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Fractal geometry has been used to describe natural and built environments, but has yet to be studied in
navigational research. In order to establish a relationship between the fractal dimension (D) of a natural
environment and humans’ ability to navigate such spaces, we conducted two experiments using virtual
environments that simulate the fractal properties of nature. In Experiment 1, participants completed a
goal-driven search task either with or without a map in landscapes that varied in D. In Experiment 2,
participants completed a map-reading and location-judgment task in separate sets of fractal landscapes.
In both experiments, task performance was highest at the low-to-mid range of D, which was previously
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Complexity respectively, supporting a theory of visual fluency. The applicability of these findings to architecture,

Virtual reality urban planning and the general design of constructed spaces is discussed.
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1. Introduction

Human performance in complex virtual environments has often
been studied using regular geometric structures such as mazes
(e.g., Chrastil & Warren, 2013; Moffat, Hampson, & Hatzipantelis,
1998; Wolbers & Biichel, 2005). While such paradigms allow for
precise experimental control, they do not capture the complexity
and roughness inherent in natural environments. In contrast, work
that has been conducted to explicitly capture features of natural
environments (e.g., Darken & Banker, 1998; Witmer, Bailey, &
Knerr, 1995) often involves a meticulous recreation of a specific
physical space, which can be both time consuming and prohibi-
tively expensive due to the resources required to accurately survey
a large natural space. Stiirzl, Grixa, Mair, Narendra, and Zeil (2015)
propose the use of laser-based environmental recreation for
modeling natural environments. Such an approach provides high
quality recreation with less time cost. However, it still requires the
physical collection of environmental information and is expensive
to carry out.
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Given this variety of approaches to modeling environments,
there has been no clear consensus on how best to measure and
manipulate environment complexity in a generalizable way when
assessing navigation performance. O’'Neill (1992) and Stankiewicz,
Legge, and Schlicht (2001), for example, operationalized
complexity as the number of corridors within a virtual building.
While useful for some environments, such a metric has little
generalizability to natural spaces. This trend towards either geo-
metric simplification or effortful recreation of the environment in
navigation research can be explained by the fact that spatial envi-
ronments characterized by Euclidian geometry, such as mazes
composed from straight lines and angles, are relatively simple to
model using modern computer software. The problem with this
approach is that Euclidian features do not accurately characterize
many natural phenomena.

Instead, natural environments often display complex patterns
that are irregular and repeat at increasingly fine size scales, and are
best described using fractal geometry (Bolliger, Sprott, & Mladenoff,
2003; Mandelbrot, 1982). In this work we employ the fractal
dimension (D) as a generalizable means of manipulating and
describing the complexity of a virtual environment. This approach
was adopted by Voss (1988) who used fractal properties to generate
virtual simulations of natural environments, such as moons and


mailto:msereno@uoregon.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jenvp.2016.05.011&domain=pdf
www.sciencedirect.com/science/journal/02724944
http://www.elsevier.com/locate/jep
http://dx.doi.org/10.1016/j.jenvp.2016.05.011
http://dx.doi.org/10.1016/j.jenvp.2016.05.011
http://dx.doi.org/10.1016/j.jenvp.2016.05.011

156 AW, Juliani et al. / Journal of Environmental Psychology 47 (2016) 155—165

planets. However, given the limitations of computing resources at
the time, the landscapes were static and embedded in a two
dimensional plane, and could not therefore be navigated. Currently
available graphical resources now make it feasible to render fractal
landscapes in virtual environments in real-time.

In order to understand D, consider the boundary edge of a
natural object such as an island’s coastline. D quantifies the relative
amounts of coarse and fine structure present in the coastline, and
can range between traditional Euclidian dimensions — from D = 1.0
of a smooth line with no fine structure (lowest complexity) to
D = 2.0 with a large amount of fine structure (highest complexity)
(Mandelbrot, 1967). The coastline of Australia, for example, has a
relatively low D (Gouyet & Mandelbrot, 1996; Richardson, 1961). In
contrast, the coastline of Norway is much more finely structured
with a myriad of fjords defining it, making it much higher in D
(Gouyet & Mandelbrot, 1996; Richardson, 1961). Methods devel-
oped to measure D have been used to characterize diverse natural
environments (Bolliger et al., 2003), animal habitation patterns
(Palmer, 1992), and urban cityscapes (Encarnagao, Gaudiano,
Santos, Tenedério, & Pacheco, 2012).

While D has yet to be used to characterize environments in
virtual navigation tasks, its impact has been studied in a number
of other perceptual contexts. These studies have investigated the
perception of computer generated images (Aks & Sprott, 1996;
Spehar & Taylor, 2013), natural environments (Hagerhall, Purcell,
& Taylor, 2004), and works of art (Taylor, 2006; Taylor, Micolich,
& Jonas, 1999). Spehar, Clifford, Newell, and Taylor (2003), for
example, explored the relationship between D of a series of im-
ages (including natural, mathematical, and human-generated
fractals) and aesthetic judgment. Studies such as theirs and
others point to low-to-mid range D stimuli, typically with the
range of D = 1.3—1.5, as being the most preferred by individuals
(for a review see Taylor, Spehar, Van Donkelaar, & Hagerhall, 2011).
Taylor et al. (2011) discuss a resonance theory of aesthetics in
which eye movements, which follow mid-range fractal trajec-
tories, may resonate with the inherent fractal structure of natural
patterns. Aks and Sprott (1996) propose an exposure model with
preference for low-D fractal values due to exposure to nature’s
fractal patterns. This and other research also supports a processing
fluency model in which the visual system processes low-to-mid D
fractals with relative ease, resulting in a heightened aesthetic
experience.

