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Abstract

Jackson Pollock’s paintings are currently valued up to US$75 M, triggering discussions that attributation procedures featuring sub-
jective visual assessments should be complimented by quantitative scientific procedures. We present a fractal analysis of Pollock’s pat-
terns and discuss its potential for authenticity research.
� 2006 Published by Elsevier B.V.
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1. Introduction

In March 1952, Jackson Pollock (1912–1956) laid down
the foundations of his masterpiece Blue Poles: Number 11,
1952 by rolling a large canvas across his studio floor and
dripping fluid paint from an old can with a wooden stick
(Varnedoe, 1998). The painting, shown in Fig. 1, represents
the culmination of 10 years of development of his ‘‘pour-
ing’’ technique. In contrast to the broken lines painted by
conventional brush contact with the canvas surface, Pol-
lock poured a constant stream of paint onto his horizontal
canvases to produce continuous trajectories. Twenty years
later, when the painting sold for US$2 M, only works by
Rembrandt, Velázquez and da Vinci commanded higher
prices. Pollock’s works continue to grab attention, as wit-
nessed by the success of the retrospectives during 1998–
1999 when prices of US$40 M were discussed for Blue

Poles: Number 11, 1952. As the commercial worth of Pol-
lock’s paintings continue to soar, judgments of authenticity
have become increasingly critical. If a poured painting of
unknown origin is found, such as the one shown in
Fig. 2, what methods should be employed to decide if it
0167-8655/$ - see front matter � 2006 Published by Elsevier B.V.

doi:10.1016/j.patrec.2006.08.012

* Corresponding author. Tel.: +1 541 346 4741; fax: +1 541 346 5861.
E-mail address: rpt@darkwing.uoregon.edu (R.P. Taylor).
is a long-lost masterpiece or a fake? When dealing with
such staggering commercial considerations, subjective
judgments attempting to identify what art scholars call
the ‘‘hand’’ of the artist – the tell tail visual trademarks –
may no longer be fully adequate. In particular, subjective
judgments have become increasingly difficult to defend
against potential litigation (Spencer, 2004). What is becom-
ing clear is that subjective assessments should be coupled
with more quantitative and objective scientific investi-
gations.

Unification of artistic and scientific investigations is not
a new proposal for authenticity research. Investigations of
paintings of unknown origin often call on a diverse range
of consultants. From the arts, provenance studies (where
an art historian judges the painting’s history relative to
known facts about the artist) are coupled with connoisseur-
ship (where an art expert compares a visual inspection of
the painting with the catalog of known paintings). From
the sciences, a range of techniques can be employed to date
or determine the material composition of the paint, canvas
and frame (Coddington, 1999; McCrone, 2001; Spencer,
2004). For many artists, this combination of research tools
yields compelling evidence for attributing paintings. Unfor-
tunately, Pollock’s unique history adds uncertainty to these
studies. For example, financial success arrived late in his
life, forcing him to barter paintings (Naifeh and Smith,
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Fig. 2. A poured painting of unknown origin (enamel on canvas,
64.0 cm · 101.6 cm) submitted by a private collector for fractal analysis.

Fig. 1. Blue Poles: Number 11, 1952 (enamel and aluminum paint on
canvas, 210.4 cm · 486.8 cm) was painted by Pollock in 1952 (The
National Gallery of Australia, Canberra, Australia). � 2006 The
Pollock-Krasner Foundation/ Artists Rights Society (ARS), New York.
Reproduction, including downloading of Pollock works is prohibited by
copyright laws and international conventions without the express permis-
sion of the Artists Rights Society, New York.
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1989; Potter, 1985). These casual, unrecorded exchanges of
paintings create a challenge for provenance judgments –
long-lost Pollock paintings may exist where a clear histor-
ical link between the artist and the current owner is beyond
trace. Furthermore, Pollock was the subject of unprece-
dented publicity at his peak, including a film documentary
(Namuth, 1980) that exposed his pouring technique to the
public. The resulting wave of Pollock imitators is well doc-
umented and provides proof of the existence of non-Pol-
lock poured paintings dating from Pollock’s era and
composed using similar paints and canvases. This limits sci-
entific techniques that aim to distinguish paintings based
on material composition and age. These complications
emphasize the importance of scientific pattern analysis
for authenticity research.

