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The visual impact of hyperbolic tessellations has captured artists’ imaginations 
ever since M.C. Escher generated his Circle Limit series in the 1950s. The 
scaling properties generated by hyperbolic geometry are different to the fractal 
scaling properties found in nature’s scenery. Consequently, prevalent 
interpretations of Escher’s art emphasize the lack of connection with nature’s 
patterns. However, a recent collaboration between the two authors proposed 
that Escher’s motivation for using hyperbolic geometry was as a method to 
deliberately distort nature’s rules. Inspired by this hypothesis, this year’s cover 
artist, Ben Van Dusen, embeds natural fractals such as trees, clouds and 
lightning into a hyperbolic scaling grid. The resulting interplay of visual 
structure at multiple size scales suggests that hybridizations of fractal and 
hyperbolic geometries provide a rich compositional tool for artists.  
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It has become popular to view the spectrum of disciplines as a circle, with 
mathematics and art lying so far apart that they become neighbors. Two artists are 
celebrated as proof of this theory - Leonardo da Vinci (1452-1519) and Maurits Escher 
(1898-1972). Da Vinci combined mathematics and art to search for the possible, resulting 
in functional designs such as his famous flying machines. In contrast, Escher searched for 
the impossible by creating images that distorted nature’s rules. Escher’s prints of 
tessellations were inspired by the Islamic tiles he saw during a trip to the Alhambra in 
Spain [Escher, 1989]. However, he took the bold step of incorporating patterns that repeat 
at many size scales. To achieve the desired visual balance, he insisted that the shrinking 
patterns converge towards a circular boundary. In Escher’s words, the repeating patterns 
emerged from the circular boundary “like rockets”, flowing along curved trajectories 
until they “lose themselves” once again at the boundary [Ernst, 1995]. Making his 
patterns fit together required considerable thought and a helping hand from mathematics. 
After several flawed attempts, Escher finally found the solution in an article written 
several years earlier by the British geometer H.S.M. Coxeter [Coxeter, 1979, 2003]. In 
Figure 1 (a, b) we show two examples of ‘Circle Limit’ tessellations. Van Dusen 
generated these images using Escher’s rules of increasing the tessellation sizes as a 
function of the distance from the outer circular boundary. 

The flowing patterns of Circle Limit tessellations have captured the imaginations 
of both artists and mathematicians for over half a century. Yet along the way, their 
connection with nature has fallen by the way side [Taylor, 2009]. They are often 
presented as an elegant solution to a purely academic exercise of mathematics - a clever 



visual game. In reality, Escher’s interest lay in the fundamental properties of patterns that 
appear in the real world. He declared: “We are not playing a game of imaginings – we are 
conscious of living in a material three dimensional reality.” [Ersnt,1995]. Escher’s artistic 
interest in the physical world is emphasized by the sketches of trees completed in the 
same era as his Circle Limit tessellations [Escher, 1989]. His sketches capture how 
branch patterns repeat at different size scales and how they become distorted when 
reflected in the rippled surface of a pond. Given Escher’s quest for distortion, it comes as 
no surprise to find that his tessellations deviate from the fractal scaling properties of 
nature’s patterns, which will be discussed in more detail later.  

Van Dusen’s art is designed to celebrate the inherent distortion in the tessellations 
created by Escher. In this article, we will show that Van Dusen’s Circle Limit 
tessellations shrink at a different rate to patterns found in nature. Specifically, Circle 
Limit tessellations employ the hyperbolic geometry described in Coxeter’s article 
[Coxeter, 1979, 2003], rather than the fractal geometry that describes natural patterns 
[Mandelbrot, 1982]. To emphasize the importance of distortion, Van Dusen’s 
tessellations play a subtle visual trick on the observer. Escher employed simple symbols 
such as fish, bats and reptiles to form the basic tiling patterns, which he then shrank 
according to the rules of hyperbolic scaling. In contrast, Van Dusen uses nature’s fractal 
objects – such as the mud cracks and clouds shown in Figure 1 – as the basic tiling 
patterns which he then shrinks using hyperbolic scaling. Before seeing the results, one 
might expect this clash of scaling phenomena to generate a visual battlefield. After all, 
why should nature’s fractals sit nicely within hyperbolic scaling rules? The fact that they 
do so highlights the success of Escher’s artistic mission – to show that art based on 
distortions can be just as striking as those that follow nature’s scaling rules with fidelity. 
In this essay, we will first describe how Circle Limit tessellations are generated and then 
perform a scaling analysis to quantify the visual impact of Van Dusen’s intriguing 
integration of scaling forms. 

 

 

Figure 1: a) Van Dusen’s Parched Earth, showing mudcracks embedded within a 
hyperbolic grid b) Van Dusen’s Summer Sky, showing clouds embedded in a hyperbolic 
grid, c) A version of a Koch Snowflake generated for direct comparison with Circle Limit 
tessellations. 



Tessellations are patterns that fill the surface of a plane without any overlaps or 
gaps. Most tessellation designs in art feature component tiles which are identical in size. 
In contrast, in Circle Limit artworks the size of the tessellations diminish towards the 
infinitesimally small as the circular edge is approached. To create this visual effect, it is 
necessary to generate tile shapes that are not typically tiled together. When the basic 
shapes used in Circle Limit artworks are tiled together they don’t create a flat surface. 
Instead of fitting together evenly in two dimensions, the pieces instead form the 
hyperbolic geometry shown in Figure 2. A hyperbolic geometry looks much like a saddle: 
on one axis, the surface rises upward form the origin (symbolized by the dot) and on the 
other axis the surface drop downward. Significantly, when this hyperbolic surface is 
viewed directly from above, it appears to spread out indefinitely and any tiles ‘drawn’ on 
the surface become more distorted the further they get from the origin. Thus, although all 
of the tiles have equal size on the surface, they appear to shrink towards the edge.  