Processing fluency might also enhance capabilities such as the
ability to detect and discriminate fractals (Spehar et al., 2015), to
maintain attention when observing fractals (Hagerhall et al., 2008,
2015), and also to heighten pattern recognition skills. In terms of
pattern recognition, research reveals that fractal images of low-to-
mid D preferentially activate the object perception and recognition
areas of the visual cortex (Bies, Wekselblatt, Boydston, Taylor, &
Sereno, 2015) and allow for a larger number of percepts to be
formed (Bies et al., 2016). This is consistent with earlier behavioral
studies in which the capacity to perceive shapes in ambiguous
fractal images was shown to peak in the low D range (Rogowitz &
Voss, 1990). In this paper, we test a visual processing fluency model
in which we hypothesize that there may be optimization of visual-
spatial information processing in the low-to-mid D range for the
purpose of goal-directed navigation.

The tasks in this study utilize virtual environments presented
on a screen as a proxy for physical environmental navigation.
Virtual environments have been used in navigational research for
several decades (for reviews, see Loomis, Blascovich, & Beall, 1999;
Nash, Edwards, Thompson, & Barfield, 2000), and have been
shown to be reasonable approximations of physical environments
for transferring navigational skills to their real-world equivalents
(Arthur & Hancock, 2001; Richardson, Montello, & Hegarty, 1999).

The use of virtual environments in the following experiments
makes possible the fine experimental control over landscape
topography that would be otherwise impossible in a physical
context where participants may be asked to explore an
environment.

Much work on virtual navigation has focused on the utilization
of landmarks as a means for an individual to orient and guide
themselves. A basic distinction in these studies is between local vs.
global landmarks, with local landmarks associated with smaller-
scale information and global more distant landmarks, larger-scale
information. We frame the discussion of this work in a novel way
by considering fractal landscapes which, by definition, contain
landmarks defined by particular mixes of large-to-small scale
structure. Steck and Mallot (2000), for example, distinguish be-
tween global landmarks as those that can be used for orientation at
any location, and local landmarks as those that can be used to guide
more fine-scale navigational strategies. Whereas these categories
of landmarks might normally be set by the designer of a virtual
environment, in an environment generated using the fractal
properties of nature, landmarks are understood to be any feature of
the generated landscape which may have characteristics that can
be utilized for the purpose of successful navigation, such as those
outlined by Vinson (1999). The global-local distinction is thus one
that may come about as a result of the environment’s fractal
properties. Wiener and Mallot, (2003) suggest spatial navigation
takes place by making use of a fine-to-coarse planning heuristic
when obtaining landmark information from the environment. This
involves the simultaneous use of local fine environmental detail
and coarse distant detail in planning one’s path through an envi-
ronment. Different levels of coarse and fine structure are inherent
in fractal patterns of varying D, and may allow for individuals to
perform best when the environment contains structure that can be
taken advantage of by the planning heuristic. By associating envi-
ronmental topographies of particular D with navigational perfor-
mance within these environments, we hope to discover the ratio of
coarse-to-fine structure which may be best utilized during route
planning.

Given the use of D in characterizing natural environments as
well as the links found between D and human perception, fractal
dimension may serve a useful role in creating and manipulating
environmental complexity for research using virtual environments.
In the following experiments we present D as a systematic and
generalizable means of manipulating the complexity of a spatial
environment, and examine the effect of this complexity on navi-
gation performance. We predict that performance will be highest
within the low-to-mid range of D found in other perceptual con-
texts as suggested by a processing fluency model.

2. General methods and materials
2.1. Stimuli

The environment topographies were generated using an inverse
Fourier method similar to that described by Spehar and Taylor
(2013). The algorithm summed a set of cosine waves with spatial
frequencies f and amplitudes defined by the spectral slope « given
by the formula Z = f~* This procedure created a landscape pattern
in which large scale low frequency waves had a large amplitude,
while smaller scale higher frequency waves had a lower amplitude.
Furthermore, the range of chosen frequencies generated a land-
scape that scaled across two orders of magnitude, which is repre-
sentative of the extent to which many natural environments show
fractal properties at varying scales (Balboa & Grzywacz, 2003; Koch,
Denzler, & Redies, 2010). Using numbers generated from a Gaussian
distribution, the phases of the waves were then randomized to
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generate the statistical scale invariance of natural scenes. For each
of 5 phase conditions, 5 values of o were used to generate a total of
25 landscapes. Each landscape was interpolated to generate a sur-
face with pixel counts of 1024 x 1024 in the x and y directions (See
Fig. 1.1). The D values of their profiles were 2.1, 2.3, 2.5, 2.7, 2.9 and
these values were verified using a fractal box-counting analysis
(Fairbanks & Taylor, 2011).

