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FEATURES
Experimental observations of the paintings of Jackson Pollock reveal that the artist was

exploring ideas in fractals and chaos before these topics entered the scientific mainstream

Fractal expressionism
Richard Taylor, Adam Micolich and David Jonas

1 Painting by numbersCAN SCIENCE be used to further our
understanding of art? This question
meets with reservations from both sci-
entists and artists. However, for the
abstract paintings produced by Jackson
Pollock in the 1940s and 1950s, scien-
tific objectivity proves to be an essential
tool for determining their fundamental
content. Pollock dripped paint from
a can onto vast canvases on the floor
of his barn. Although recognized as
a crucial advance in the evolution of
modern art, the precise quality and sig-
nificance of the patterns created by this
unorthodox technique remain contro-
versial. Here we analyse Pollock's pat-
terns and show that they are fractal. In
other words, they display the finger-
print of nature.

In contrast to the broken lines
painted by conventional brush strokes
on canvas, Pollock used a constant
stream of paint to produce a uniquely
continuous trajectory as it splattered
onto the canvas below. A typical can-
vas would be reworked many times
over a period of several months, with
Pollock building up a dense web of
paint trajectories. This repetitive and
cumulative process — sometimes called
"continuous dynamic" painting — is
strikingly similar to the way in which
patterns evolve in nature.

Nature, chaos and art
Other parallels with natural processes
are also apparent. Gravity plays a cen-
tral role for both Pollock and nature.
Furthermore, by abandoning the easel,
Pollock allowed the horizontal canvas
to become a physical terrain to be tra-
versed, and his approach from all four sides replicated the
isotropy and homogeneity of many natural patterns. His
canvases were also large and unframed, similar to a natural
environment. Can these shared characteristics be the signa-
ture of a deeper common approach?

Since its discovery in the 1960s, chaos theory has been spec-
tacularly successful in explaining many of nature's processes.

Examples of chaotic behaviour in
nature include the Gulf Stream,
weather patterns, fluctuations in the
human heart and Jupiter's Great Red
Spot (see the books by Gleick and Ott in
further reading). Could Pollock's paint-
ing process also have been chaotic?

There were two revolutionary as-
pects to the way in which Pollock
painted and both have the potential
to introduce chaos. The first was his
motion around the canvas. In contrast
to traditional brush-canvas contact
techniques, where the artist's motions
are limited to hand and arm move-
ments, Pollock used his whole body to
introduce a wide range of length scales
into his painting. In doing so, Pollock's
dashes around the canvas could poss-
ibly have followed Levy flights: this
special distribution of movements, first
investigated by Paul Levy in 1936, has
recently been used to describe the
statistics of chaotic systems. (In Brown-
ian motion a particle makes random
jumps and each jump is usually small:
the resulting diffusion can be described
by a Gaussian distribution with a finite
variance. In Levy-like diffusion, on the
other hand, long flights are inter-
spersed with shorter jumps, and the
variance of the distribution diverges.
See the articles by Klafter et al. and
Tsallis in further reading).

The second revolutionary aspect con-
cerns the application of paint, which
Pollock allowed to drip onto the canvas.
In 1984 Robert Shaw of the University
of California at Santa Cruz showed
that the flow of water or other fluid
from a dripping tap could be changed

from non-chaotic to chaotic flow by making small adjustments
to the flow rate (see Shaw in further reading). Likewise it is
possible that Pollock could have exploited chaotic flow.

A simple experiment can be designed and built to investi-
gate this possibility. The experiment consists of a pendulum
that records its motion by dripping an identical paint traject-
ory onto a horizontal canvas. When left to swing on its own,

Detail of non-chaotic (top) and chaotic (middle) drip
trajectories generated by a pendulum, and a detail of
Pollock's Number 14,1948 (bottom). The similarity
between the chaotic drip paintingand Pollock's
painting is striking.
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2 The natural look

Photographs of a 0.1 m section of snow on the ground (top), a 50 m section of
forest (middle) and a 2.5 m section of Pollock's One: Number 31,1950
(bottom). It is difficult to judge the magnification, and hence the length scale,
of such "self-similar" patterns. (Jackson Pollock. One (Number 31,1950).
(1950). Oil and enamel on unprimed canvas, (269.5 x 530.8 cm). The
Museum of Modern Art, New York. Sidney and Harriet Janis Collection Fund
(by exchange). Photograph © 1999 The Museum of Modern Art. New York.)

the pendulum follows a predictable, non-chaotic motion.
However, by knocking the pendulum at a frequency slightly
lower than the one at which it naturally swings, the system
becomes a "kicked rotator" (see the articles by Taylor and
Tritton in further reading). The kick can be controlled very
precisely by using, for example, electromagnetic driving coils.

By tuning the frequency and magnitude of the kick, chaotic
motion can be generated.

Just as Pollock's paintings are built from many criss-crossing
trajectories, these pendulum paintings can also be built up
trajectory by trajectory through the use of different launch
conditions. In figure 1 sections of non-chaotic and chaotic
drip paintings are compared with a section of Pollock's paint-
ing Number 14,1948. The similarity between the chaotic drip
painting and the painting by Pollock is striking.

