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Abstract

We consider decision-making by boundedly-rational agents in dynamic sto-

chastic environments. The behavioral primitive is anchored to the shadow price

of the state vector. Our agent forecasts the value of an additional unit of the

state tomorrow using estimated models of shadow prices and transition dynam-

ics, and uses this forecast to choose her control today. The control decision, to-

gether with the agent’s forecast of tomorrow’s shadow price, are then used to up-

date the perceived shadow price of today’s states. By following this boundedly-

optimal procedure the agent’s decision rule converges over time to the optimal

policy. Specifically, within standard linear-quadratic environments, we obtain

general conditions for asymptotically optimal decision-making: agents learn to

optimize. Our results carry over to closely related procedures based on value-

function learning and Euler-equation learning. We provide examples show-

ing that shadow-price learning extends to general dynamic-stochastic decision-

making environments and embeds naturally in general-equilibrium models.

JEL Classifications: E52; E31; D83; D84

Key Words: Learning, Optimization, Bellman Systems

1 Introduction

A central paradigm of modern macroeconomics is the need for micro-foundations.

Macroeconomists construct their models by aggregating the behavior of individual
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agents who are assumed “rational” in two important ways: they form forecasts opti-

mally; and, given these forecasts, they make choices by maximizing their objective.

Together with simple market structures, and sometimes institutional frictions, it is

this notion of rationality that identifies a micro-founded model. While assuming ra-

tionality is at the heart of much economic theory, the implicit sophistication required

of agents in the benchmark “rational expectations” equilibrium,1 both as forecasters

and as decision theorists, is substantial: they must be able to form expectations con-

ditional on the true distributions of the endogenous variables in the economy; and

they must be able to make choices — i.e. solve infinite horizon programming problems

— given these expectations.

The criticism that the ability to make optimal forecasts requires an unrealistic

level of sophistication has been leveled repeatedly; and, in response to this criticism,

a literature on bounded rationality and adaptive learning has developed. Boundedly

rational agents are not assumed to know the true distributions of the endogenous vari-

ables; instead, they have forecasting models that they use to form expectations. These

agents update their forecasting models as new data become available, and through

this updating process the dynamics of the associated economy can be explored. In

particular, the asymptotic behavior of the economy can be analyzed, and if the econ-

omy converges in some natural sense to a rational expectations equilibrium, then we

may conclude that agents in the economy are able to learn to forecast optimally.

In this way, the learning literature has provided a response to the criticism that

rational expectations is unrealistic. Early work on least-squares (and, more generally,

adaptive) learning in macroeconomics includes Bray (1982), Bray and Savin (1986)

and Marcet and Sargent (1989); for a systematic treatment, see Evans and Honkapo-

hja (2001). Convergence to rational expectations is not automatic and “expectational

stability” conditions can be computed to determine local stability. Recent applica-

tions have emphasized the possibility of novel learning dynamics that may also arise

in some models.

Increasingly, the adaptive learning approach has been applied to dynamic sto-

chastic general equilibrium (DSGE) models by incorporating learning into a system

of expectational difference equations obtained from linearizing conditions that cap-

ture optimizing behavior and market equilibrium. We will discuss this procedure

later, but for now we emphasize that because the representative agents in these mod-

els typically live forever, they are being assumed to be optimal decision makers,

solving difficult stochastic dynamic optimization problems, despite having bounded

rationality as forecasters. We find this discontinuity in sophistication unsatisfactory

as a model of individual agent decision-making. The difficulty that subjects have in

making optimal decisions, given their forecasts, has lead experimental researchers to

1Seminal papers of the rational expectations approach include, e.g., Muth (1961), Lucas (1972)

and Sargent (1973).
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distinguish between “learning to forecast” and “learning to optimize” experiments.2

For example, in recent experimental work, Bao, Duffy, and Hommes (2013) find that

in a cobweb setting making optimal decisions is as difficult as making optimal fore-

casts.

To address this discontinuity we define the notion of bounded optimality. We imag-

ine our agents facing a sequence of decision problems in an uncertain environment:

not only is there uncertainty in that the environment is inherently stochastic, but

also our agents do not fully understand the conditional distributions of the variables

requiring forecasts. One option when modeling agent decisions in this type of envi-

ronment is to assume that agents are Bayesian and that, given their priors, they are

able to fully solve their dynamic programming problems. However, we feel this level

of sophistication is extreme, and instead, we prefer to model our agents as relying

on decidedly simpler behavior. Informally, we assume that each day our agents act

as if they face a two-period optimization problem: they think of the first period as

“today” and the second period as “the future,” and use one-period-ahead forecasts of

shadow prices to measure the trade-off between choices today and the impact of these

choices on the future. We call our implementation of bounded optimality shadow price

learning (SP-learning).