For each image, the median greyscale intensity was assessed
and pixels with intensities below the median were set to 0 in-
tensity. This was done in order to create the appearance of a flat
ground with various features and landmarks protruding (See
Fig. 1.2). The topology of the landscapes retained the fractal
dimension, with negligible measured variation from the original
generating parameter. When the edges of the topographic features
were measured using box counting, we found their D values to be
1.1, 1.3, 1.5, 1.7, 1.9. It is these values which we shall refer to when
discussing the D of the island set going forward. When the length of
these feature edges were measured, we found a strong linear
relationship between dimension and edge length, r(25) = 0.96,
p < 0.001. Additionally, a flat topography was generated and
designated as dimension 1.0, and had edge lengths of zero. This flat
topography was duplicated five times, to match the number of
terrains at all other D levels. These D values were used as inde-
pendent variables in the experiments that followed. The land-
scapes were then circumscribed, to give the appearance of circular
islands (See Fig. 1.3), and so are referred to as landscapes or islands

throughout the text. As in the Morris water maze, this circum-
scribing was done in order to prevent the use of corners in the
landscape as global landmarks (Morris, 1984). Chai and Jacobs
(2009) employ a similar strategy in the design of their tasks
exploring cue use in navigation. The generation process is illus-
trated in Fig. 1. Additionally, an example of the island features at
each level of D is provided in Fig. 2.

2.2. Experimental setup

The landscapes were presented as virtual island environments
created using Unity3D game engine software on a 2008 Mac Pro
with a 30” screen, and rendered at a resolution of 2133 x 1600
pixels. Participants were seated two feet away from the display,
which comprised 60 degrees of visual angle. Water was rendered
outside the virtual island terrains, and participants were unable to
move beyond these circular boundaries. Participants navigated an
avatar through the confines of the circular environments from a
first-person perspective using a PlayStation 3 controller. The virtual
island environments were rendered at a scale of 200 m in diameter,
with the maximum height of the landscape set to 50 m. Participants
could move their avatar around the flat surface of each island, as
well as over terrain of an incline less than 45°. Elevated terrain
prevented participants from seeing from one end of an island to the
other, except for the D = 1.0 islands. In some experimental condi-
tions, a topographic map of the island was displayed for use in

Fig. 1. Illustrations of the topography generation process for a terrain with edges of D = 1.1. 1. The greyscale output terrain from the inverse Fourier generation process. 2. The terrain
after having intensities below median intensity set to zero. 3. The terrain after having been circumscribed. 4. View of the terrain from two angles as rendered in the virtual
environment. Feature edges are highlighted in red to indicate the aspect of the environment which is reflected in the reported fractal dimensions (D). For reference, an example
feature profile is highlighted in yellow to indicate profile fractal dimension. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)
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Fig. 2. The topography of a set of generated landscapes from one of the five phase maps utilized in this study. White designates landmarks, and black designates ground. D is
indicated above each of the 6 landscapes: 1.0 (top-left), 1.1 (top-right), 1.3 (mid-left), 1.5 (mid-right), 1.7 (bottom-left), and 1.9 (bottom-right).

navigation. Four examples of a participant’s view from the dis-
played environment are presented in Fig. 3.

2.3. Analysis

All behavioral data was collected automatically within the ex-
periment’s software, and analyzed using the JMP 12 Statistical
Package. Demographic data was additionally collected from a post-
experiment survey.

3. Experiment 1: search tasks
3.1. Purpose

Our two stated goals above were to establish the D value of a
landscape as a viable measure of environmental complexity, and to
test a visual fluency model in which low-to-mid D fractal land-
scapes are most successfully processed for the purpose of goal-
directed navigation. Given that D has not previously been used as
a means of manipulating environmental complexity in navigation
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Fig. 3. Examples of first-person perspective views in Condition 2 (Map). The D of the landscapes are 1.1 (top-left), 1.3 (top-right), 1.7 (bottom-left), and 1.9 (bottom-right). The
displayed map is shown to participants in certain experimental conditions described below. The red dot on the map indicates the position of a target object. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

tasks, we first conducted a simple navigation experiment under
various conditions to begin answering these research questions. In
Experiment 1, participants were instructed to explore landscapes
composed of a range of fractal dimensions, and complete a goal-
driven search task either with or without a map and/or a dis-
tractor object. Completion speeds (all Conditions) and accuracy
(Condition 3) were collected. In Condition 1, participants engaged
in a goal-directed search task in which they were instructed to find
avisible goal within the environment without the use of a map. By
doing so, we were able to establish the effect of D as a measure of
complexity on performance when engaged in goal-directed search.

We additionally explored the effect of a topographic map on
performance in this task with the goal location marked on the map,
and without (Condition 2) or with (Condition 3) an additional
distractor object (See Fig. 3). The use of topographic maps in nav-
igation has been studied previously (e.g., Malinowski & Gillespie,
2001; Montello, Sullivan, & Pick, 1994; Tkacz, 1998) but never
before via dynamic exploration in simulated natural environments.
The purpose of these map task manipulations was to gain an un-
derstanding of the extent to which fractal information present in a
topographic map can be interpreted and utilized when navigating a
fractal environment. Specifically, in these two map conditions
participants used the map to help determine where they were on
the island and help guide their way to the marked goal location. To
do this successfully, participants must: 1) identify and match
landmarks in the environment with their representations on the
map, 2) use these landmarks to determine their own position (self-
location) and orientation in the environment and relative to the
goal, and 3) use this position and orientation knowledge to plan a

route to the goal. The purpose of including a distractor object in
Condition 3 was to ensure that participants used the map to suc-
cessfully navigate to the target (rather than distractor) object
location.