In this Letter, we build on our earlier discovery that his
poured trajectories are composed of fractal patterns (Tay-
lor et al., 1999a,b). Whereas our initial studies featured a
computer analysis of five paintings, subsequent investiga-
tions by ourselves and others (Mureika et al., 2005; Mure-
ika, 2005) have examined 50 Pollock paintings to date, all
of which have been shown to be fractal. We previously
described his style as ‘‘Fractal Expressionism’’ to distin-
guish it from computer-generated fractal art (Taylor
et al., 1999b). Fractal Expressionism indicates an ability
to generate and manipulate fractal patterns directly. The
discovery raised a critical question that triggered consider-
able debate: how did Pollock manage to paint such intri-
cate fractal patterns, so precisely, and do so 25 years
head of their scientific discovery in Nature? Some art schol-
ars interpreted these achievements in terms of remarkable
artistic talent, while others proposed that fractals are per-
haps an inevitable consequence of pouring paint. Here we
present evidence showing that fractals arise from the spe-
cific pouring technique developed by Pollock. We consider
whether this ability is unique to Pollock and explore the
potential of fractal analysis techniques as an authenticity
tool. First, we present a fractal analysis procedure called
‘‘Dimensional Interplay Analysis’’ and apply it to 14 paint-
ings selected from Pollock’s catalog to represent the variety
of his poured work. Based on this research, we identify a
precise and highly distinguishable set of fractal characteris-
tics. Secondly, we analyze 37 poured paintings generated
by students and also 14 poured paintings of unknown ori-
gin (submitted by private collectors in the USA who believe
the paintings to date from the Pollock era), and show that
none of these paintings exhibit the set of fractal characteris-
tics identified in Pollock’s paintings. We discuss the implica-
tions of these results for authenticity research and consider
the extent to which this fractal analysis might be extended
to abstract and figurative paintings by other artists.

2. Fractal analysis

2.1. Fractal analysis of Pollock paintings

What is the identifying ‘‘hand’’ of Pollock? His poured
patterns stand in sharp contrast to the straight lines, trian-
gles and the wide range of other artificial shapes belonging
to Euclidean geometry. Instead, his poured paintings are
frequently described as ‘‘organic’’, suggesting that they
allude to Nature. Since its introduction in the 1970s, fractal
geometry has experienced remarkable success in describing
the underlying patterns of many of nature’s objects, includ-
ing coastlines, clouds, flames, lightning, trees and mountain
profiles (Barnsley, 1992; Gouyet, 1996; Mandelbrot, 1977).
In contrast to the smoothness of Euclidean shapes, fractals
consist of patterns that recur on finer and finer magnifica-
tions, building up shapes of immense complexity. Given the
‘‘organic’’ appearance of Pollock’s paintings (Potter, 1985),
the first step towards identifying the ‘‘hand’’ of Pollock is
to adopt the pattern analysis techniques used to identify
fractals in Nature’s scenery and apply the same process
to his canvases. Nature’s fractals obey statistical self-simi-
larity – the patterns observed at different magnifications,
although not identical, are described by the same spatial
statistics (Mandelbrot, 1977). To detect statistical self-sim-
ilarity, a scanned photographic image of the painting is
covered with a computer-generated mesh of identical
squares. By analyzing which of the squares are ‘‘occupied’’
(i.e., contains a part of the painted pattern) and which are
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‘‘empty’’, the statistical qualities of the pattern can be cal-
culated. Reducing the square size in the mesh is equivalent
to looking at the pattern at a finer magnification. Thus, in
this way, the painting’s statistical qualities can be com-
pared at different magnifications.