If both patterns have been generated by chaos, what com-
mon quality would be expected in the patterns left behind?
Many natural chaotic systems form fractals in the patterns
that record the process. Examples include the edges of
clouds, river patterns, coastlines and lightning paths (see the
books by Mandelbrot and Gouyet in further reading). Nature
builds its fractals using statistical self-similarity: the patterns
observed at different magnifications, although not identical,
are described by the same statistics. The results are visually
more subtle than the instantly identifiable, artificial patterns
generated using exact self-similarity, where the patterns
repeat exactly at different magnifications.

Various visual clues help to identify statistical self-similarity.
The first relates to "fractal scaling". The visual consequence
of obeying the same statistics at different magnifications is
that it becomes difficult to judge the magnification, and hence
the length scale, of the pattern being viewed. This can be seen
in nature and in Pollock's paintings (figure 2).

A second visual clue relates to "fractal displacement": this
refers to the fact that different spatial locations on the pattern
can be described by the same statistics. The visual conse-
quence of this property is that the patterns gain a uniform
character. The authors have measured a quantity known as
the pattern density - the percentage of the canvas filled by
the pattern within a 5 X 5 cm square — at various points on
Pollock's Number 14,1948 and shown that it is uniform across
the canvas.

Experimental art
These visual clues to fractal content can be confirmed by
calculating the fractal dimension of Pollock's drip paintings.
The large amount of repeating structure within a fractal
pattern causes it to occupy more space than a smootfi one-
dimensional line, but not to the extent of completely filling
the two-dimensional plane.

To detect and quantify this intermediate dimensionality of
fractals, we calculate the fractal dimension, D, using the well
established "box-counting" method. We cover the scanned
photograph of a Pollock painting with a computer-generated
mesh of identical squares, and then count the number of
squares, N[L), that contain part of the painted pattern. This
count is repeated as the size L of the squares in the mesh is
reduced. In this way the amount of canvas filled by the pat-
tern can be compared at different magnifications. The largest
size of square is chosen to match the size of the canvas, which
can be several metres in dimension, and the smallest is chosen
to match the finest paint work: the smallest value of L is typ-
ically 0.8 mm. Within this size range the count is not affected
by any measurement resolution limits, such as those associ-
ated with the photographic or scanning procedures.

Values of the fractal dimension, D, are then extracted from
a graph of N[L) versus L, using the relation N[L) ~ L~D. The
validity of this expression increases as L becomes smaller and
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the total number of boxes in the mesh is large enough to pro-
vide reliable counting statistics. In our measurements the total
number of boxes ranges from 100 to 4 million (figure 3). If the
results are plotted on log-log axes, the gradient of the curve is
—D. The straightness of the graph's curve reflects the statis-
tical self-similarity of the pattern, and the accuracy of the
method has been confirmed by analysing test patterns con-
sisting of standard fractals of known dimension.

The two chaotic processes proposed for generating
Pollock's paint trajectories - his body movements and the
dripping fluid motions — operate across distinctly different
length scales. These scales can be estimated from film and
still photography of Pollock at work (see the programme by
Falkenberg and Namuth in further reading). Based on the
physical range of his body motions and the canvas size, his
Levy flights over the canvas are expected to cover the approxi-
mate length scales between 1 cm and 2.5 m. In contrast, the
drip process is expected to shape the trajectories over length
scales between about 1 mm and 5 cm. The latter range has
been calculated from variables that affect the drip process
(such as paint velocity and the height the paint is dropped
from) and the absorption of paint by the canvas (such as paint
fluidity and canvas porosity).

Given these two different length scales we would therefore
expect the fractal analysis to reveal two different values of
the fractal dimension, D, in the two different ranges. And this
is what we find (figure 3). We call these different values the
drip fractal dimension, DD, and the Levy flight fractal di-
mension, DL. Systems described by two or more values of D
are not unusual: examples from nature include trees and
bronchial systems.

One consequence of having more than one value of D is
that each value can only be observed over a limited range of
scales. In 1998 David Avnir and colleagues at the Hebrew
University of Jerusalem in Israel compared the fractals
measured in a variety of physical systems, and found that
the average range over which fractal behaviour was ob-
served was approximately one order of magnitude [Science
1998 279 39-40). In their survey, Avnir and co-workers
looked at all the papers reporting experimental evidence for
fractal behaviour that were published in the Physical Review
series of journals between 1990 and 1996. In reply to this
work Benoit Mandelbrot of Yale University in the US
stressed that so-called "limited-range" fractals are no less
fractal than ones observed over many orders of magnitude
[Science 1998 279 783-784).

The range of lengths over which the drip fractal dimension,
DD, applies was measured to be between 1.1 and 1.3 orders of
magnitude, depending on the painting being analysed. The
Levy flight fractal dimension, D,, was found to be valid over 2
orders of magnitude. The length scale that marks the trans-
ition between these two regimes typically occurs at 1—5 cm.
These ranges are consistent with the values calculated above
from the films and photographs of Pollock at work and from
the physical properties of the paint and canvas.

