
Order Computer analysis is helping to explain the appeal

of Jackson Pollock’s paintings. The artist’s famous

drips and swirls create fractal patterns, similar to

those formed in nature by trees, clouds and coastlines 

By Richard P. Taylor

Chaos
in Pollock’s
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n a drunken, suicidal state on a stormy March night, Jack-
son Pollock (1912–1956) laid down the foundations of
his masterpiece Blue Poles: Number 11, 1952. He un-
rolled a large canvas across the floor of his windswept

barn and, using a wooden stick, dripped the canvas with house-
hold paint from an old can.

This was not the first time the artist had dripped a painting
onto canvas. In contrast to the broken lines painted by conven-
tional brush contact, Pollock had developed a technique in which
he poured a constant stream of paint onto horizontal canvases
to produce uniquely continuous trajectories. This deceptively
simple act polarized opinion in the art world. Was this primitive
painting style driven by raw genius, or was he simply a drunk
who mocked artistic traditions?

I had always been intrigued by Pollock’s work because, in
addition to my life as a physicist, I painted abstract art. Then,
in 1994, I decided to put my scientific career on hold and to paint

full-time. I left the physics department of the University of New
South Wales and headed off to the Manchester School of Art
in England, which had a reputation for a “sink or swim” ap-
proach to painting. In the bleak month of February, the school
packed us students off to the Yorkshire moors in the north of
England, telling us that we had one week to paint what we saw.
But a violent snowstorm made the task impossible, so I sat down
with a few friends, and we came up with the idea of making na-
ture paint for us.

To do this, we assembled a huge structure out of tree branch-
es blown down by the storm. One part of the structure acted like
a giant sail, catching the motions of the wind swirling around it.
This motion was then transferred to another part of the struc-

BLUE POLES: NUMBER 11, 1952 exemplifies Pollock’s trademark interweaving
swirls of paint, which evolved through a series of  depositions over the course
of making a painting, a period of six months in the case of Blue Poles. 
(enamel and aluminum paint on canvas, 210 cm by 486.8 cm) 
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ture that held paint containers, and these
dripped a pattern corresponding to the
wind’s trajectory onto a canvas on the
ground. As another large storm began to
move through, we decided to retreat in-
doors, leaving the structure to paint
through the night. The next day the storm
had passed—and the image it left behind
looked like a Pollock!

Suddenly, the secrets of Jackson Pol-
lock seemed to fall into place for me: he
must have adopted nature’s rhythms
when he painted. At this point, I realized
I would have to head back into science to
determine whether I could identify tangi-
ble traces of those rhythms in his artwork.

Art Anticipates Science
DURING POLLOCK’S ERA, nature was
assumed to be disordered, operating es-
sentially randomly. Since that time, how-
ever, two fascinating areas of study have
emerged to yield a greater understanding
of nature’s rules. 

During the 1960s, scientists began to

examine how natural systems, such as the
weather, change with time. They found
that these systems are not haphazard; in-
stead, lurking underneath is a remarkably
subtle form of order. They labeled this be-
havior “chaotic,” and a new scientific
field called chaos theory grew up to ex-
plain nature’s dynamics. Then, in the
1970s, a new form of geometry emerged
to describe the patterns that these chaot-
ic processes left behind. Given the name
“fractals” by their discoverer, Benoit
Mandelbrot, the new forms looked noth-
ing like traditional Euclidean shapes. In
contrast to the smoothness of artificial
lines, fractals consist of patterns that re-
cur on finer and finer magnifications,
building up shapes of immense complex-
ity. The paintings created by our branch
contraption suggested to me that the
seemingly random swirls in Pollock’s
paintings might also possess some subtle
order, that they might in fact be fractals.

A crucial feature in characterizing a
fractal pattern is the fractal dimension, or

D, which quantifies the scaling relation
among the patterns observed at different
magnifications. For Euclidean shapes, di-
mension is a simple concept described by
the familiar integer values. For a smooth
line (containing no fractal structure), D
has a value of 1; for a completely filled
area, its value is 2. For a fractal pattern,
however, the repeating structure causes
the line to occupy area. D then lies in the
range between 1 and 2; as the complexi-
ty and richness of the repeating structure
increase, its value moves closer to 2.