As an example, we consider the analysis of Blue Poles:
Number 11, 1952 (actual size 210.4 cm · 486.8 cm), for
which we use a 42.0 cm · 97.4 cm high-resolution print of
the painting as the source image. Our current analysis pro-
cedures employ an HP Designjet 815mfp scanner, which
allows such an image to be scanned using a one step
process. We note, however, for the results reported in this
Letter, the scanner’s window size was limited to 30.0 cm ·
42.0 cm, necessitating a two-step procedure as follows.
First, a 30.0 m · 42.0 cm section of the print was scanned
at 600dpi, creating a 24 bit color bitmap image with 9921
pixels across the length. The analysis of this image exam-
ines pattern sizes ranging from the smallest speck of paint
(1 mm on the canvas) up to sizes matching the height of the
canvas (210.4 cm). Within this size range, the analysis is
not affected by image resolution limits, such as those asso-
ciated with scanning procedures. For example, the pixel
separation after scanning corresponds to a physical size
of 0.2 mm on the canvas, and thus the smallest painted pat-
tern spans five pixels. A visual inspection confirms that the
smallest analyzed pattern (1 mm) is resolved. To analyze
patterns across size scales larger than the canvas height
of 210.4 cm, including those spanning the entire canvas
length of 486.8 cm, a smaller print (18.1 cm · 42.0 cm)
was required in order to fit the painting’s full image within
the length of the scanner window (42.0 cm). Employing
these two sets of analysis, we find that the largest observed
fractal pattern is over one thousand times larger than the
smallest pattern (see below) (Taylor et al., 1999a,b). This
size range is significantly larger than for typical observa-
tions of fractals in other physical systems (where the largest
patterns are typically just 25 times larger than the smallest
pattern) (Avnir et al., 1998). A consequence of observing
the fractal patterns over such a large size range is that
parameters that characterize the fractal statistics can be
determined with accuracy.

2.2. Fractal dimensions of Pollock paintings

A crucial parameter for characterizing a fractal pattern
is the fractal dimension, D, and this quantifies the scaling
relationship between the patterns observed at different
magnifications (Mandelbrot, 1977). For Euclidean shapes,
dimension is a simple concept and is described by the famil-
iar integer values. For a smooth line (containing no fractal
structure) D has a value of 1, while for a completely filled
area its value is 2. However, the repeating structure of a
fractal line generates a non-integer D value that lies in
the range between 1 and 2 (Schroeder, 1991). A fractal pat-
tern’s D value can be determined by applying the well-
established ‘‘box-counting’’ technique (Gouyet, 1996) to
the computer-generated mesh of squares discussed above.
Specifically, if N, the number of occupied squares (or
‘‘boxes’’), is counted as a function of L, the square size,
then for fractal behavior N(L) scales according to the
power law relationship N(L) � L�D (Gouyet, 1996; Man-
delbrot, 1977). This power law generates the scale invariant
properties that are central to fractal geometry. The D
value, which charts this scale invariance, can be extracted
from the gradient of the ‘‘scaling plot’’ of log(N) plotted
against log(L). The standard deviation associated with fit-
ting the data to the fractal scaling behavior is such that
D can be determined to an accuracy of two decimal places.
The D value can be confirmed using a derivative analysis of
the scaling plots (Taylor, 2002). To confirm the reliability
of the whole (scanning and analysis) procedure, we gener-
ate a set of computer-generated test patterns, including
Euclidean and fractal shapes. These test patterns are
printed at a resolution matching the source image of the
paintings, and then scanned and analyzed using the proce-
dure outlined above. A comparison of the measured D val-
ues with the known values for these test patterns confirms
the accuracy of the procedure.