Our measurements on Pollock's painting Blue Poles: Number
11 gave a value of DD— 1.72. For comparison, we note that
typical values of D for natural fractal patterns such as coast-
lines and lightning are 1.25 and 1.3. Our analysis also shows
that Pollock refined his dripping technique, with /^increas-
ing steadily through the years (see Taylor et al. in further read-
ing). Untitled: Composition with Pouring II, one of his first drip

3 A detailed look at a Pollock painting
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Pollock's painting Blue Poles: Number 11 was analysed by covering a ft
scanned photograph of the painting with a computer-generated mesh and
counting the number of squares, N, that contain part of the pattern (lower
inset). When N is plotted against L, the size of each square, on log-log axes,
the data fall on a single line (the black line): the fractal dimension of the
painting is given by the gradient of the line. Like many of Pollock's paintings,
Blue Poles contains layers of different colour: the graph shows N versus L for
the aluminium layer. There are in fact two gradients, and hence two fractal
dimensions: 1.63 at short lengths (red line) and 1.96 at longer lengths (blue).
(The fractal dimension of the whole painting is 1.72 at short lengths and 1.98
at longer lengths.) The two gradients can be related to Pollock's drip
technique and to his movements around the canvas. The upper inset shows a
plot of pattern density (the percentage of the canvas filled by the pattern
within a 5 x 5 cm square) versus position across a 43 x43 cm section of the
painting Number 14,1948.

paintings from 1943, has a DD value close to 1. Number 14,
1948; Autumn Rliythm: Number 30,1950; and Blue Poles:Number
11, which was painted in 1952, have values of 1.45, 1.67 and
1.72 for DD. In each case the value of DL was higher than DD

(and quite close to 2), indicating a more efficient space-filling
fractal pattern at the larger scales.

Beneath the surface
How did Pollock construct and refine his fractal patterns? In
many paintings, though not all, he introduced the different
colours more or less sequentially: the majority of trajectories
with the same colour were deposited during the same period
in the painting's evolution. To investigate how Pollock built
his fractal patterns, we have electronically deconstructed the
paintings into their constituent coloured layers and calculated
the fractal content of each layer. (Indeed, the data in figure 3
are for the aluminium layer of Blue Poles: Number 11.) We find
that each individual layer consists of a uniform fractal pat-
tern. As each of the coloured patterns is reincorporated to
build up the complete pattern, the fractal dimension of the
overall painting rises. Thus the combined pattern of many
colours has a higher fractal dimension than any of the single-
colour layers.

The first layer in a Pollock painting plays a pivotal role — it
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4 Pollock: back to basics

A comparison of the black anchor layer (left) and the complete pattern consisting of four layers (black, brown, white and grey on a beige canvas) for the painting
Autumn Rhythm: Number 30,1950 (right). The complete pattern occupies 47% of the canvas surface area, while the anchor layer occupies 32%. The fractal
dimensions are Do = 1.66 and DL = 1.93 for the anchor layer, and DD = 1.67 and DL = 1.94 for the complete painting. Pollock painted this work, which measures
2.66x 5.30 m, in 1950. (Jackson Pollock. Autumn Rhythm (Number 30,1950). The Metropolitan Museum of Art, George A Hearn Fund, 1957. (57.92)
Photograph © 1980 The Metropolitan Museum of Art)

has a significantly higher fractal dimension than any of the
subsequent layers. This first layer essentially determines the
fractal nature of the overall painting, acting as an anchor
layer for the subsequent layers which then fine-tune the frac-
tal dimension. Pollock's Autumn Rhythm: Number 30, J950and
its black anchor layer are compared in figure 4.

Pollock's legacy
Pollock died in 1956, before chaos and fractals were discov-
ered. It is highly unlikely, therefore, that Pollock consciously
understood the fractals he was painting. Nevertheless, his
introduction of fractals was deliberate. For example, the
colour of the anchor layer was chosen to produce the
sharpest contrast against the canvas background. This layer
also occupied more canvas space than the other layers, sug-
gesting that Pollock wanted this highly fractal anchor layer to
visually dominate the painting. Furthermore, after the paint-
ings were completed he would remove regions near the edge
of the canvas where the pattern density was less uniform.

Pollock also took steps to perfect the "drip and splash"
technique itself. His initial drip paintings of 1943 consisted
of a single layer of trajectories that, although distributed
across the whole canvas, only occupied 20% of a relatively
small canvas (0.35 m2). By 1952 he was painting multiple
layers of trajectories that covered over 90% of much larger
canvases, some as large as 10 m2. This increase in both the
canvas size and the density of the trajectories was accom-
panied by a rise in the fractal dimension of the patterns
from close to 1 to 1.72. Indeed, because the fractal dimen-
sion follows such a distinct evolution with time, fractal analy-
sis could be employed as a quantitative, objective technique
to both validate and date Pollock's drip paintings.

Pollock's contribution to the evolution of art is secure. He

described nature directly. Rather than mimicking it, he
adopted the language of nature - fractals - to build his own
patterns. In doing so he was, in many ways, ahead of his con-
temporaries in art and science.
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