To figure out how all this might apply
to Pollock’s paintings, I went back to my
lab at New South Wales, where I turned
to the computer for help in quantifying the
patterns on his canvases. It would have
been impossible to perform this kind of
analysis without the precision and com-
putational power provided by such equip-
ment. So I enlisted two colleagues who
had special computer expertise—Adam
Micolich, who was researching fractal
analysis techniques for his doctorate in
semiconductor devices, and David Jonas,
an expert in image-processing techniques.

We started our investigation by scan-
ning a Pollock painting into the comput-
er [see opposite page]; we then covered it
with a computer-generated mesh of iden-
tical squares. By analyzing which squares
were occupied by the painted pattern and
which were empty, we were able to cal-
culate the statistical qualities of the pat-
tern. And by reducing the square size, we
were able to look at the pattern at what
amounts to a finer magnification. Our
analysis examined pattern sizes ranging
from the smallest speck of paint up to ap-
proximately a meter. Amazingly, we
found the patterns to be fractal. And they
were fractal over the entire size range—

the largest pattern more than 1,000 times
as big as the smallest. Twenty-five years
before their discovery in nature, Pollock
was painting fractals.

The Aesthetic Pull 
of Fractals
TAKING THIS SURPRIS ING finding a
step further, I wondered whether the frac-
tal nature of Pollock’s paintings might
contribute to their appeal. Only within
the past decade have researchers begun to
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■  Fractal geometry developed from Benoit Mandelbrot’s studies of complexity in
the 1960s and 1970s. Mandelbrot coined the term “fractal” from the Latin
fractus (“broken”) to highlight the fragmented, irregular nature of these forms.

■  Fractals display self-similarity—that is, they have a similar appearance at any
magnification. A small part of the structure looks very much like the whole.

■  Self-similarity comes in two flavors: exact and statistical. The artificial tree 
(left series) displays an exact repetition of patterns at different magnifications.
For the real tree (right), the
patterns don’t repeat exactly;
instead the statistical
qualities of the patterns
repeat. Most of nature’s
patterns obey statistical 
self-similarity, and so do
Pollock’s paintings.

■  Fractals are characterized in
terms of their “dimension,” or
complexity. The dimension is
not an integer, such as the 1, 2
and 3 dimensions familiar from
Euclidean geometry. Instead
fractal dimensions are
fractional; for example, a
fractal line has a dimension
between 1 and 2. REAL TREE 

Statistical  Self-Similarity
ARTIFICIAL TREE 
Exact Self-Similarity

A Brief History of Fractals
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ANALYZING POLLOCK’S TECHNIQUE

The evolution in D value had 
a profound effect on the
appearance of the paintings.
For fractals described by a low
D, the repeating patterns build 

3Studying the paintings
chronologically showed that

the complexity of the fractal
patterns, D, increased as
Pollock refined his technique.
One D value is clearly an
outlier—1.9 in 1950, a work
that Pollock later destroyed
(the analysis is based on a
photograph). He may have
thought this image was too
dense or too complex and
subsequently scaled back.

COMPUTER-ASSISTED ANALYSIS
of Pollock’s paintings reveals
that the artist built up layers of
paint in a carefully developed
technique that created a dense
web of fractals. Pollock was
occasionally photographed
while painting [see illustration
on page 121], which gave me
and my colleagues Adam
Micolich and David Jonas more
insight into his technique.

Autumn Rhythm, 1950, oil on canvas, 266.7 cm by 525.8 cm
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1.91We began by scanning a
painting into a computer. We

could then separate the painting
into its different colored patterns
and analyze the fractal content
of each pattern. We also looked at
the cumulative pattern as the
layers were added one by one to
build the total picture. A detail
from the black layer of Autumn
Rhythm is shown at the right. 

a smooth, sparse image. If the 
D value is closer to 2, however,
the repeating patterns create a
shape full of intricate, detailed
structure. 

