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Statistical analysis of abstract paintings is becoming an increasingly important tool for
understanding the creative process of visual artists. We present a multifractal analysis
of ‘poured’ paintings from the Abstract Expressionism and Les Automatistes move-
ments. The box-counting dimension (Dg) is measured for the analyzed paintings, as is
the associated multifractal depth AD=Dy—D_,, where D, is the asymptotic dimension.
We investigate the role of depth by plotting a ‘phase space’ diagram that examines the
relationship between Dy and D_,. We show that, although the Dg and D, values vary
between individual paintings, the collection of paintings exhibit a similar depth,
suggesting a shared visual characteristic for this genre. We discuss the visual implica-
tions of this result.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In 1945, Jackson Pollock started to perfect a radically
new approach to painting. Abandoning physical contact
with the canvas, he dipped his brush in and out of a can
and poured the fluid paint onto horizontal canvases. The
uniquely continuous paint trajectories served as artistic
‘fingerprints’ of his motions through the air. Over the next
decade, he generated vast abstract works featuring com-
plex patterns formed across many scales—from the width
of the canvas down to finest speck of paint.

In doing so, he became one of the leaders of the
Abstract Expressionist movement, which shifted the focus
of the art world from its traditional base of Paris to New
York. Pollock’s form of Abstract Expressionism inspired
the Quebec-based Les Automatistes who also adopted the
pouring style of painting. Art theorists now recognize the
“drip and pour” style as a revolutionary approach to
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esthetics. However, despite the millions of words written
about this body of work through the years, the artistic
significance behind these complex swirls of paint
remained the source of fierce debate in the art world.
One of the central questions within this debate concerned
the degree of variability between paintings by different
artists: for example, are there shared visual characteris-
tics between Pollock’s paintings and those of Les Auto-
matistes? Examples of their respective works are shown
in Figs. 1 and 2.

Fractal analysis techniques hold great promise for both
the academic and artistic communities, since these tech-
niques serve to identify underlying visual signatures in an
artwork. The fractal dimension Dr of an artwork can be
regarded as a preliminary indicator of complexity in a
pattern: lower fractal dimensions are a measure of shal-
low complexity, while higher fractal dimensions (i.e.
those which approach the dimension of the embedding
space) demonstrate high complexity. That is, a line has
fractal dimension Dg=1, while a wrapping-curve that
densely fills the plane has dimension Dg— 2. Within this
scheme, fractal paintings are quantified by Dr values in
the range 1<Dr<2, where paintings with Dg values
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Fig. 1. Reflections of the Big Dipper (1947), by Jackson Pollock. Image
progression shows section of (a) original painting, and (b) blob structure
for the black pigment layer.

closer to 1 appearing simple and sparse, and paintings
with Df values closer to 2 appearing more rich and
intricate. The multifractal spectrum takes a closer look
at this visual relationship by considering an infinite family
of fractal dimensions {Dg, =0, 1, 2 ... } that yield key
information about the degree to which complexity is
manifest in a pattern.

Motivated by these concepts, one of us (R.P.T.)
employed an established fractal analysis called the ‘box-
counting’ technique to extract Do values for Pollock’s
poured paintings [1-3]. The fractal character of Pollock’s
work was confirmed by J.RM., who also extended the

Fig. 2. The blob structure of Tumulte (1973) by Les Automatistes.

problem to the multifractal arena and extracted the full
spectrum of D values for g=0 to q— oo [4,5]. Based on this
initial research, we and a number of other groups have
since shown diverse fractal analysis techniques to be
useful approaches to quantifying the visual complexity
of Pollock’s poured patterns [6-24].

It is critical to note a fundamental limitation common
to all of these fractal analysis techniques [9,10]. Along
with nature’s fractals, art works are examples of physical
fractals and consequently have inherent upper and lower
cut-offs beyond which their fractal geometry either can-
not be resolved or does not exist. The magnification range
of nature’s physical fractals can be surprisingly small -
the typical range is only 1.25 orders — and this is an
inevitable quality of fractal art also [3]. For this reason,
we adopt the term “effective dimension” to highlight
this limited-range quality. Nevertheless, the D, values
extracted from the multifractal analysis still quantify the
associated visual complexities of the pattern [25,26].

