

Air/Water Studies: Modeling Behavior at Aerosol Interfaces

Oil-water studies: Model for a variety of molecular processes.

Polyelectrolytes

Humic acids: Water remediation

Flooding & flocculent: oil recovery

What factors affect polyelectrolyte adsorption to an oil/water interface?

Surface Modified Nanoparticles

Nanoparticle self-assembly & emulsion stabilization

Water remediation

Targeted drug delivery

Under what conditions do polyelectrolyte and surfactant modified nanoparticles adsorb to and orient at an oil/water interface?

More efficient heterojunction solar cells

Goal: Fabricate and analyze semiconductor material combinations that will promote impact

ionization at heterojunctions.

Molecular dynamics corroborate air/water spectra

- Combination of classical dynamics and density functional theory
- Predicts minutiae of molecular orientation at interface
- Generates vibrational sum frequency spectra
 - Compare with experimental spectra

More efficient heterojunction solar cells

Goal: Fabricate and analyze semiconductor material combinations that will promote impact

ionization at heterojunctions.

Molecular dynamics corroborate air/water spectra

- Combination of classical dynamics and density functional theory
- Predicts minutiae of molecular orientation at interface
- Generates vibrational sum frequency spectra
 - Compare with experimental spectra

Experimental Techniques

Sum frequency spectroscopy: Vibrational spectra of interfacial molecules.

Pump-probe experiment for solar cell research

Other techniques: FTIR, interfacial tension, dynamic light scattering

Molecular Dynamics Simulations

Simulations of interfaces are performed to generate computational descriptions of experimental observations.

Pat Blower

Dr. Katy Plath

Ellen Robertson

Dr. Fred Moore

Dr. Stephanie Ota

Brock Tillotson

Dr. Nick Valley

Brandon Schabes

Dr. Jennifer Hensel

Laura McWilliams