We adopt two commonly used magnification procedures
to construct the scaling plots and find them to be consis-
tent. For the first procedure, the square size L is reduced
iteratively using the inverse expression L = H/n, where H

is the canvas size and n is the number of iterations
(n = 1,2,3, . . .). For the second procedure, the exponential
expression L = HC�n (where C is a selected magnification
factor) is applied iteratively. The first procedure has the
advantage of generating a larger number of data points,
while the second procedure reduces computation time
and produces equally spaced points across the resulting
log–log scaling plot. For both procedures, the validity of
the counting procedure increases as L becomes smaller
and the total number of boxes in the mesh is large enough
to provide reliable counting statistics (Gouyet, 1996). In
typical scaling plots of Pollock’s canvases, the large num-
ber of boxes in the mesh ensures reliable counting statistics
across the entire range of analyzed size scales. Consider, for
example, the mesh of squares covering the full image of
Blue Poles: Number 11, 1952. The smallest box size of
L = 1 mm corresponds to 16 million boxes across the can-
vas. The coarsest length scale analyzed is set to ensure that
the number of boxes does not become too limited at large L

values. For Blue Poles: Number 11, 1952, this is set at
L = 30 cm, which corresponds to approximately one six-
teenth of the canvas length and 112 boxes in the mesh.
We note, however, that for some paintings well-defined
fractal scaling behavior has been observed up to L values
corresponding to 50 boxes in the mesh before significant
scatter emerges in the scaling plot data.

A scaling plot resulting from a box-counting analysis
performed on Blue Poles: Number 11, 1952 is shown in
Fig. 3(a). The plot of N against L, on log–log (base 10)
axes, is generated using the magnification expression
L = H C�n (where C = 1.1 and H = 1052 mm). This pro-
duces 54 data points in the range of L shown, compared



Fig. 3. Box-counting analyses of (a) the aluminum layer of the painting
Blue Poles: Number 11, 1952 shown in Fig. 1; (b) the black layer of a
painting generated by an art student; (c) the black layer of the painting of
unknown origin shown in Fig. 2.
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to over 1000 points generated from the equivalent inverse
expression L = H/n (Taylor et al., 1999b). For small sizes
the scaling plot follows one straight line (and hence one
D value) and then crosses over to another straight line of
a different gradient at the transition size marked LT. We
note that this multi-fractal behavior, for which the scaling
plots are characterized by two distinct scaling regimes, is
expected from the studies of the physical processes used
by Pollock (to be discussed in Section 2.4) and is also
observed in certain natural fractals (in particular, tree
forms). We label the dimensions extracted from the two
gradients the drip fractal dimension, DD, and the Lévy
fractal dimension, DL (see below for an explanation of
nomenclature). An iterative fitting procedure uses DD, DL
and LT as adjustable parameters to minimize the standard
deviation, sd, of the data from the two linear fit lines. For
the fit shown in Fig. 3(a), the values of DD = 1.63,
DL = 1.96 and LT = 1.8 cm produce sd = 0.020. At larger
scales, approaching L � 50–100 cm (the size depends on
the painting), the painting ‘‘space fills’’ (i.e., all the boxes
in the mesh are occupied) and, as a consequence, the gradi-
ent shifts to D = 2. If a painting has a low DL value, this
second transition to D = 2 will be clear in the scaling plots.
This is not the case for paintings with high DL values (as is
the case for Fig. 3(b)), and the transition length is instead
determined by examining the box size below which empty
boxes start to occur.

We introduce the term ‘‘Dimensional Interplay Analy-
sis’’ (DIA) to describe this technique of charting the inter-
play of fractal parameters across distinct size scales. The
technique can be used to identify the precise trademark
behavior of Pollock’s patterns (see Section 2.5). Of the 50
Pollock paintings that have undergone a ‘‘box-counting’’
analysis, we have applied this more detailed DIA to the fol-
lowing paintings: Untitled (1945), Lucifer (1947), Full

Fathom Five (1947), Number 14, 1948 (1948), Figure
(1948), Number 23, 1948 (1948), Number 8, 1949 (1949),
Number 27, 1950 (1950), Number 32, 1950 (1950), Autumn

Rhythm: Number 30 (1950), Unknown (1950), Untitled

(1951), Blue Poles: Number 11, 1952 (1952) and Conver-

gence: Number 10, 1952 (1952) (on-going analysis). This
collection of paintings was selected to cover the diversity
of Pollock’s poured work, ranging from one of his smallest
paintings (57.4 cm · 78.4 cm of Number 23, 1948) to one of
his largest canvases (266.7 · 525.8 cm of Autumn Rhythm:
Number 30, 1950), and paintings created using different
paint media (enamel, aluminum, oil, ink and gouache)
and supports (canvas, cardboard, paper and glass).