Finally, we examined navigational performance in fractal envi-
ronments when participants were given information displayed on a
map relaying both self and goal location in real-time (Condition 4).
By eliminating the need for active search or landmark interpreta-
tion, this final task served as a baseline condition which was used to
measure performance relative to the other three conditions. For a
detailed description of these conditions, see Section 3.2.2.

3.2. Method

3.2.1. Participants

Seventy-four (30 Male) participants were recruited from the
University of Oregon undergraduate research pool to participate in
this experiment, and were provided with credit in a psychology
course for doing so. No recruited individuals had participated in
previous similar studies, and demographic information concerning
major was not collected. This study was carried out in accordance
with a protocol approved by the Research Compliance Services of
the University of Oregon. All participants provided informed con-
sent before undertaking the experiment. Ages of participants
ranged from 18 to 34 years (Mdn = 19). Sixty-one of the participants
were randomly assigned to one of four conditions, with an addi-
tional 13 assigned to Condition 3 due to the additional power
required to examine a second dependent measure. The de-
mographics of these participants did not differ from that of the
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others. Condition participation was as follows: 15 in Condition 1; 15
in Condition 2; 28 in Condition 3; and 16 in Condition 4.

3.2.2. Procedure

Participants were instructed to explore each island in the virtual
environment and search as quickly as possible for a coconut (goal)
randomly placed within the outer two-thirds of the island. Goals
were never placed within the inner third of the environment in
order to increase task difficulty in map-present conditions. Both the
participant’s starting position and the goal were always located on
the flat ground of the landscape. To complete each trial, partici-
pants were instructed to use the PlayStation controller to navigate
the environment, and move to the position of the goal. The
controller allowed participants to move in all directions within the
confines of the terrain using the left analogue stick, and to adjust
the angle of view from their location using the right analogue stick.
Upon arrival at the goal, the trial ended, and the participant was
immediately taken to the next trial. If a participant failed to find the
coconut within 180 s, they were automatically taken to the next
trial. This cutoff time was chosen as an upper limit in order to
ensure that participants would be able to complete the required
number of trials within the 60 min of the experiment while also
minimizing the likelihood of prematurely ending a trial that a
participant is likely to successfully complete.

The number of trials varied by condition (see Table 1). The
presentation sequence of islands and the goal position on each is-
land were randomized for every participant. The design of the
experiment was between-subjects, with each participant
completing the procedure for only a single condition. In all condi-
tions, the first trial was used for training, in which the experimenter
coached participants as they completed the task to ensure all par-
ticipants understood the task. The specific manipulations for each
condition are described in Table 1.

In Table 1, the column labeled “Map with goal?” indicates
whether there was an always-present map of the topography of the
landscape. This map additionally marked the position of the goal
with a red circle, and was aligned with respect to the landscape,
rather than with respect to the heading direction of the participant.
“Distractor on island?” indicates whether there was also a second
coconut randomly placed on the ground of each island which
served as a distractor. The location of this distractor was not
marked on the map. Participants were informed that there was a
distractor object in the environment that was not indicated on the
map, and was to be avoided while completing the task. Unlike the
goal position, a trial did not end upon arriving at the distractor
position. However, the occurrence of a participant mistaking a
distractor for the target was recorded as an error. In such cases,
participants were instructed to continue searching for the true goal
by the experimenter. “Map with self?” indicates whether the map
also marked the position of the participant on the island in real-
time. “Number of Trials” indicates the number of trials a partici-
pant was instructed to complete in each condition. The dependent
measures consisted of time-to-goal, which was measured as
number of seconds from the start of the trial until the goal was
found, and error rate, which was the proportion of trials in which a

Table 1
Properties of the four conditions of Experiment 1.

participant mistook the distractor for the goal. Short clips of each
condition are presented in Video 1.

Supplementary video related to this article can be found at
http://dx.doi.org/10.1016/j.jenvp.2016.05.011.

3.3. Results

We examined the between-group variance in time-to-goal by
condition with Levene’s test, which found that the conditions had
unequal variances; F(3, 70) = 3.75, p = 0.003. Welch’s ANOVA was
then conducted in order to remain robust to these unequal vari-
ances, as well as unequal condition sizes. The Welch’s ANOVA
compared the effect of condition type on time-to-goal, revealing
significant differences in time-to-goal among the four conditions,
F(3,70)=200.81, p < 0.001. A series of a priori Bonferroni corrected
contrasts was undertaken to explore the nature of the differences
between these groups. In order to establish the non-trivial nature of
the experimental conditions, the first contrast compared the
baseline condition (C4) with the three experimental conditions (C1,
C2, C3). We found a significant difference between the experi-
mental and baseline conditions, with Condition 4 (M = 14.11,
SD = 3.22) having a much shorter time-to-goal; t = 15.24, p < 0.001.
We then conducted a contrast to compare the map (C2 and C3) to
the no-map (C1) experimental conditions. In doing so, we found
that Condition 1 (No-map) (M = 53.24, SD = 10.97) had a signifi-
cantly longer mean time-to-goal than Conditions 2 (Map)
(M = 44.46, SD = 7.6) and 3 (Map and distractor) (M = 48.87,
SD = 8.21); t = 2.7, p = 0.008. This demonstrates that participants
with access to a topographical map of the environment and goal
location exhibited significantly better performance when
compared to participants without such a map. A final contrast was
conducted to explore the effect of distractor targets (C3) within the
map-present experimental conditions (C2 and C3). When
comparing map-present Conditions 2 (Map) and 3 (Map and dis-
tractor), we found a trending, but non-significant difference be-
tween the two conditions; t = —1.72, p = 0.088. This suggests that
participants using a map were likely not especially slowed by the
presence of a distractor. These contrasts are presented in Fig. 4.