The importance of comparing and contrasting para-
meters extracted from multiple analysis techniques was
emphasized early in this field’s development [2]. More
recently, the employment of ‘phase space’ diagrams,
generated by plotting different parameters along several
axes, was highlighted as an efficient approach to identify-
ing the trademark ‘parameter space’ for given paintings
[22]. Here, we build on earlier multi-fractal comparisons
of Pollock’s patterns with those of Les Automatistes by
constructing a phase space diagram based on the box-
counting dimension Dy and the asymptotic dimension
D... This plot is used to investigate the multifractal depth,
which is defined as AD=Dy—D,, for the art works. We
show that, although the Dy and D, values vary between
individual paintings, the collection of paintings exhibit a
similar depth, suggesting a shared visual characteristic for
the ‘poured’ genre of art. The focus of previous fractal
studies has been the search for variations between art
works by different artists, with the aim of developing
novel authenticity techniques. In contrast, the work pre-
sented here serves as a reminder that identifying shared
qualities is equally important for art history.
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2. Multifractal analysis of art
2.1. Fractals and multifractals

The “box-counting” method is a well-established tech-
nique for extracting the fractal dimension Dy for a fractal
pattern. In this approach, digitized images of paintings are
covered with a computer-generated mesh of identical
squares (or “boxes”). The statistical scaling qualities of
the pattern are then determined by calculating the pro-
portion of squares occupied by the painted pattern and
the proportion that are empty. This process is then
repeated for meshes with increasingly small square sizes.
Reducing the square size is equivalent to looking at the
pattern at finer magnification. In this way, it is possible to
compare the pattern’s statistical qualities at different
magnifications. Specifically, the number of squares, n(e),
that contained part of the painted pattern can be counted
and this is repeated as the size, &, of the squares in the
mesh was reduced. The largest size of square is chosen to
match the canvas size (for a Pollock painting this is
typically eé~2.5 m) and the smallest is chosen to match
the finest paint work (é~1 mm). For fractal behavior, n(¢)
scales according to the power law relationship n(g)~¢~".
This power law generates the scale invariant properties
that are central to fractal geometry [2,3].

Fractals are a subset of a larger class of objects known as
multifractals. While the former is described by a single
scaling dimension Dp, the latter is characterized by an infinite
number of dimensions Dy, — o0 <q < + oo, where Dy >Dg, 1
[27,28]. Multifractal dimensions with g > 0 are a measure of
the clustering complexity of a set, while those for g <0
describe the anti-clustering behavior. The g=1 multifractal
dimension is equivalent to the information dimension, while
the correlation (or mass) dimension corresponds to D,. The
standard fractal dimension is Dr=Dy, and if the set is itself
pure or “monofractal” then Dy=Dy for all g.

A multifractal is, in essence, an interspersion or over-
layering of an infinite number of monofractals character-
ized by the dimension Dy, whose clustering behavior is
dependent on the scale-size at which it is measured. The
dimension itself may be understood to be a “microscope,”
which can be tuned to higher and higher clustering
behavior for increasing q. That is, ¢ >0 provides a mea-
sure of relative (increasing) pattern density, while g <0
probes the regions of very low density (i.e. the gaps or
voids in the pattern). Note the spectra region q<0 is
similar in spirit to lacunarity analysis [29], in which the
size and frequency of void regions within a pattern is
measured as a quantification of translational invariance.

As a practical example, the physical distribution of
galaxies in the universe is believed to be multifractal (see
e.g. [30,31] for a review). Specifically, below a certain
cosmological distance scale, it has been shown that
galaxies preferentially cluster on surfaces, or sheets. But
within those sheets, a finer-tuned scale measurement
reveals filamentary clusters of galaxies. In multifractal
parlance, these would correspond to scaling dimensions
of D=2 (small q), and D=1 (larger q).

For the paintings considered herein, an equivalent
interpretation of the data would suggest scale-dependent

construction of the painting. The largest patterns, pre-
sumably created by wide-swing arm motions and move-
ment of the artist, are characterized by D, (small q), while
the finer brush motions of the wrist and fingers yield the
large q dimensionality. This is a similar interpretation to
the bi-fractal behavior discussed in [1-3].

A convenient measure of the complexity depth of a
multifractal is defined as

AD =Dy—Do, (M)

Patterns with a rich multifractal structure will have
large AD, while those with little or no variation will show
the opposite. A monofractal is characterized by AD=0.