2.3. De-construction of Pollock paintings

Many of Pollock’s paintings feature a number of differ-
ent colored layers of paint. These paintings are electroni-
cally deconstructed into their constituent colored layers
and a box-counting analysis is performed on each layer.
For example, for Blue Poles: Number 11, 1952, six layers
were extracted for analysis (blue–black, aluminum, gray,
light yellow, dark yellow and orange) and Fig. 3(a) shows
the box-counting analysis of the aluminum layer. The color
separation is performed by identifying the RGB range (on
a scale of 0–255 for each of the red, green and blue chan-
nels) of the color variations within each layer and then fil-
tering accordingly. For these multi-colored paintings, we
emphasize that the layers are interactive in character – as
the trajectories of one layer were deposited they obscured
parts of the underlying layers’ patterns. The analyzed pat-
terns therefore correspond to those seen by the observer of
the complete painting rather than the patterns as they were
deposited. Of the 14 paintings listed above, 9 are multi-
layer paintings (a proportion that is approximately repre-
sentative of Pollock’s catalog of poured paintings). In total,
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32 layers have been extracted from the 14 paintings. Mea-
sured sd values lie in the range 0.009 < sd < 0.027, with a
mean value of 0.019 and a standard deviation from this
mean of 0.004. We note that sd decreases with canvas size:
for example, the average sd value for the layers of Autumn

Rhythm: Number 30, 1950 (canvas area of 140,200 cm2) is
0.020, compared to 0.010 for Number 23, 1948 (canvas area
of 4508 cm2).

Having separated the component colored layers and
shown each of the analyzed layers to be fractal, some of
the paintings have then been ‘‘re-constructed’’ by re-incor-
porating the layers to build the complete pattern. As each
of the colored layers is re-incorporated, the two fractal
dimensions, DD and DL, of the overall painting rise (Tay-
lor, 2000, 2003). Thus the combined pattern of many colors
has higher fractal dimensions than any of the single layer
colors. For example, the fractal dimensions of the alumi-
num layer of Blue Poles: Number 11, 1952 are DD = 1.63
and DL = 1.96, compared to the higher values of
DD = 1.72 and DL = 2 for the complete painting. The DD

value of the complete painting is a particularly sensitive
parameter for investigating the poured paintings. By ana-
lyzing Pollock’s poured paintings over a decade (from
1943 to 1952) we can use DD to quantify the evolution in
his fractal patterns, as shown in Fig. 4. Art theorists cate-
gorize the evolution of Pollock’s pouring technique into
three phases (Varnedoe, 1998). In the ‘‘preliminary’’ phase
of 1943–1945, his initial efforts are characterized by low DD

values. An example is the fractal pattern of the painting
Untitled from 1945, which has a DD value of 1.12. During
his ‘‘transitional phase’’ from 1945 to 1947, he started to
experiment with the pouring technique and his DD values
rose sharply (as indicated by the first gradient in Fig. 4).
In his ‘‘classic’’ period of 1948–1952, he perfected his tech-
nique and DD rose more gradually (second gradient in
Fig. 4) to the value of DD = 1.7. An example is Autumn

Rhythm: Number 30, 1950. During his classic period he also
Fig. 4. Fractal dimension DD plotted as a function of the year the pattern
was painted by Pollock. The two lines serve as guides to the eye (see text
for details). Sections of Pollock’s paintings are shown as examples of
fractal patterns with different D values. Top to bottom: Untitled, 1950
(DD = 1.89), the black layer of Autumn Rhythm: Number 30, 1950, 1950
(DD = 1.66), the black layer of Untitled, 1945 (DD = 1.12).
painted Untitled, which has an even higher DD value of
1.89. However, he immediately erased this pattern (it was
painted on glass), prompting the speculation that he
regarded this painting as too complex and immediately
scaled back to paintings with DD = 1.7. This suggests that
his 10 years of refining the pouring technique were moti-
vated by a desire to generate fractal patterns with
DD � 1.7. We note the potential use of the graph shown
in Fig. 4 for establishing an approximate date for authentic
Pollock paintings.