With an understanding of between-condition differences, we
then analyzed the relationship between fractal topography and
time-to-goal within conditions. Here we found an exponential
relationship between time-to-goal and D within each condition,
suggesting a linear increase in time-to-goal as D increases when
logarithmically transformed. A simple linear regression was
calculated to predict the logarithm of time-to-goal based on D for
each of the 4 conditions. There were significant positive linear
trends in the relationship between the D of the topography and the
logarithm of time-to-goal for all three experimental conditions:
Condition 1 (No-map), F(1,88) = 231.08, p < 0.001, R*> = 0.72;
Condition 2 (Map), F(1,88) = 446.29, p < 0.001, R> = 0.83; and
Condition 3 (Map and distractor), F(1,166) = 612.64, p < 0.001,
R? = 0.78. In baseline Condition 4 (Map w/self) we found a weaker
but significant linear relationship between the two variables in
question, F(1,94) = 43.35, p < 0.001, R* = 0.34. These trends are
plotted in Fig. 5.

Condition Map with goal? Distractor on island? Map with self? Number of trials Dependent measures
1. No-map (Experimental) No No No 30 Time to goal
2. Map (Experimental) Yes No No 60 Time to goal
3. Map and distractor (Experimental) Yes Yes No 60 Time to goal;
Error rate
4, Map w/self (Baseline) Yes No Yes 60 Time to goal
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Time-to-goal Across Conditions

70 ‘ = p<.001
*p=.008 ‘
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1 (No-map) 2 (Map) 3 (Map and distractor) 4 (Map w/ self

Condition
Fig. 4. The mean time-to-goal in seconds for each condition. Error bars represent

standard error. Significance levels are indicated by “*” (p < 0.05), “**” (p < 0.01), and
7 (p < 0.001).

Effect of D on Time-to-goal
Il ' (No-map)

100 M 2 (vap)
98 I 3 (Map and distractor)
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4 (Map w/ self)
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Fig. 5. Mean time to goal as a function of D for each of the four conditions plotted on a
semi-log-scale. Error bars represent standard error of the mean. The error bars are
slightly offset for visualization purposes.

Within Condition 3 (Map and distractor), the ratio of trials
without errors (finding the goal without first arriving at the dis-
tractor) to total trials for each participant (i.e., the proportion of
non-error trials) was analyzed as a function of D. A within subjects
repeated measures ANOVA comparing the effect of D on the pro-
portion of non-error trials in the six D conditions was conducted.
Mauchly’s test indicated that the assumption of sphericity was not
violated; X%(14) = 18.75, p = 0.18. The ANOVA revealed a significant
effect of D; F(5,135) = 4.98, p < 0.001, 5° = 0.16. Further Bonferroni

corrected contrasts showed that there were significantly fewer
non-error trials in the D = 1 condition than all others, t = —3.48,
p < 0.001. We also found that D = 1.1 and D = 1.3 had significantly
more non-error trials than D = 1.5—1.9 (t = 2.76, p = 0.006), sug-
gesting that participants’ best performances fell within the range
1 < D < 1.5. These differences are presented in Fig. 6.

In order to account for both frequency of errors as well as time-
to-goal within a single construct, we calculated a measure of overall
performance as follows: standardized time-to-goal and standard-
ized proportion of non-error trials were calculated, then summed
and multiplied by —1. The result was a standardized measure of
performance that took both measures into account, and that
designated higher values as representing better performance. To
determine the effect of landscape dimension on performance, we
performed a within subjects repeated measures ANOVA with 6
levels of D. Mauchly’s test indicated that there was no violation of
the assumption of sphericity; X(14) = 22.18, p = 0.06. The results
show that there was a significant effect of dimension on perfor-
mance; F(5, 135) = 25.64, p < 0.001, n° = 0.49. Within subject
contrasts showed significant linear (p < 0.001, 5° = 0.71) and
quadratic (p < 0.001, 7 = 0.56) trends. Other higher-order trends
were non-significant (p > 0.05 and 5? < 0.10 for all other trends).
Contrasts between D values indicated significantly greater perfor-
mance for D = 1.1 and D = 1.3 when compared to all other di-
mensions; t = 9.48, p < 0.001. However, D = 1.1 and D = 1.3 were
not significantly different from one another; t = 0.42, p = 0.66. The
relationship between overall performance and D is presented in
Fig. 7, revealing that performance increases as D decreases, with the
highest performance at low-to-mid D values.