Our notion of bounded optimality is inexorably linked to bounded rationality:

agents in our economy are not assumed to fully understand the conditional distrib-

utions of the economy’s variables, or, in the context of an individual’s optimization

problem, the conditional distributions of the state variables. Instead, consistent with

the adaptive learning literature, we provide our agents with forecasting models, which

they re-estimate as new data become available. Our agents use these estimated mod-

els to make one-period forecasts, and then use these one-period forecasts to make

decisions.

We find our learning mechanism appealing for a number of reasons: it requires

only simple econometric modeling and thus is consistent with the learning litera-

ture; it assumes agents make only one-period-ahead forecasts instead of establishing

priors over the distributions of all future endogenous variables; and it imposes only

that agents make decisions based on these one-period-ahead forecasts, rather than

requiring agents to solve a dynamic programming problem with parameter uncer-

tainty. Finally, SP-learning postulates that, fundamentally, agents make decisions

by facing suitable prices for their trade-offs. This is a hallmark of economics. The

central question that we address is whether SP-learning can converge asymptotically

to fully optimal decision making. This is the analog of the original question, posed

in the adaptive learning literature, of whether least-squares learning can converge

asymptotically to rational expectations. Our main result is that convergence to fully

optimal decision-making can indeed be demonstrated in the context of the standard

2This issue is discussed in Marimon and Sunder (1993), Marimon and Sunder (1994) and Hommes

(2011). The distinction was also noted in Sargent (1993).
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linear-quadratic setting for dynamic decision-making.

Although we focus on SP-learning, we also consider two alternative implemen-

tations of bounded optimality: value-function learning and Euler-equation learning.

Under value-function learning agents estimate and update (a model) of the value

function, and make decisions based on the implied shadow prices given by the deriv-

ative of the estimated value function. With Euler-equation learning agents bypass

the value-function entirely and instead make decisions based on an estimated model

of their own policy rule. We establish that our central convergence results extend to

these alternative implementations.

Our paper is organized as follows. In Section 2 we provide an overview of alterna-

tive approaches and introduce our technique. In Section 3 we investigate the agent’s

problem in a standard linear-quadratic framework. We show, under quite general con-

ditions, that the policy rule employed by our boundedly optimal agent converges to

the optimal policy rule: following our simple behavioral primitives, our agent learns

to optimize. This is our central theoretical result, given as Theorem 4 in Section 3.

Section 4 provides a general comparison of SP-learning with alternative implemen-

tations, including value-function learning and Euler-equation learning. Theorem 5

establishes the corresponding convergence result for value-function learning and The-

orem 6 for Euler-equation learning. We note that while there are many applications

of Euler-equation learning in the literature, our Theorem 6 is the first to establish

its asymptotic optimality at the agent level in a general setting. Section 5 develops

SP-learning in a variety of standard modeling environments, including both LQ and

more general nonlinear frameworks. In addition to single agent decision problems, we

show how SP-learning can be implemented in heterogenous-agent general equilibrium

economies, including RBC and New Keynesian models. Section 6 concludes.

2 Background and Motivation

Before turning to a systematic presentation of our results we first, in this Section,

review the most closely related approaches available in the literature, and we then

introduce and motivate our general methodology and discuss how it relates to the

existing literature.

2.1 Agent-level learning and decision-making

We are, of course, not the first to address the issues outlined in the Introduction.

A variety of agent-level learning and decision-making mechanisms, differing both in

imposed sophistication and conditioning information, have been advanced. Here we

briefly summarize these contributions, beginning with those that make the smallest
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departure from the benchmark rational expectations hypothesis.

Cogley and Sargent (2008) consider Bayesian decision making in a permanent-

income model with risk aversion. In their set-up, income follows a two-state Markov

process with unknown transition probabilities, which implies that standard dynamic

programming techniques are not immediately applicable. A traditional bounded ra-

tionality approach is to embrace Kreps’s’ “anticipated utility” model, in which agents

determine their program given their current estimates of the unknown parameters.

Instead, Cogley and Sargent (2008) treat their agents as Bayesian econometricians,

who use recursively updated sufficient statistics as part of an expanded state space to

specify their programming problem’s time-invariant transition law. In this way agents

are able to compute the fully optimal decision rule. The authors find that the fully

optimal solution in their set-up is only a marginal improvement on the boundedly op-

timal procedure of Kreps. This is particularly interesting because to obtain their fully

optimal solution Cogley and Sargent (2008) need to assume a finite planning horizon

as well as a two-state Markov process for income, and even then, computation of the

optimal decision rule requires a great deal of technical expertise.