2.4. The fractal generation process

Having identified the precise fractal characteristics of
Pollock’s paintings, we now address whether these charac-
teristics and the processes that generated them are unique
to Pollock. Our previous fractal analysis of the film and
photographs of Pollock (recording the evolution of his
paintings at different stages of completion) reveals a
remarkably systematic process (Taylor et al., 2003). He
started by painting localized islands of trajectories (approx-
imately 50–100 cm in size) distributed across the canvas,
followed by longer extended trajectories that joined the
islands, submerging them in a dense fractal web of paint.
This process was swift with the fractal dimensions of the
painting rising sharply in a time frame of several minutes
(Taylor et al., 2003). Over an extended period of time
(six months in the case of Blue Poles: Number 11, 1952),
he would then deposit the extra layers of different colored
paint on top of this initial ‘‘anchor’’ layer. During this final
stage he appeared to be fine-tuning the D values, with val-
ues sometimes rising by less than 0.05. This deliberate,
refined process raises the possibility that fractals are not
an inevitable consequence of pouring paint but are instead
the result of Pollock’s specific pouring technique (Taylor
et al., 2003).

This speculation is supported by an analysis of the phys-
ical processes used by Pollock to generate the two sets of
fractal patterns described by DD and DL. Studies of the film
and still photography (Taylor et al., 1999b; Taylor, 2000,
2003) show that the small scale patterns quantified by DD

were predominantly generated by the pouring process –
the dynamics of the fluid paint as it fell though the air
and interacted with the canvas. The larger scale patterns
described by DL were predominantly shaped by Pollock’s
motion. The potential of these two processes to generate
fractals depends critically on parameters relating to Pol-
lock’s painting technique (Taylor et al., 1999b; Taylor,
2000, 2003). It is well established that falling fluid can
decompose into a sequence of fractal droplets (Shi et al.,
1994). In Pollock’s case, formation of fractal droplets
would depend on the paint viscosity and the manner in
which he ‘‘launched’’ the paint from his painting imple-
ment. If, for example, the paint was too fluid, or the drop
distance was too short, then fractal drops would not form.
Similarly, fractals permeate human motion only under spe-
cific conditions. Our preliminary research indicates that



Fig. 5. An example of a poured painting generated by a student
(61.6 cm · 91.5 cm).
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human motion displays characteristics of fractal ‘‘Lévy
flights’’ (Taylor, 2004) when people restore their balance.
This suggests that perhaps Pollock’s motions were per-
formed in a state of controlled ‘‘off-balance’’, and that he
deliberately tuned into the fractal behavior of this underly-
ing physiological process. This motion produced fractal
trajectories that linked together the islands in the underly-
ing anchor layer. In general, Pollock did not paint trajecto-
ries longer than the island size of approximately 100 cm,
and consequently at larger scales the painting is non-fractal
with D = 2.

In summary, the emerging science of his painting pro-
cess suggests that Pollock’s fractals are the product of the
parameter conditions chosen by the artist. This is con-
firmed by our analysis of the patterns of paint found on
Pollock’s studio floor. These patterns, created by the paint
that missed the canvas, are not fractal, emphasizing that
Pollock’s fractals were a direct consequence of the way that
he aimed the paint at the canvas – the fractals were a prod-
uct of Pollock’s compositional technique. The concept that
poured paintings are not inevitably fractal is further sup-
ported by our studies in which a chaotic pendulum was
employed to pour paint onto a horizontal canvas (Taylor,
1998, 2003). When the chaos in the swinging motion was
suppressed, the resulting poured paintings were devoid of
fractal content (Taylor, 2002).