3.4. Discussion

The baseline condition (C4), which displayed the positions of
both the participant and goal on the map, was intended to reveal
the extent to which the experimental conditions, which only dis-
played the goal position (C2 & C3) or did not contain a map at all
(C1), required knowledge of the environment and self-location
relationship to effectively complete the task. As expected, in the

Condition 3 (Map and distractor) Error Rate

80%

75% |

70%"

Non-error Trials (%)

65%

60% |

55%
1 1.1 13 1.5 1.7 1.9
Dimension of topography (D)

Fig. 6. Proportion of non-error trials as a function of D. Error bars represent standard
error of the mean.
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Condition 3 (Map and distractor) - Overall Performance

1.0

0.5

0.0

-0.5

Performance (arbitrary units)

-1.0

-1.5

-2.0

1 1.1 13 1.5 1.7 1.9
Dimension of topography (D)

Fig. 7. Performance as a function of D for Condition 3 (Map and distractor). Perfor-
mance takes into account both accuracy (frequency of errors) and reaction time (time-
to-goal) and is defined as —1*(standardized time-to-goal + standardized proportion of
non-error trials) where larger scores reflect higher performance. Error bars represent
standard error.

absence of a need to explore the environment to discover the
relative position of self and goal, participants completed trials in
the baseline condition significantly faster than the experimental
conditions. This confirmed that the experimental conditions indeed
measured navigational performance above and beyond the diffi-
culties of simply moving around the features of the environments.
Additionally, our findings that the map conditions (C2 and C3)
showed faster time-to-goal response times than the no-map con-
dition (C1) suggests that participants were able to successfully
utilize information within the map in order to complete a given
trial.

The presence of exponential increases in time-to-goal within all
three experimental conditions establishes consistency in our
finding that navigation performance varies as a function of an en-
vironment’s fractal dimension (D). The exponential increase in time
to goal at the high D suggests that D indeed captures environmental
complexity. Consistent with Stankiewicz et al. (2001), we find that
performance decreases with high levels of environmental
complexity. The contrasts conducted using our general perfor-
mance measure point to peak performance in the mid-to-low range
of D. However, the peak (D = 1.1-1.3) may be lower than the peak
range for preference (D = 1.3—1.5) suggested in aesthetic experi-
ments (Taylor et al., 2005, 2011) but fits with estimates of the ease
of nameable shape perception (with greatest ease for D = 1.2) in
object detection (Rogowitz & Voss, 1990). In our experiments,
performance was highest when 1.1 <D < 1.3.

One potential reason that we find terrains of 1.1 < D < 1.3 as
optimal for performance may be that the ability of participants to
quickly complete a trial depended, in part, on how quickly the goal
came into the line-of-sight of a participant for a given trial. Given
the strong linear relationship between edge length and D, land-
scapes with lower D were statistically more likely to have large flat
areas where the goal would be in the line-of-sight of the partici-
pant. With greater edge length, the extent to which any given view
might be obscured by a feature of the landscape increases. In such

cases where the goal is immediately visible to the participant, the
benefit of information obtained from a map or any navigational
strategy is unnecessary. This is apparent in the time-to-goal mea-
sure, with participants completing trials the fastest in the
completely flat D = 1.0, and simple D = 1.1 topographies.

We attempted to correct for this aspect of the task by collecting a
measure of error in Condition 3 (Map and distractor). Participants
mistaking the distractor for the goal indicated an incomplete or
incorrect understanding of the topography, and the error measure
is able to capture this. Indeed, trials with the lowest landscape
feature edge length (D = 1.0) showed the greatest number of errors.
Additionally, the trend in proportion of non-error trials seen in
Fig. 6 is consistent with the aesthetic and object-naming relation-
ships described by others (Rogowitz & Voss, 1990; Taylor et al.,
2005). As such, the combined performance measure attempts to
partially correct for potential biases in time-to-goal responses that
result from the influence of line-of-sight goal visibility. In Experi-
ment 2, we directly address this limitation by employing an
experimental design in which the goal is hidden and cannot appear
within the line of sight.

4. Experiment 2: location judgment task
4.1. Purpose

The results of Experiment 1 suggest that the complexity of a
terrain as described by its D value influences navigation ability.
Given this finding, we designed Experiment 2 as both a replication
and extension of the above work. First, we wanted to replicate the
general pattern of results seen in Experiment 1 using a different set
of fractal topographies and tasks. Additionally, we designed a task
which would measure precision of spatial representation by elim-
inating the use of line-of-sight judgments. In the following exper-
iment, participants made spatial judgments about the position of a
hidden goal within the environment using a map and any spatial
cues available to them within the virtual environment. The accu-
racy of these judgments was then related to the D of the landscapes
in which they were made.

4.2. Method

4.2.1. Participants

Twenty-two (11 Males) new participants were recruited from
the University of Oregon undergraduate research pool to partici-
pate in this experiment. No recruited individuals had participated
in previous similar studies, and demographic information con-
cerning major was not collected. This study was carried out in
accordance with a protocol approved by the Research Compliance
Services of the University of Oregon. All provided informed consent
before undertaking the experiment. Ages of participants ranged
from 19 to 38 years (Mdn = 21).