 

 

Figure 2: Hyperbolic geometries form the shape of a saddle with the surface rising along 
one axis and dropping along the other axis. 

To make the entire surface viewable, the surface has to be translated onto a 
Poincaré disk [Anderson, 2005]. A Poincaré disk is a circle that represents an infinite 
region of space. As the circular edge is approached, the images diminish at such a rate 
that they appear to be infinitely small and be infinitely close to the circle’s edge without 
ever touching it. By using this Poincaré disk model, it is possible to give the impression 
of an infinite array of tile images within a limited space and, unlike other disk models, the 
shape of the tiles stays recognizable as they approach the circular boundary. As shown in 
Figure 3(a), a tessellation of octagons forms the basis of Escher’s and some of Van 



Dusen’s Circle Limit patterns. Figure 3(b) shows the visual effect when Van Dusen 
embeds fractal patterns into this hyperbolic tiling pattern: each octagon features the 
fractal branches of a tree.  

 

 

 

 

Figure 3: a) the hyperbolic scaling grid used in octagonal Circle Limit artworks, b) the 
hyperbolic scaling grid with a fractal tree pattern embedded. 

To highlight the visual differences between a pure fractal and Van Dusen’s 
hyperbolic-fractal hybridizations, we created a purely fractal pattern featuring 
interlocking tessellations, as shown in Figure 1(c). Based on the Koch curve, the pattern 
consists of triangles that repeat at increasingly fine scales, thereby building up the edge of 
a snowflake [Koch, 1904]. The visual difference between these two scaling rates is 
highlighted in Figure 4, where the edge patterns for the Van Dusen and Koch tessellation 
designs have been isolated. This isolation of the edge patterns allows their scaling 
behavior to be analyzed using the box counting technique. Adopting this technique, the 
image of white edges is covered with a computer-generated mesh of identical squares. By 
analyzing which of the squares are occupied (i.e., contains a part of the white edge 
pattern) and which are empty, the statistical qualities of the edge pattern can be calculated. 
Specifically, if N, the number of occupied squares, is counted as a function of L, the 
square size, then for fractal behavior N(L) scales according to the power law relationship 
N(L) ~ L-D [Mandelbrot, 1982, Taylor, 2011]. The exponent D is called the fractal 
dimension and its value can be extracted from the gradient of the scaling plot of log(N) 
against log(1/L). 



 

Figure 4: The edge patterns of a) the Koch Snowflake, and b) Van Dusen’s Parched Earth 

The data for the Koch Snowflake, shown in Figure 5, displays the straight power-
law line expected for a fractal pattern. In contrast, the data for Van Dusen’s Parched 
Earth fails to condense onto a straight line. To interpret the visual significance of this 
curved line, we need to consider the importance of the fractal’s power law line, as 
quantified by the gradient D. Traditional measures of visual patterns quantify complexity 
in terms of the ratio of fine structure to course structure. D goes further by quantifying 
the relative contributions of the fractal structure at all the intermediate magnifications 
between the course and fine scales. For example, a high D value is a signature of larger N 
values at smaller L values and reflects a high visual complexity. How, then, do we 
interpret the visual impact quantified by the curved data line for Van Dusen’s Parched 
Earth? Because of its curvature, the data line can’t be quantified by a D value. 
Nevertheless, the steepness of the line holds the same visual consequences as for a fractal 
pattern. The reduction in gradient observed for the Circle Limit pattern at fine scales (i.e. 
large log (1 / L)) values generates a lower N value at those fine scales than for the fractal 
pattern. Thus, the fine structure in the Circle Limit pattern covers less space than those of 
the fractal patterns. In other words, the patterns in the Circle Limit pattern diminish in 
size (i.e. space-coverage) at a faster rate than those of the Koch Snowflake. An inspection 
of Figures 1 and 4 confirms that this is indeed the case.  



 

 

Figure 5: Scaling plots obtained from the box counting analysis of the Koch Snowflake 
(dark gray data) and Van Dusen’s Parched Earth (light gray data). The analyzed images 
had dimensions 42 cm by 42 cm and resolution of 63 pixels per cm. 

 

This is the essential visual difference between the fractal patterns of nature and 
Van Dusen’s tessellations – nature’s fractal patterns decrease at a constant rate set by the 
power law behavior, while Van Dusen’s tessellations diminish at an accelerated rate set 
by the hyperbolic surface in which his fractal patterns are embedded. This is confirmed 
by the fact that ‘pure’ hyperbolic tessellations (i.e. ones which feature simple, non-fractal 
shapes as their basic tilting component) reveal a similar scaling curve to Van Dusen’s 
hybrid tessellations [Van Dusen, 2012]. Significantly, perception experiments reveal that 
fractals with mid-range D values between D = 1.3 – 1.5 are aesthetically pleasing to the 
observer [Aks, 1996, Spehar, 2003, Taylor, 2011]. It would be interesting to extend 
studies of human perception of multi-scale stimuli to include the hyperbolic patterns of 
Escher and the hybrid patterns of Van Dusen. Based on Escher’s artistic goal of distorting 
nature’s patterns, we might expect to find interesting aesthetic preferences to be triggered 
by these curious creations.  
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