The approach taken by Adam and Marcet (2011), like Cogley and Sargent (2008),

requires that agents solve a dynamic programming problem given their beliefs. These

beliefs take the form of a fully specified distribution over all potential future paths

of those variables taken as external to the agents. This is somewhat more general

than Cogley and Sargent (2008) in that the distribution may or may not involve

parameters that need to be estimated. Adam and Marcet (2011) analyze a basic

asset pricing model with heterogeneous agents, incomplete markets, linear utility and

limit constraints on stock holding. Within this model, they define an “internally

rational” expectations equilibrium (IREE) as characterized by a sequence of pricing

functions mapping the fundamental shocks to prices, such that markets clear, given

agents’ beliefs and corresponding optimal behavior.

In the Adam and Marcet (2011) approach, agents may be viewed quite naturally

as Bayesians, i.e., they may have forecasting models in mind with distributions over

the models’ parameters. In this sense agents are adaptive learners in a manner con-

sistent with forming forecasts optimally against the implied conditional distributions

obtained from a “well-defined system of subjective probability beliefs.” An REE is

an IREE in which agents’ “internal” beliefs are consistent with the external “truth,”

that is, with the objective equilibrium distribution of prices. Since they require that,

in equilibrium, the pricing function is a map from shocks to prices, it follows that

agents must hold the belief that prices are functions only of the shocks — in this way,

REE beliefs reflect a singularity: the joint distribution of prices and shocks is degen-

erate, placing weight only on the graph of the price function. Their particular set-up

has one other notable feature, that the optimal decisions of each agent require only

one-step ahead forecasts of prices and dividend. This would not generally hold for

risk averse agents, as can be seen from the set-up of Cogley and Sargent (2008), in
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which a great deal of sophistication is required to solve for the optimal plans.

Using the “anticipated utility” framework, Preston (2005) develops an infinite-

horizon (or long-horizon) approach, in which agents use past data to estimate a fore-

casting model; then, treating these estimated parameters as fixed, agents make time

 decisions that are fully optimal. This decision-making is optimal in the sense that it

incorporates the (perceived) lifetime budget constraint (LBC) and the transversality

condition (TVC). However, in this approach agents ignore the knowledge that their

estimated forecasting model will change over time. Applications of the approach in-

clude, for example, Eusepi and Preston (2010) and Evans, Honkapohja, and Mitra

(2009). Long-horizon forecasts were also emphasized in Bullard and Duffy (1998).

A commonly used approach known as Euler equation learning, developed e.g. in

Evans and Honkapohja (2006), takes the Euler equation of a representative agent as

the behavioral primitive and assumes that agents make decisions based on the bound-

edly rational forecasts required by the Euler equation.3 As in the other approaches,

agents use estimated forecast models, which they update over time, to form their

expectations. In contrast to infinite-horizon learning, agents are behaving in a simple

fashion, forecasting only one period in advance. Thus they focus on decisions on this

margin and ignore their LBC and TVC. Despite these omissions, when Euler equation

learning is stable the LBC and TVC will typically be satisfied.4 Euler-equation learn-

ing is usually done in a linear framework. An application that retains the nonlinear

features is Howitt and Özak (2014).5

Euler equation learning can be viewed as an agent-level justification for “reduced-

form learning,” which is widely used, especially in applied work.6 Under the reduced-

form implementation, one starts with the system of expectational difference equations

obtained by linearizing and reducing the equilibrium equations implied by RE, and

then replaces RE with subjective one-step ahead forecasts based on a suitable linear

forecasting model updated over time using adaptive learning. This approach leads

to a particularly simple stability analysis,7 but often fails to make clear the explicit

connection to agent-level decision making.

The above procedures all involve forecasting, and thus require an estimate of

the transition dynamics of the economy. This estimation step can be avoided using

3See also Honkapohja, Mitra, and Evans (2013)
4A finite-horizon extension of Euler-equation learning is developed in Branch, Evans, and Mc-

Gough (2013).
5Howitt and Özak (2014) study boundedly optimal decision making in a non-linear consump-

tion/savings model. Within a finite-state model, agents are assumed to use decision rules that are

linear in wealth and updated so as to minimize the squared ex-post Euler equation error, i.e. the

squared difference between marginal utility yesterday and discounted marginal utility today, ac-

counting for growth. They find numerically that agents quickly learn to use rules that result in

small welfare losses relative to the optimal decision rule.
6An early example is Bullard and Mitra (2002)
7See Chapter 10 of Evans and Honkapohja (2001).
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an approach called Q-learning, developed originally by Watkins (1989) and Watkins

and Dayan (1992). Under Q-learning, which is most often used in finite-state envi-

ronments, an agent estimates the “quality values” associated with each state/action

pair. One advantage of Q-learning is that it eliminates the need to form forecasts

by updating quality measures ex-post. To pursue the details some notation will be

helpful. Let  ∈  represent a state and  ∈  represent an action. The usual

Bellman system has the form  () = max∈ (( ) + 
P

() ()), where 

captures the instantaneous return and () is the probability of moving from state

 to state  given action . The quality function  :  ×→ R is defined as

( ) = ( ) + 
X

() ()