WHAT EMERGES FROM BOTH the computer analysis and the exam-
ination of the photographs is evidence of a very systematic, deliberate
painting process. Pollock started by painting small, localized
“islands” of trajectories across the canvas. This is interesting
because some of nature’s patterns start with small nucleations that
then spread and merge. He next painted longer, extended trajectories
that linked the islands, gradually submerging them in a dense fractal
web of paint. This stage of the painting formed an anchor layer: it
actually guided the artist’s subsequent painting actions. During the

linking process, the painting’s complexity (its D value) increased over
a timescale of less than a minute. After this rapid activity, Pollock
would take a break. He would then return to the canvas, and over a
period lasting from two days to six months, he would deposit further
layers of different-colored trajectories on top of the black anchor
layer. Essentially, he was fine-tuning the complexity established by
the anchor layer. Even when Pollock had finished painting, he took
steps that maximized the fractal character, cropping to remove the
outer regions where the fractal quality deteriorated.  —R.P.T.

2We covered the painting with
a computer-generated mesh

of identical squares. We then had
the computer assess the
statistical qualities of the pattern
by analyzing which squares are
occupied by the pattern (blue)
and which are empty (white).
Reducing the mesh size (bottom)
is equivalent to looking at the
statistical qualities of patterns
at a finer magnification. We
found the patterns to be fractal
over the entire size range. 

® M E T R O P O L I T A N  M U S E U M  O F  A R T ,  N E W  Y O R K ,  © 2 0 0 2  P O L L O C K - K R A S N E R  F O U N D A T I O N / A R T I S T S  R I G H T S  S O C I E T Y  ( A R S ) ,  N E W  Y O R K  ( A u t u m n  R h y t h m ) ;  C O U R T E S Y  O F  R I C H A R D  P .  T A Y L O R
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o f  N u m b e r  3 2 ,  1 9 5 0  [ D  =  1 . 6 ] ) ;  H A N S  N A M U T H  A N D  P A U L  F A L K E N B E R G ,  © M U S E U M  O F  M O D E R N  A R T  A N D  H A N S  N A M U T H ,  L T D .  ( d e t a i l  o f  p a i n t i n g  f r o m  1 9 5 0 ,  n o  l o n g e r  e x i s t s  [ D  =  1 . 9 ] )
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investigate visual preferences for fractal
patterns. Using computer-generated frac-
tals of various D values, Clifford A. Pick-
over of the IBM Thomas J. Watson Re-
search Center found that people expressed
a preference for fractal patterns with a
value of 1.8. Then, generating fractals by
a different computer method, Deborah J.
Aks and Julien C. Sprott of the Universi-
ty of Wisconsin–Madison came up with

much lower preferred values of 1.3. Al-
though the discrepancy might indicate
that no D value is preferred over any oth-
er—that instead the aesthetic quality of
fractals depends on how the fractals are
generated—I suspected the existence of a
universally preferred value.

To see whether I was correct, I again
sought assistance from experts—this time
psychologists who study visual percep-

tion. Working with Branka Spehar of the
University of New South Wales, Colin
Clifford, now at the University of Sydney,
and Ben Newell of University College
London, I investigated three fundamental
categories of fractals: natural (such as
trees, mountains and clouds), mathemat-
ical (computer simulations) and human
(cropped sections of Pollock’s paintings).
In visual perception tests, participants con-

ALL DRIP PAINTINGS ARE NOT CREATED EQUAL
ARE FRACTALS an inevitable
consequence of dripping
paint? No. Consider the drip
painting at the right, which is
not a Pollock. Working with
Ted P. Martin of the University
of Oregon, I applied our
computer analysis technique
[see box on preceding page]
to the image, examining its
complexity at finer and finer
magnifications. We found that
the patterns at different
magnifications were not
described by the same
statistics; in other words,
they were not fractal. Indeed,
when the painting was
magnified, we could see that
the dripped lines quickly ran
out of structure (left series
below). As a consequence, the

pattern at high magnification
looked very different from
that at low magnification. A
Pollock painting (right series),
in contrast, displays the same
general qualities when viewed
at different magnifications,
regardless of the location and
sizes of the segments chosen.
The same magnification
sequence was used for both
paintings.

Because the statistical
qualities of fractals repeat at
different magnifications, D
will not change over the
various magnifications. It
remains constant for the
Pollock painting (red in graph
below), whereas for the non-
Pollock (yellow), it varies with
pattern size, confirming that

the painting is not fractal. My
colleagues and I examine pattern
sizes up to one meter but
concentrate on sizes ranging
from one to 10 millimeters,
because we have found that this
is the most sensitive region for
distinguishing between a Pollock
and a non-Pollock. 