The multifractal spectrum of dimensions is readily
calculated by a modified box counting algorithm. As
described above, the pattern is covered by N(e) boxes of
scale size ¢ of which only n(e¢) actually contain the
pattern. These contribute to the multifractal moments
[27,28],

WX ni(e)
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where p;(¢) is the relative density of the pattern contained
in the box. The logarithmic slope t(q) of the partition
function Z(q,¢) is related to the multifractal dimension Dy
by

d log[=(q,e)]

d log(e) 3

Dy= 9}, @) =lim

As with the basic box counting technique, practical
implementation of the modified box counting algorithm
generally involves digitization of the painting image and
iteratively binning pixel data into N(x;) covering boxes of
pixel width x; over a finite range of scales. These generally
range from roughly the size of the original image, to boxes
a few pixels in width. Numerical estimates of fractal and
multifractal dimensions are then obtained by linear
regression of the partition function values (2) as a func-
tion of scale size.

We note for completeness that there are numerous
other analysis methods from which the multifractal
spectrum of dimensions may be obtained. These primarily
include variations of wavelet transform procedures
[32-34], whose advantage over the box-counting techni-
que lies in a more robust estimation of a distribution’s
multifractal measure. A second adaptation of the wavelet
framework is the Wavelet Transform Modulus Maxima
(WTMM) method [35-38], a novel approach that associ-
ates to the multifractal scaling a thermodynamic descrip-
tion. A more recent technique, the wavelet leader method
[39-41], is constructed from discrete wavelet transform
coefficients, and has shown particular advantages over
other approaches in computing the multifractal spectrum
for g < 0. For consistency with previous relevant results in
the literature concerning non-representational art, we opt
to use the former (box counting) technique herein.

3. Painting analysis

A comparison was made between two groups of 5
paintings by Pollock and Les Automatistes. The Pollock
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paintings were: Blue Poles (1952), Autumn Rhythm (1950),
Lavender Mist (1950), Reflections of the Big Dipper (1947)
and Number One A 1948. Les Automatistes paintings were:
Au Chatuea d’Argol (1947), Feivres (1976), Tumulte (1973),
Voyage Au Bout du Vent (1978) and Suite Marocaine no. 1
(1975). Each painting was scanned at 300 dpi from high-
quality prints and stored in the color Portable Network
Graphics (png) format, for easy input to custom-written
multifractal analysis code. Resulting images were typi-
cally between 1000-2500 pixels on the longest side.
Pigment patterns were filtered out according to
a specified target color (Rg, Go, Bg) in RGB space
(see Figs. 1 and 2). A variance in the channel values
up to a specified “color radius” TRGB =

\/(R—Ro)2+(G—GO)2+(B—BO)2 from the target was
allowed to account for any small fluctuations in the
pigment shade. For a standard RGB color scheme with
values ranging between 0-255, a value of 30 units per
channel (rrgg ~ 52) was found to represent the true color
of a typical pigment, based on the relatively normal
distribution in each channel’s histogram [4,5]. As the
patterns are a result of monochromatic pigment deposits
we refer to them as “blobs”.

Previous research has identified the importance of the
‘anchor layer’ - the layer that dominates the construction
process and determines the D values of the other layers —
and so we concentrate on this layer for the current studies
[2,3]. For example, Fig. 1 shows the black anchor layer of
Pollock’s Reflections of the Big Dipper (1947), along with the
completed painting. For single layer paintings, such as
Tumulte (1973) by Les Automatistes shown in Fig. 2, this
single layer is equivalent to the anchor layer of the multi-
layer paintings.

The fractal dimensions of the anchor layer blob pat-
terns were calculated over roughly 3 orders of magnitude
of scale (1024 pixels to 4 pixels per side), which corre-
sponds to actual canvas length scales of approximately 1-
2m to just over a few millimeters. A standard least-
square fit was performed on the range of box count data
thus obtained. Choosing a lower box side of 2 pixels was
shown to not appreciably affect the quality or value of the
fit. Standard log-log plots of the box-counting data
showed linear fits within a 95% confidence level for a
wide range of q values, indicating the patterns definitely
exhibit scale-invariant fractal structure (the interested
reader is directed to [5] for specific details).

This scaling range is dominated by patterns generated
by the artists’ physical motions, and so we refer to the
extracted D values as “motion” dimensions, to differenti-
ate them from “drip” dimensions which concentrate on
the finest scale patterns generated by the drip process
itself [2,3]. The results are shown in Fig. 3, where a phase
space plot of Dy versus D, allows the observation of any
specific ‘parameter spaces’ for the paintings.