Under Q-learning, given −1( ), the estimate of the quality function at (the be-
ginning of) time , and given the state  at , the agent chooses the action  with

the highest quality, i.e.  = max0∈−1( 0). At the beginning of time + 1, the
estimate of  is updated recursively as follows:

( ) = −1( ) +
1




µ
 = max

0∈
−1( 

0)

¶µ
( ) + max

∈
−1( )

¶


where  is the indicator function and  is the state that is realized in  + 1. Notice

that  does not require knowledge of the state’s transition function. Provided the

state and action spaces are finite, Watkins and Dayan (1992) show  →  almost

surely under a key assumption, which requires in particular each state/action pair is

visited infinitely many times. We note that this assumption is not easily generalized

to the continuous state and action spaces that are standard in the macroeconomic

literature.

A related approach to boundedly rational decision making uses classifier systems.

An early well-known economic application is Marimon, McGrattan, and Sargent

(1990). They introduce classifier system learning into the model of money and match-

ing due to Kiyotaki and Wright (1989). They consider two types of classifier systems.

In the first, there is a complete enumeration of all possible decision rules. This is

possible in the Kiyotaki-Wright set-up because of the simplicity of that model. The

second type of classifier system instead uses rules that do not necessarily distinguish

each state, and which uses genetic algorithms to periodically prune rules and gener-

ate new ones. Using simulations Marimon et al. show that learning converges to a

stationary Nash equilibrium in the Kiyotaki-Wright model, and that, when there are

multiple equilibria, learning selects the fundamental low-cost solution.

Lettau and Uhlig (1999) incorporate rules of thumb into dynamic programming

using classifier systems. In their “general dynamic decision problem” they consider

agents maximizing expected discounted utility, where agents make decisions using

rules of thumb (a mapping from a subset of states into the action space, giving a

specified action for specified states within this subset). Each rule of thumb has an
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associated strength. Learning takes place via updating of strengths. At time  the

classifier with highest strength among all applicable classifiers is selected and the

corresponding action is undertaken. After the return is realized and the state in +1

is (randomly) generated, the strength of the classifier used in  is updated (using a

gain sequence) by the return plus  times the strength of the strongest applicable

classifier in  + 1. Lettau and Uhlig give a consumption decision example, with

two rules of thumb, the optimal decision rule based on dynamic programming and

another non-optimal rule of thumb, applicable only in high-income states, in which

agents consume all their income. They showed that convergence to this suboptimal

rule of thumb is possible.89

Our SP-learning framework shares various characteristics of the alternative imple-

mentations of agent-level learning discussed above. Like Q-learning and the related

approaches based on classifier systems, SP-learning builds off of the intuition of the

Bellman equation. (In fact, what we will call value-function learning explicitly es-

tablishes the connection.) As in infinite-horizon learning, we employ the anticipated

utility approach rather than the more sophisticated Bayesian perspective. Like Euler-

equation learning, it is sufficient for agents to look only one step ahead. While each

of the alternative approaches has advantages, we find SP-learning persuasive in many

applications due to its simplicity, generality and economic intuition.

2.2 Shadow-price learning

Returning to the current paper, our objective is to develop a general approach for

boundedly rational decision-making in a dynamic stochastic environment. While par-

ticular examples would include the optimal consumption-savings problems summa-

rized above, the technique is generally applicable and can be embedded in standard

general equilibrium macro models. To illustrate our technique, consider a standard

dynamic programming problem

 ∗(0) = max0
X
≥0

( ) (1)

subject to +1 = (  +1) (2)

and ̄0 given. Here  ∈ Γ() ⊆ R is the vector of controls (with Γ() compact),

 ∈ R is the vector of (endogenous and exogenous) states variables, and +1 is

8Lettau and Uhlig discuss the relationship of their decision rule to Q-learning in their footnote

11, p. 165: they state that (i) Q-learning also introduces action mechanisms that ensure enough

exploration so that all ( ) combinations are triggered infinitely often, and (ii) in Q-learning the

value( ) is assigned and updated for every state-action pair ( ). This corresponds to classifiers

that are only applicable in a single state. In general, classifiers are allowed to cover more general

sets of state-action pairs.
9A recent related approach is sparse dynamic programing in which agents may choose to use

summary variables rather than the complete state vector. See Gabaix (2014).
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white noise. Our approach is based on the standard first-order conditions derived

from the Lagrangian10

L = 0
X

≥0
 (( ) + ∗0 ((−1 −1 )− ))  namely

∗ = ( )
0 + (  +1)

0∗+1 (3)

0 = ( )
0 + (  +1)

0∗+1 (4)

Under the SP-learning approach we replace ∗ with , representing the perceived

shadow price of the state, and we treat equations (3)-(4) as the basis of a behavioral

decision rule.