We have also analyzed five
drip paintings sent to us by
collectors who suspected their
acquisitions might have been
created by Pollock. Despite
superficial similarities with
Pollock’s work, none of the
paintings contained fractal
patterns. The fractals are the
product of the specific
technique Pollock devised, and
all the 20 drip paintings of his
that we have analyzed have
this fractal composition. We
could therefore conclude that
each of the five paintings sent

to us for analysis was produced
by someone other than Pollock.
Fractality, then, offers a
promising test for authenticating
a Pollock drip painting. Further,
because the D value of the
artist’s work rose through the
years, following a rather
predictable trend, the analysis of
the fractals can also be applied
to date an authentic Pollock
painting. —R.P.T.
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Non-Pollock drip painting, vinyl paint on canvas, 244 cm by 122 cm

Non-Pollock drip painting Pollock’s Number 32, 1950

Pollock’s Number 32
Non-Pollock shown above
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sistently expressed a preference for D val-
ues in the range of 1.3 to 1.5, regardless of
the pattern’s origin. More recently, I
teamed up with psychologist James A.
Wise of Washington State University, and
we showed that this visual appreciation
has an effect on the observer’s physiolog-
ical condition. Using skin conductance
tests to measure stress levels, we found that
midrange D values also put people at ease.
Of course, these inquiries are just a begin-
ning; still, it is interesting to note that many
of the fractal patterns surrounding us in
nature have D values in this same range—

clouds, for example, have a value of 1.3.

What is the D value of Pollock’s work?
Interestingly, the value increased over the
decade that he made drip paintings, from
1.12 in 1945 up to 1.7 in 1952 and even
up to 1.9 in a painting that Pollock de-
stroyed. It is curious that Pollock would
have spent 10 years refining his drip tech-
nique to yield high-D fractals if people
prefer low-range to midrange values. The
increased intricacy of high D values, how-
ever, may engage the attention of viewers
more actively than the “relaxing” mid-
range fractals and thus may have been in-
tuitively attractive to the artist. My cur-
rent work at the University of Oregon is

addressing this possibility, using eye-
tracking apparatus to examine the way
people look at fractals and at Pollock’s
paintings.

Clearly, the computer’s expertise in
detecting the fundamental characteristics
of painted patterns offers art historians
and theoreticians a promising new tool. It
will join infrared, ultraviolet and x-ray
analysis, which art experts already em-
ploy routinely, in a growing collection of
scientific methods for investigating such
features of art as the images hidden un-
derneath subsequent layers of paint. Per-
haps it may even be able to throw a nar-
row beam of light into those dim corners
of the mind where great paintings exert
their power.
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POLLOCK, shown above with Lee Krasner in 1950 while at work on One, famously said, “My concern is with
the rhythms of nature.” At the right, from top to bottom, are the natural patterns created by seaweed,
Pollock’s 1947 painting Full Fathom Five, and the author’s “accidental Pollock,” produced by a windstorm.

The Fractal Geometry of Nature. B. B. Mandelbrot. W. H. Freeman and Company, 1977.
Chaos. James Gleick. Penguin Books, 1987.
Comet: Jackson Pollock’s Life and Work. Kirk Varnedoe in Jackson Pollock, by Kirk
Varnedoe, with Pepe Karmel. Museum of Modern Art, 1998.
Splashdown. R. P. Taylor in New Scientist, Vol. 159, No. 2144, page 30; July 25, 1998.
Fractal Analysis of Pollock’s Drip Paintings. R. P. Taylor, A. P. Micolich and 
D. Jonas in Nature, Vol. 399, page 422; June 3, 1999.
Architect Reaches for the Clouds. R. P. Taylor in Nature, Vol. 410, page 18; 
March 1, 2001.

M O R E  T O  E X P L O R ERICHARD P. TAYLOR began puzzling over the paintings of
Jackson Pollock while head of the condensed-matter
physics department at the University of New South Wales
in Australia. He is now a professor of physics at the Uni-
versity of Oregon, where he continues his analysis of 
Pollock’s work and investigates chaos and fractals in a
variety of physical systems. He also has a master’s de-
gree in art theory, with a focus on Pollock, from the Uni-
versity of New South Wales.
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