’s time to start adding development to the model.  Instead of allowing 
development on all possible empty cells, we want to limit the possible new 
development sites to a subset of the world’s patches.  Create a new input box for 
the variable n_test  in the interface tab.  Be sure to set the type to “number”.  
Set the value to 16.  This quantity represents the number of randomly chosen 
vacant cells presented to a developer at each time step. 

18. To add new development we need a method, new_resident , that will 
develop available cells.  This method adds a housing development to the 
available patch with the highest utility. 

to new_resident 
  let potential_cells n-of n_test patches with [status = 
"empty"] 
  ask potential_cells [ 
    calculate_utility 
  ] 
  ask max-one-of potential_cells [utility] [ 
    set pcolor 125 
    set status "home" 



 8 

  ] 
  set most_recent max-one-of potential_cells [utility] 
end 
 

19. Create a go  method to start adding houses: 

to go 
  new_resident 
  tick 
end 
 

After running the setup  method, add several houses using the go once 
button.  Use the show_utility  method to try to guess where new houses will 
be built.  Try this with several settings of 
distance_services_preference  and 
aesthetic_quality_preference  to get a feel for how new house 
locations are chosen.  What happens when you increase the value of n_test  
to 200? 
 
 

20.  Now that we are adding new developments, our utility function must take 
neighborhood density preferences into account.  First add a new patch variable, 
neighborhood_density, and a method to calculate it: 

to calculate_neighborhood_density 
  set neighborhood_density 0.5 + 0.5 * (count neighbors 
with [status = "home"] / count neighbors) 
end  

 
You must add this to the beginning of show_utility: 

  ask patches [calculate_neighborhood_density] 
 

 
21. Our utility function must be updated to take into account neighborhood density.  

Change calculate_utility  to: 

to calculate_utility 
  calculate_neighborhood_density 
  calculate_service_distance 
  set utility (aesthetic_quality ^ 
aesthetic_quality_preference) * (distance_to_service ^ 
distance_services_preference) * (1 - (abs (ideal_density 
- neighborhood_density))) ^ 
neighborhood_density_preference   
end 



 9 

Run setup , add several houses, and observe how the spatial pattern of utility 
changes with different settings of 
neighborhood_density_preference  and ideal_density .   
 

22. As new homes are added, we want to add new service centers.  For every 20 
new houses built, we will add a new service center at the closest open space to 
the most recently added house.  Add the following method, and update the go  
method: 

to add_service 
  ;; start searching for empty spaces near the most 
recently added house 
  ask most_recent[ 
    let radius_temp 1 
    let check_neighborhood patches in-radius radius_temp 
    while [count check_neighborhood with [status = 
"empty"] = 0] 
    [ 
      set radius_temp radius_temp + 1 
      set check_neighborhood patches in-radius 
radius_temp 
    ] 
    ask one-of check_neighborhood with [status = "empty"] 
[ 
      set status "center" 
      set pcolor green 
    ] 
  ] 
  set n_centers n_centers + 1 
end 
 
to go 
  new_resident 
  tick 
  if ticks mod 20 = 0[ 
    add_service 
  ] 
end 
 

To observe how this method works, run setup and then click go_once  19 times.  
On the next click, go_once  will add a house and a new service center.  Take a 
mental note of where both of these new developments occur.  How might this 
spatial pattern affect future development? 
 

23. Finally let’s add a counter for the number of houses and an upper limit for 
number of developments.  Create a monitor box with the reporter set to ticks  



 10 

and the display name set to N Homes .  Create an input box named 
max_homes , set the type to “number” and set the initial value to 300.  Add the 
following lines to the end of the go  method to make your simulation stop after 
max_homes  have been built: 

  if ticks >= max_homes [stop] 
 

24. Now your model is complete, and you are ready to run experiments with different 
parameter settings to answer the questions in the next part! 

 
PART 6: DISCUSSION 
 

Create an Assignment 4 page. Provide videos, images (use File – Export – Export 
Interface…), and text as appropriate to address the following questions: 

 
i. Why is it important to test each of your sub models independently?  

Explain how you tested the sub-components of the main model using 
images and text to illustrate your methods and explain how your 
diagnostics conformed (or not) to your expectations. 

ii. The methods for calculating the components of utility are deterministic in 
this model.  How is stochasticity implemented in the model?  What 
parameter influences the degree of stochasticity? 

iii. How is initial environmental heterogeneity implemented in this model and 
what parameter or parameters determine its importance?  Do you think 
that greater environmental heterogeneity corresponds to greater variability 
among replicate model runs, and why?  Support your argument with 
evidence from replicate simulations with and without initial environmental 
heterogeneity. 

iv. Explain the roles of feedbacks and path dependence in this model.  How 
are the two concepts related?  How do the three parameters for 
preference relate to feedbacks and path dependence?  What parameter 
settings would you use to eliminate any effect of feedbacks or path 
dependence? 

v. Describe at least two of the model assumptions or simplifications and how 
they could influence your interpretation of model results.  Despite these 
assumptions and limitations, what can we learn from this model? 

 
GRADING 
Your answer to each question in Part 6        5 POINTS 
 
TOTAL          25 POINTS 
DUE DATE:  
Tuesday, May 12th at 11:59pm 
*Late submissions will be penalized 5% per day. 