To implement SP-learning (3)-(4) need to be supplemented with forecasting equa-

tions for the required expectations. In line with the adaptive learning literature,

assume that the transition equation (2) is unknown, and must be estimated, and that

agents do so by approximating the transition equation using a linear specification of

the form11

+1 =  + + +1

and thus the agents approximate (  +1) by  and (  +1) by . The

coefficient matrices  are estimated and updated over time using recursive least

squares (RLS). We also assume that agents believe the perceived shadow price  is

(or can be approximated by) a linear function of state, up to white noise, i.e.

 =  + 

where the matrix  also is estimated. Finally, we assume that agents know their

preference function ( ). Then, given the state  and estimates for  the

decision procedure is obtained by solving the system

( )
0 = −0̂+1 (5)

̂+1 =  ( +)

for  and the forecasted shadow price, ̂+1. Here ̂ denotes the conditional

expectation of the agent based on his forecasting model. These values can then be

used with (3) to obtain an updated estimate of the current shadow price

 = ( )
0 + 0̂+1 (6)

Finally, the data (  ) can be used to recursively update the parameter estimates

() over time. Taken together this procedure defines a natural implementations

of the SP-learning approach.

10For  = 0 the last term in the sum is replaced by ∗00 (̄0−0), where ̄0 is the initial state vector.
11Here we have expanded the state vector  to include a constant.
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As we will see, under more specific assumptions, this implementation of boundedly

optimal decision making leads to asymptotically optimal decisions. In this sense

shadow-price learning is reasonable from an agent perspective. Our approach has a

number of strengths. Particularly attractive, we think, is the pivotal role played by

shadow prices. In economics prices are central because agents use them to assess

trade-offs. Here the perceived shadow price of next period’s state vector, together

with the estimated transition dynamics, measures the intertemporal trade-offs and

thereby determines the agent’s choice of control vector today. The other feature that

we find compelling is the simplicity of the required behavior: agents make decisions as

if they face a two-period problem. In this way we eliminate the discontinuity between

the sophistication of agents as forecasters and agents as decision-makers. In addition,

SP-learning incorporates the RLS updating of parameters that is the hallmark of the

adaptive learning approach. Finally, this version of bounded optimality is applicable

to the general stochastic regulator problem, and can be embedded in standard DSGE

models.

While we view SP-learning as a very natural implementation of bounded optimal-

ity, there are some closely related variations that also yield asymptotic optimality.

In Section 6 of his seminal paper on asset pricing, discussing stability analysis, Lu-

cas (1978) briefly outlines how agents might update over time their subjective value

function. In Section 4.2 we show how to specify a real-time procedure for updating

an agent’s value function. Our Theorem 5 implies that this procedure converges as-

ymptotically to the true value function of an optimizing agent. From Section 4.2 it

can seen that another variation, Euler-equation learning, is in some cases equivalent

to SP-learning. Indeed, Theorem 6 establishes the first formal general convergence

result for Euler-equation learning by establishing its connections to SP-learning.

Having found that SP-learning is reasonable from an agent’s perspective, in that

he can expect to eventually behave optimally, we embed shadow price learning into

a simple economy consistent with our quadratic regulator environment. We consider

a Robinson Crusoe economy, with quadratic preferences and linear technology: see

Hansen and Sargent (2014) for many examples of these types of economies, including

one of the examples we give. By including production lags we provide a simple

example of a multivariate model in which SP-learning and Euler-equation learning

differ. We use the Crusoe economy to walk carefully through the boundedly optimal

behavior displayed by our agent, thus providing examples of, and intuition for the

behavioral assumptions made in Section 3.1.

While our formal results are proved for the Linear-Quadratic framework, as we

have stressed, the techniques and intuition can be applied in a general setting. To

illustrate this point we conclude with an application to the Ramsey model, in which we

impose that the representative agent act as an SP learner within a general equilibrium

environment. We show that asymptotically the household’s perceived shadow price

approximates the corresponding social planner’s Lagrange multiplier.
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3 Learning to optimize

We begin be specifying the programming problem of interest. We focus on the be-

havior of a decision maker with a quadratic objective function and who faces a linear

transition equation; the linear-quadratic (LQ) set-up allows us to exploit certainty

equivalence and to conduct parametric analysis.12 The specification of our LQ prob-

lem, which is standard, is taken from Hansen and Sargent (2014); see also Stokey and

Lucas Jr. (1989), and Bertsekas (1987).