4.2.2. Procedure

The stimuli for Experiment 2 consisted of a different set of 30
island landscapes generated using the same parameters described
in Section 2.1. In this experiment, participants were instructed to
use a displayed map (similar to the ones shown in Fig. 3) to move
their avatar to a goal position on the island as indicated by a red
marker placed on the map. Crucially, an indication of this goal
position was present only on the map, and not within the virtual
environment itself. The goal position was verbally described to
participants by an experimenter as the location of buried treasure.
Using the controller configuration described in Section 3.2.2, par-
ticipants indicated where they believed the goal position was
located in the virtual environment by pressing a response button
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when they felt their avatar was standing at the position which
corresponded to the marker on the map. They were then provided
feedback on the accuracy of their judgment in order to encourage
participants to not simply make random judgments but to be as
accurate as reasonably possible for the duration of the experiment.
Feedback consisted of a set of displayed text statements in various
colors as well as a numerical point reward, both of which varied as a
function of accuracy. The nature of each message is described in
Table 2.

Once the judgment was made and feedback was given, a trea-
sure chest then appeared in the environment at the true position of
the goal, and participants were instructed to move toward it. Dur-
ing this post-judgment portion of the trial the map also indicated
the participant’s position, allowing for a timelier completion of
each trial. Making contact with the goal object began a new trial on
a new island. The order of islands as well as goal positions were
randomized for each participant. Participants were instructed to
complete as many trials as accurately as possible within the 50 min
of the experiment. All participants completed at least 30 trials
(M = 65, Mdn = 71). A short clip of this experimental design is
presented in Video 2.

Supplementary video related to this article can be found at
http://dx.doi.org/10.1016/j.jenvp.2016.05.011.

4.3. Results

Our measure of accuracy was designed to convey the ability of
participants to make precise localization judgments on a scale that
ranged from 0, designating chance performance, to 100, perfect
performance. In order to accomplish this, we calculated judgment
accuracy as ‘100 — distance in virtual meters between true and
judged goal position.” Given that the diameter of each island is 200
virtual meters, an average error of 100 would equate to chance
performance. By subtracting the judgment error from 100, we are
able to achieve the desired scale. To determine the effect of land-
scape D value on judgment accuracy, we performed a within sub-
jects repeated measures ANOVA with 6 levels of D. Mauchly’s test
indicated that the assumption of sphericity was not violated by the
data distribution; X%(14) = 8.42, p = 0.87. The results show that
there was a significant effect of D on performance, F(5, 140) = 9.19,
p < 0.001, n” = 0.27. Within subjects contrasts showed significant
linear (p = 0.03, n° = 0.16) and quadratic (p < 0.001, *> = 0.59)
trends. Other higher-order trends were non-significant (p > 0.05
and 7? < 0.10 for all other trends). Further contrasts between in-
dividual D levels found that performance at D = 1.1, 1.3, and 1.5 was
significantly greater than performance at all other levels (t = 11.71,
p < 0.001). Performance scores at D = 1.3 were not significantly
different from D = 1.1 (t = 0.55, p = 0.58), however they were
significantly greater than D = 1.5 to a marginal extent (t = 2.09,
p = 0.045). Peak judgment accuracy was within the low-to-mid D
range, as can be seen in Fig. 8.

4.4. Discussion

We find the results of Experiment 2 to be consistent with those
of the overall performance measure for Condition 3 (Map and

Experiment 2 Performance
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Accuracy Score

30
207
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1 1.1 13 1.5 1.7 1.9

Fractal dimension of topography (D)

Fig. 8. The relationship between D and the mean accuracy. Accuracy was defined as
100 minus the difference in virtual meters between participant-judged and true goal
positions. Error bars represent standard error.

Distractor) of Experiment 1, and both consistent with the original
hypothesis that spatial judgments would be most accurate within
the low-to-mid D range (D = 1.1-1.5). This result complements
previous fractal perception findings for aesthetic judgments (Taylor
et al., 2005, 2011) and object detection (Rogowitz & Voss, 1990).
These similar performance relationships on separate tasks suggest
that the results are likely not due to a particular set of fractal to-
pographies or participants used in each experiment.

The absence of a linear relationship between D and accuracy
suggests the importance and usefulness of the presence of a certain
amount of complexity in a given environment for navigation tasks.
We find near-chance performance both at the very low (D = 1.0)
and high (D = 1.9) ends of D values, suggesting that these are points
at which there is either too little or too much complexity to make
meaningful judgments. These results can be interpreted in relation
to concepts drawn from information theory, with the complexity of
the environment conveying differing amounts of information that
varies in a way similar to that of a classical entropy function (Reza,
1961). In this context, the low- and high-end D landscapes contain
little information, whereas the low-to-mid D landscapes maximize
information available to the participant.