2.5. Fractal analysis of poured paintings not attributed to

Pollock

Fractal patterns are therefore the product of the specific
technique Pollock used to pour paint and all of the ana-
lyzed poured paintings have this fractal composition. In
fact, the ‘‘hand’’ of Pollock is more specific than fractality
– through our empirical study, we can identify the specific
trademark features of Pollock’s abstract paintings. These
trademarks combine to have a profound impact on the
visual character of his work and are summarized as fol-
lows: (1) Pollock paintings are composed of two sets of
fractal patterns (generated by the pouring process and his
body motions). (2) These fractal patterns occur over dis-
tinct length scales. In particular, although the transitional
length scale LT varies between Pollock paintings (depend-
ing on factors such as canvas size), the transition satisfies
LT P 1 cm. (3) Each set of fractal patterns is well described
by a fractal dimension extracted from the gradient of the
log–log scaling plot. (4) The condition DL > DD is always
satisfied. (5) The quality of the fits of the scaling plot data
to the above characteristics is high. Measured sd values
never exceed 0.027, with lower sd values down to 0.009
measured for the smallest paintings. (6) If the painting is
composed of a number of colored layers, each of the ana-
lyzed layers satisfies the previous five criteria.

To examine the extent to which this set of fractal char-
acteristics is unique to Pollock, 37 undergraduate students
from the University of Oregon were asked to generate
abstract paintings using the pouring technique. The paint-
ing parameters were chosen to match Pollock’s more sim-
ple, black and white poured paintings such as Number 23,
1948 (57.5 cm · 78.4 cm). The students were asked to paint
a single black layer on an area measuring 61.6 cm ·
91.5 cm. The box-counting analysis revealed that none of
the 37 paintings matched all 6 of the required criteria. In
the attempt to match to the criteria, the computer fits the
scaling plot data to two straight lines (one for low L values
and the other for high values), as required by criterion 1.
This fitting procedure uses the LT value as a free variable
to minimize the standard deviation of the fit lines to the
data. If the LT value obtained by the fitting procedure lies
within the accepted size range (criterion 2), then the other
criteria are assessed. If the LT value fails to lie within the
required range, the painting is given a ‘‘second chance’’,
for which the fitting procedure is repeated using
LT = 3.0 cm (the average LT value for all analyzed Pollock
paintings). Using this ‘‘forced fit’’, the remaining criteria
are then assessed. All of the 37 paintings required the
forced fit procedure. An example painting (labeled Drip-

fest35) is shown in Fig. 5. Despite any superficial similari-
ties with Pollock’s work, this painting does not match the
required criteria listed above. The ‘‘forced-fit’’ analysis is
shown in Fig. 3(b). To facilitate a comparison of quality
of fit between the paintings produced by Pollock and the
students, the fitting procedure is assessed over a magnifica-
tion range of 1 mm <L < 10 cm and uses the same magni-
fication factor (C = 1.1) to ensure an analogous number
of data points across this range of L. For the fit shown
in Fig. 3(b), sd = 0.053, compared to 0.010 for Pollock’s
equivalent Number 23, 1948. For the 37 paintings, the sd
values of the fits fall outside the range observed for Pollock
paintings. Their sd values are the range 0.030 < sd < 0.053,
with a mean value of 0.037 and a standard deviation from
this mean of 0.006.

For poured paintings of unknown origin, it is informa-
tive to perform a fractal analysis to determine if the above
criteria are satisfied. To date, we have analyzed 14 poured
paintings supplied to us by private collectors. None of these
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paintings matched the required six criteria. Out of the 49
layers extracted from the 14 paintings, 18 used the ‘‘free-
fit’’ procedure. An example is the black layer of the paint-
ing shown in Fig. 2 (labeled Unknown12). The painting’s
scaling plot is shown in Fig. 3(c) and the fit is quantified
by sd = 0.038. For the 14 paintings, the sd values lie in
the range of 0.031 < sd < 0.072. We note that the larger
sd values exhibited by both the student paintings and the
paintings of unknown origin quantify clear deviations from
the established Pollock fractal characteristics (i.e., the six
criteria). These deviations are clearly evident in all of the
scaling plots – as demonstrated, for example, in Fig. 3(b)
and (c). The manner in which the data deviates from Pol-
lock scaling behavior varies between paintings and here
we describe a few common categories: (1) the scaling plots
fail to display scale invariance across any length scales.
Fig. 3(c) is an example of this behavior. (2) The scaling
plots exhibit well-defined DL behavior but fail to condense
onto a well-defined DD behavior (this commonly results in
a forced fit procedure because the free fit produces an LT