3.1 Linear quadratic dynamic programing

The “sequence problem” is to determine a sequence of controls  that solves

 ∗(0) = max −0
X

 (0 + 0 + 2
0
) (7)

 +1 =  + + +1

Here  is symmetric positive definite and − 0−1 is symmetric positive semi-

definite, which ensure that the period objective is concave. These conditions, as well

as further restrictions on  and  will be discussed in detail below: see

LQ.1-LQ.3. The initial condition 0 is taken as given. As with the general dynamic

programming problem (1) - (2), we assume  ∈ R and  ∈ R, with the matrices

conformable. To allow for a constant in the objective and in the transition, we assume

that 1 = 1 It follows that first row of  is (1 0     0) and that the first row of 

is a 1× vector of zeros and the first row of  is a 1×  vector of zeros. We further

assume that  ∈ R is a zero-mean i.i.d. process with 
0
 = 2 and compact

support. The assumptions on  are convenient but can be relaxed considerably: for

example, Theorem 2 only requires that  be a martingale difference sequence with

(finite) time-invariant second moments; and, Theorem 4 holds if the assumption of

compact support is replaced by the existence of finite absolute moments.

The sequence problem is commonly analyzed by considering the associated Bell-

man functional equation. The Principle of Optimality states that the solution to the

sequence problem  ∗ satisfies

 ∗() = max

− (0+ 0+ 20) +  ( ∗(++ )| )  (8)

The Bellman system (8) may be analyzed using the Riccati equation

 = + 0− (0 + ) (+ 0)−1 (0+ 0) (9)

Under certain conditions that will be discussed in detail below, this non-linear matrix

equation has a unique, symmetric, positive semi-definite solution  ∗13 The matrix
12The LQ set-up can also be used to approximate more general nonlinear environments.
13Solving the Riccati equation is not possible analytically; however, a variety of numerical methods

are available.
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 ∗, interpreted as a quadratic form, identifies the solution to the Bellman system (8),
and allows for the computation of the feedback matrix  ∗ that provides the sequence
of controls solving the programming problem (7). Specifically, Theorem 2 states that

 ∗() = −0 ∗− 

1− 
tr
³
2

∗
0
´

(10)

 ∗ = (+ 0 ∗)−1 (0 ∗+ 0) (11)

where tr denotes the trace of a matrix, and where  = − ∗ solves (7). Note that
the optimal policy matrix  ∗ depends on the matrix  ∗, but not on 2 or . This is

an illustration of certainty equivalence in the LQ-framework: the optimal policy rule

is the same in the deterministic and stochastic settings.

3.1.1 Perceptions and realizations: the T-map

Solving Bellman systems in general, and Riccati equations in particular, is often

approached recursively: given an approximation  to the solution 
∗, a new approx-

imation, +1 may be obtained using the right-hand-side of (8):

+1() = max

− (0+ 0+ 20) +  ((++ )| ) 

This approach has particular appeal to us because it has the flavor a learning al-

gorithm: given a perceived value function  we may compute the corresponding

realized, or actual value function +1 In this Section we work out the initial impli-

cations of this viewpoint.

We start with the deterministic case in which  = 0, thus shutting down the

stochastic shocks. We imagine the decision-making behavior of a boundedly rational

agent, who perceives that the value  of the state tomorrow (which here we denote

̃) is represented as a quadratic form:  (̃) = −̃0̃. To ensure that the agent’s
objective is concave, we assume that  is symmetric positive semi-definite. For

convenience we will refer to  as the perceived value function. The agent chooses

 to solve

  () = max

− (0+ 0+ 20)− (+)0 (+) (12)

where   can be viewed as representing the actual or realized value function implied

by perceptions  . The following Lemma characterizes the agent’s control decision

and the realized value function.14

Lemma 1 Consider the deterministic problem (12). If  is symmetric positive semi-

definite then

14See Appendix A for proofs of Lemmas and Theorems.
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1. The unique optimal control decision for perceptions  is given by  = − ( ),
where

 ( ) = (+ 0)−1 (0+ 0)

2. The realized value function for perceptions  is given by   () = −0 ( ),
where

 ( ) = + 0− (0 + ) (+ 0)−1 (0+ 0) (13)

We note that the right-hand-side of  ( ) is given by the right-hand-side of the Riccati

equation. We conclude that the fixed point  ∗ of the T-map identifies the solution
to our agent’s optimal control problem. For general perceptions  the boundedly

optimal control decision is given by  = − ( ).

Remark 1 Since the first row of  is zero, it follows that 0 does not depend on

11. Hence the (1 1) entry of perceptions  does not affect the control decision.

Here and in the sequel it will sometimes be convenient to allow for more general

perceptions  . To this end we define U to be the open set of all × matrices  for

which det(+ 0) 6= 0. Since  is positive definite, U is not empty. It follows
that  is well-defined on U .
The same contemplation may be considered in the stochastic case. Again, consider

a boundedly rational agent who perceives that the value  of the state tomorrow is

represented as a quadratic form:  (̃) = −̃0̃ for some symmetric positive semi-
definite  . The agent now chooses  to solve

 
 () = max


[− (0+ 0+ 20) (14)

− ((++ )0 (++ )| )] 

In the stochastic case the result corresponding to Lemma 1 is the following.