We begin by focusing on the Dy values alone. A one-way
analysis of variance (ANOVA) comparing the Pollock (mean
Do=1.79) with the Automatistes (Do=1.73) paintings indi-
cated that the Dy indices are not significantly different, F(1,
14)=1.18, p <30. This result suggests the Hausdorff or
monofractal dimension of poured paintings (Do), when

¢ Ppollock

B Automatistes
1.9

= Monofractal

1.3

1.2

14 15 16 17 18 19 2
Do

Fig. 3. A phase space plot of Dy along the horizontal axis and D, along
the vertical axis (see text for details).

taken in isolation, is not unique to any one artist. Consider-
ing now D, we find as expected the D values converge to
an asymptotic value as q increases, such that a reasonable
approximation Dsp~ D, can be made. A subsequent ANOVA
confirms the D_, values do not present a clearer means of
differentiation than the base dimension, F(1, 14)=0.06,
p < 80. Significantly, using the phase space diagram to
examine any emerging relationship between Dy and D,
fails to identify any distinguishing between the two groups
of painters. Thus, the phase space plot adds to previous
observations that the blob dimensions associated with the
artists painting motions cannot, when taken in isolation, be
used as an authenticity tool [2,4,5].

The phase space plot, however, succeeds in highlighting
the common elements of these two movements. In each
case, the artists generated paintings with a range of D
values, with the phase space plot suggesting that perhaps
Pollock’s work gravitated to a narrower range than that of
the Les Automatistes. Inclusion of the “monofractal” black
line, representing the condition Dy and D, reveals a
common depth of complexity AD=Dy—D,, to the multi-
fractal character of their paintings. It might be argued that
Pollock’s paintings are slightly deeper but, if so, it is clear
that the difference in depth between the two art move-
ments is of the same order as variations between individual
paintings. Depth of the multi-fractal spectrum is clearly an
important visual characteristic for both movements.

Consider the visual consequence of depth. Whereas the
fractal dimension is an intrinsic measure of the scale-
invariant complexity of a pattern, the set of multifractal of
dimensions gauges the “moments” of such complexity.
This effectively translates to the scaling properties of the
pattern density: low moment (q=0, 1, etc...) multifractal
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dimension describe the entire pattern, while high moment
(q approching infinity) focus on the densest regions. The
multifractal depth therefore is a descriptor of richness of
local and global moment-complexity. Visually, this corre-
sponds to the prevalence of small-scale intricacies in design.
An image with low depth is globally complex, but possesses
no new small-scale characteristics different from the whole
(ie. a regular fractal). High depth, on the other hand,
possesses an additional local pattern complexity at every
point, distinct from the global one.

4. Conclusions

In this paper, we have applied a multifractal analysis to
the poured paintings by distinct artists—Jackson Pollock
from the Abstract Expressionism movement and Les
Automatistes. We have used a phase space plot of Dg
plotted against D, to highlight a common depth for both
art movements. This finding is intriguing when taken
within the context of previous observations made by art
historians. Previously, the uniformity of Pollock’s “all-
over” style has been identified as key element of Pollock’s
visual style [42]. Our findings suggest a more subtle effect.
Mono-fractals generate a more uniform pattern and yet
both Pollock and Les Automatistes generated multi-fractal
works, indicating that the associated increased visual
complexity and variety is important.

We acknowledge that these results are preliminary
and may be somewhat limited by the sample size. A more
comprehensive study involving a larger number of paint-
ings may show deviations from the behavior, or may also
reveal other interesting aspects including time-depen-
dence of the multifractal depth (a result of e.g. the
evolution of a particular artist’s style). Such questions call
for future research in this area.

In addition to quantifying the common visual impact
of these fractal paintings, the depth also provides some
intriguing insights into the artistic process that generated
them. A recent study performed by the authors applied a
multifractal analysis to poured paintings created by
adults and children and found that the adult paintings
show dimensions with average dimensions of Dy=1.86
and Dso=1.82, while those for the children paintings have
lower means (Dg=1.65, D5p=1.54) and a larger depth
[24]. It is of interest to compare the corresponding mean
fractal depths of AD=0.04 for adults and AD=0.11 for
children with those highlighted by our phase space plot.
The connection between a painting’s fractal properties
and the maturity of the painter will be expanded upon in
an upcoming manuscript [43]. We hope that the initial
results presented in this paper will serve as motivation for
other researchers to adopt pattern analysis techniques
and explore the link between the visual characteristics of
action art and the physiology of the artist’s motion.
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