value well below L = 1 cm). Fig. 3(b) is an example of this
behavior. (3) The scaling plots display D = 2 across many
length scales, indicative of a ‘‘space-filled’’ canvas pro-
duced by excessive paint deposition. (4) The scaling plots
display DD = 1, indicative of overly smooth paint trajecto-
ries that lacked ‘‘splatter’’ in the pouring process.

3. Conclusions

We conclude by emphasizing that our initial results pre-
sented in this Letter are part of an on-going research pro-
ject. Nevertheless, the results obtained to date demonstrate
a 100% success rate in terms of identifying Pollock’s spe-
cific form of fractal behavior. This is in contrast to the
100% failure rate of the non-Pollock paintings of known
origin – none of these paintings satisfy the outlined criteria.
These initial results demonstrate the potential of computers
to detect the trademark characteristics of Pollock’s patterns
and to use fractal analysis as an authenticity tool. The
100% failure rate of the paintings of unknown origin sent
to us by private collectors is consistent with expectations
– non-Pollock poured paintings are believed to vastly
out-number undiscovered real Pollock paintings (for exam-
ple, in the 17 years between publication of the Pollock Cat-
alogue Raisonné and its supplement (O’Connor and Thaw,
1978; O’Connor, 1995), only six new Pollock paintings
were authenticated). In future work, the fractal analysis
presented here will be particularly effective when combined
with the traditional authenticity tools outlined earlier and
other fractal analysis techniques that have recently been
applied to Pollock’s poured paintings (Mureika et al.,
2005; Mureika, 2005). The latter research concentrates on
the DL regime, and includes a multi-fractal spectral analy-
sis (measuring a range of dimensions that build on the
‘‘box-counting’’ DL) and also an investigation of the DL

behavior of the fractal edge patterns at the boundaries
between the paint and canvas. Future collaborations will
also focus on wavelet analysis (Lyu et al., 2004) and pattern
connectivity analysis (Martin et al., 2004).

Finally, we note that the impact of fractal analysis as an
authenticity tool is not restricted to Pollock’s poured
works. For abstract artists who painted non-fractal pat-
terns, fractal analysis could be used to detect the trademark
characteristics of how their patterns deviate from fractal
scale invariance. Furthermore, fractal analysis can be
applied to both abstract and figurative paintings. Fractal
and other forms of scale analysis have been used by other
researchers to investigate artists as diverse as early Chinese
figurative painters (Voss, 1998), Vincent Van Gogh (Herik
and Postma, 2000) and Pieter Bruegel the Elder (Lyu et al.,
2004). The application of fractal analysis is not restricted to
the painted image of an artwork – for example, stress frac-
tures are fractal and therefore fractal analysis can be used
to investigate the cracks that form in the paint layers of
ageing paintings. More generally, we anticipate that fractal
analysis will be integrated with other forms of computer-
analysis, with the goal of authenticating paintings using a
wide spectrum of quantifiable parameters. These parame-
ters will extend beyond the ‘‘form’’ of the painting to
include information relating to color, physical size and
materials. In particular, the latter will be collected using
an array of scientific tools (which includes X-ray, ultra-
violet and infrared radiation techniques, optical and elec-
tron-beam microscopy (McCrone, 2001) and forensics
techniques such as fingerprint and DNA analysis). Ulti-
mately, art scholars and connoisseurs will be able to
combine their knowledge with a database of scientific
information involving the entire catalog of known paint-
ings by the artist. In this sense, the research in this Letter,
along with other projects such as the Rembrandt Research
Project (Bruyn et al., 1990) and Authentic (Heingartner,
2004), represent the future direction of authenticity work
and signal the growing interplay between art and science.
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