In very low and very high D environments, the landscapes
typically lack landmarks that meet the criteria established by
Vinson (1999) to be meaningfully employed by a given individual.
For example, both D = 1.0 and often D = 1.1 landscapes violated
Vinson's (1999) guideline suggesting that an environment should
contain more than one landmark. The guideline suggesting the
need for distinctive landmark features is also violated at the high-
end of D (1.9), where all features seem similar (see Fig. 3, bottom

Table 2

Descriptions of feedback provided to individuals after making a spatial judgment of goal position.
Distance from goal (in meters) Verbal feedback Reward amount Text Color
0-10 “You found it!” 10 points Green
11-30 “You were close.” 5 points Yellow
31-50 “You were not so close.” 2 points Red
50+ “You were way off.” 0 points Black
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right panel). We find that the environments in which performance
is optimal (landscapes with low-to-mid D) display features which
consistently meet other criteria established by Vinson (1999) as
well. The mixture of coarse and fine structure within most D = 1.3
landscapes, for example, results in landmarks which can be easily
distinguished from each other, and also configurations in which
more major landmarks are often flanked by one or more smaller
landmarks.

The D value describes specific combinations of coarse and fine
structure within an image, and as such, the results here support a
range of ratios of structure (the ones found in low-to-mid D) as
being important for goal-oriented navigation. An explanation for
why these ratios might be ideal is that they may allow an individual
to optimally utilize fine-to-coarse planning heuristics while mov-
ing through the environment (Wiener & Mallot, 2003). Both very
high and very low D landscapes lack either the coarse structure
needed for a coarse navigational strategy or the fine structure
needed for a fine navigational strategy.

The greater frequency with which landscape features in the low-
to-mid D range act as landmarks for participants also complements
the findings of Bies et al. (2015) who show robust activation in brain
regions responsible for object perception and recognition during
the observation of low-to-mid D fractal images. An analogous
pattern of activation may exist within brain regions associated with
spatial perception and navigation, with specific coarse-to-fine ar-
rangements of spatial information resulting in preferential activa-
tion of regions of the visual system responsible for landmark
recognition. Janzen and Van Turennout (2004) found that the
functionally-defined parahippocampal place area (PPA) shows
preferential activation when viewing landmarks important to an
active navigation task. Others have found that human subjects are
sensitive to aspects of scene geometry (e.g., global structure and
affordance properties; Greene & Oliva, 2009) which may be pro-
cessed in scene-sensitive regions of cortex such as the PPA (Epstein
& Kanwisher, 1998; Epstein, Harris, Stanley, & Kanwisher, 1999;
Kravitz, Peng, & Baker, 2011; Park, Brady, Greene, & Oliva, 2011).
This area and others may turn out to be important for navigation in
low-to-mid complexity fractal environments.

5. Conclusion

Here we demonstrated the usefulness of D as a means of
manipulating environmental complexity in navigational research.
Furthermore, we have shown that in the context of accuracy
measures of spatial judgment, results consistently support a spe-
cific range of D (1.1-1.3) as being optimal for goal-directed navi-
gation. These results complement the results of other studies that
have explored the effects of D (while viewing images that occupy 2-
dimensional space) on aesthetic responses (Taylor et al., 2005,
2011), object detection (Bies et al., 2016; Rogowitz & Voss, 1990),
discrimination and sensitivity (Spehar et al., 2015), and attention
(Hagerhall et al., 2006). The current research extends the study of D
to 3-dimensional settings and spatial perception. In doing so, the
results support a theory of visual processing fluency in which
stimuli of low-to-mid range D are easier to process for a variety of
purposes.

We hope to extend the study of the relationship between an
environment’s D value and human navigation ability to other kinds
of environments and navigational scenarios, such as driving within
urban settings. Furthermore, variations in requirements of a given
navigational task, such as line-of-sight and map reading demands,
must be taken into account to understand the domains in which
using D as a means of generating and measuring complexity is truly
useful. As was observed in the difference in results between Ex-
periments 1 and 2, there are potentially multiple relationships

between D and performance measures that can appear given
different task requirements. Additionally, while the experiments
here were presented as traditional screen-based virtual environ-
ments, their generalizability to physical spaces must be explored as
well.

By conducting such experiments in the future, we can better
understand the ways in which humans are able to perceive and
learn environments of varying complexity. The precise relationship
between D and the human perceptual system’s capacity to process
spatial information could be utilized in a number of ergonomics
and human factors contexts beyond natural landscapes, such as the
design of constructed spaces, architecture or urban planning. This
advantage of generalization can be seen in work extending fractal
analysis beyond nature to constructed space, as has been done by
Encarnacao et al. (2012) when looking at urban topographies, with
Stamps (2002) exploring aesthetic responses to fractal skylines, and
with Taylor (2006) exploring physiological response to fractal ar-
chitecture. Indeed, there already exists a rich tradition within ar-
chitecture of incorporating fractal geometry into the layout of
designed spaces. This history can be traced from Greco-Roman
antiquity to Post-modern architecture (Goldberger, 1996;
Salingaros, 1999), suggesting a natural inclination on the part of
architects to design buildings using fractal geometry.

This natural inclination has been scientifically defended by
multiple researchers who propose that the extent to which an ur-
ban space is fractal directly impacts the ability for that space to be
coherent and livable (Joye, 2007; Salingaros & West, 1999). The
work presented here extends this to the complexity within fractal
layouts themselves, suggesting that certain levels of D allow for
greater comprehensibility in navigation. Additionally, we provide a
standard for future research measuring the D of fractal environ-
ments in relation to human performance. Having this simple,
mathematically calculable method for characterizing the
complexity of spatial environments may have long-term implica-
tions for environmental psychology and design.
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