Lemma 2 Consider the stochastic problem (14). If  is symmetric positive semi-

definite then

1. The optimal control decision for perceptions  is given by  = −( ), where

( ) = (+ 0)−1 (0+ 0)

2. The realized value function for perceptions  is given by  
 () = −0 ( ),

where  ( ) =  ( )− ∆( ) and ∆( ) = −tr ¡2 0¢⊕ 0−1×−1.
13



Furthermore, if ̃ ∈ U and  (̃ ) = ̃ then  (̃) = ̃ where

̃ = ̃ − 

1− 
∆(̃ ) (15)

Here ⊕ denotes the direct sum of two matrices, i.e. for matrices1 and2 we define

1 ⊕2 as the block-diagonal matrix

1 ⊕2 =

µ
1 0

0 2

¶


Fully optimal decision-making is determined by the fixed point  ∗ of the map 
.

This fixed point is related to the solution  ∗ to the Riccati equation, and hence to
the solution to the deterministic problem, by the following equation:

 ∗ =  ∗ − 

1− 
∆( ∗)

In this way, the solution to the non-stochastic problem yields the solution to the sto-

chastic problem. We note that the map   will be particularly useful when analyzing

value-function learning in Section 4.2.1.

It is well-known that LQ problems exhibit certainty equivalence, i.e. the optimal

control decision is independent of . Certainty equivalence carries over to boundedly

optimal decision making, but the manifestation is distinct:

• Under fully optimal decision making, (
∗
 ) =  ( ∗).

• Under boundedly optimal decision making, and given perceptions  , we have
( ) =  ( ) In the sequel we will therefore use  ( ) for ( ) whenever

convenient.

Note that in both cases the control decision given the state  is the same for the

stochastic and deterministic problems.

3.1.2 The LQ assumptions

We now consider conditions sufficient to guarantee the sequence problem (7) has a

unique solution, which, via the principle of optimality, guarantees that the Riccati

equation has a unique positive semi-definite solution. We introduce the needed

concepts informally first, and then turn to their precise definitions.

• Concavity. To apply the needed theory of dynamic programming, the instan-
taneous objective must be bounded above, which, due to its quadratic nature,

requires concavity. Intuitively, the agent should not be able to attain infinite

value.
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• Stabilizability. To be representable as a quadratic form,  ∗ must not diverge
to negative infinity. This condition is guaranteed by the ability to choose a

bounded control sequence  so that the corresponding trajectory of the state

is also bounded. Intuitively, the agent should be able to stabilize the state.

• Detectability. Stabilizability implies that avoiding unbounded paths is feasi-
ble, but does not imply that the agent will want to stabilize the state. A further

condition, detectability, is needed: explosive paths should be “detected” by the

objective. Specifically, if the instantaneous objective gets large (in magnitude)

whenever the state does then a stabilized state trajectory is desirable. Intu-

itively, the agent should want to stabilize the state.

To make these notions precise, it is helpful to consider the non-stochastic problem,

which we transform to eliminate the state-control interaction in the objective and

discounting: see Hansen and Sargent (2014), Chapter 3 for the many details. To this

end, first notice

0+ 0+ 20 (16)

= 0− 0−1 0+ 0−1−1 0+ 0+ 0−1 0+ 0−1

= 0
¡
−−1 0¢+ (+−1 0)0(+−1 0)

= 0̂+ (+−1 0)0(+−1 0)

where ̂ = −−1 0. Next, let

̂ = 

2 and ̂ = 


2 ( +−1 0)

Then

 (0 + 0 + 2
0
) = ̂0̂̂ + ̂0̂ (17)

Finally, we compute

̂+1 = 
+1
2 +1 = 

1
2

³



2 +


2

´
= 

1
2

³



2 +(̂ −−1 0


2)

´
= 

1
2

¡
−−1 0¢ ̂ + 

1
2̂ = ̂̂ + ̂̂

where the last equality defines notation. It follows that the non-stochastic version of

the LQ problem (7) is equivalent to the transformed problem

max −
X³

̂0̂̂ + ̂0̂
´

(18)

 ̂+1 = ̂̂ + ̂̂
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where

̂ = −−1 0

̂ = 
1
2

¡
−−1 0¢

̂ = 
1
2

The T-map of the transformed problem is computed as before, and will be of

considerable importance:

−̂0̂ ( )̂ = max

−
³
̂0̂̂+ ̂0̂

´
− (̂̂+ ̂̂)0 (̂̂+ ̂̂) (19)

where  is a symmetric positive semi-definite matrix representing the agent’s per-

ceived value function. Letting

̂ ( ) =
³
+ ̂0̂

´−1
̂0̂

as shown in Lemma 1, the solution to the right-hand-side of (19) is given by ̂ =

−̂ ( )̂
It will be useful to identify the state dynamics that would obtain if the perceptions

 were to be held constant over time. To this end, let Ω( ) = ̂− ̂̂ ( ). It follows

that the state dynamics ̂ for transformed problem, and the state dynamics  for

the original problem would be provided by the following equations, respectively:

̂ = Ω( )̂−1 and  = −12Ω( )−1 (20)

These equations will be useful when we later study the decisions and evolution of the

state  as perceptions  are updated over time. As shown in Lemma 3, the matrix

Ω( ) also provides a very useful alternative representation of  ( )

Lemma 3 Let  ∈ U  Then

1.  ( ) = ̂ ( )

2. ̂ ( ) = ̂+ ̂ ( 0)0̂ ( ) + Ω( 0)0Ω( )

Note that Lemma 3 holds for matrices that are not necessarily symmetric, positive

semi-definite. However, we also note that the T-map preserves both symmetry and

positive definiteness.

Because of item 1 of this Lemma, we will drop the hat on the T-map, even when

explicitly considering the transformed problem. Also, in the sequel, while hatted

matrices will correspond to the transformed problem, to reduce clutter, and because

16



they refer to vectors in R and R whenever convenient we drop the hats from the

states and controls.

We now turn to the formal conditions defining stabilizability and detectability.

The latter is stated in terms of the rank decomposition of ̂ Specifically, below

in LQ.1 we assume that ̂ is symmetric positive semidefinite. Thus, by the rank

decomposition, ̂ can be factored as ̂ = ̂̂0, where rank(̂) =  and ̂ is × .15

With this notation, we say that:

• A matrix is stable if its eigenvalues have modulus less than one.
• The matrix pair (̂ ̂) is stabilizable if there exists a matrix such that ̂+̂

is stable.

• The matrix pair (̂ ̂) is detectable provided that whenever  is a (nonzero)
eigenvector of ̂ associated with the eigenvalue  and ̂0 = 0 it follows that
||  1. Intuitively, ̂0 acts as a factor of the objective function’s quadratic
form ̂: if ̂0 = 0 then  is not detected by the objective function; in this case,
the associated eigenvalue must be contracting.

With these definitions in hand, we may formally state the assumptions we make

concerning the matrices identifying the LQ problem.

LQ.1: The matrix ̂ is symmetric positive semi-definite and the matrix is symmetric

positive definite.

LQ.2: The system (̂ ̂) is stabilizable.

LQ.3: The system (̂ ̂) is detectable.

This list provides the formal assumptions corresponding to the concepts of con-

cavity, stabilizability, and detectability discussed informally above. By (17) LQ.1

imparts the appropriate concavity assumptions on the objective, and LQ.2 says that

it is possible to find a set of controls driving the state to zero in the transformed

problem. Finally, by LQ.3, (̂ ̂) is detectable and the control path must be chosen

to counter dynamics in the explosive eigenspaces of ̂.16 To illustrate, suppose  is

15Any positive semi-definite matrix may be factored as  = Λ 0, where  is a unitary matrix.
The rank decomposition  = 0 obtains by writing Λ = Λ1 ⊕ 0, with Λ1 invertible, and letting
 = ( 011 

0
21)

0√Λ1.
16The rank decomposition of a matrix may not be unique (it is if the matrix is symmetric, positive

definite). If  = 0 = 0 comprises two distinct rank decompositions of a symmetric, positive
semi-definite matrix , and if () is detectable then () is also detectable. Indeed, if  is an

eigenvalue of  and 0 = 0 then  = 0 so that 0 = 0 Since  is ×  and of full rank, it

follows that it acts injectively on the range of 0; therefore, 0 = 0 implies 0 = 0 which, by
the detectability of () means the eigenvalue associated to  must be contracting.
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an eigenvector of  with associated eigenvalue , suppose that ||  1, and finally

assume that 0 = . If the control path is not chosen to mitigate the explosive dy-

namics in the eigenspace associated to  then the state vector will diverge in norm.

Furthermore, because (̂ ̂) is detectable, we know that ̂0 6= 0. Taken together,
these observations imply that an explosive state is suboptimal:

−0̂ = −20̂̂0 = −
³
|||̂0|

´2
→ −∞

Hansen and Sargent (see Appendix A of Ch. 3 in Hansen and Sargent (2014)) put it

more concisely (and eloquently): If (̂ ̂) is stabilizable then it is feasible to stabilize

the state vector; if (̂ ̂) is detectable then it is desirable to stabilize the state vector.

The detectability of (̂ ̂) plays another, less-obvious role in our analysis: it is

needed for the stability at  ∗ of the following (soon-to-be-very-important!) matrix-
valued differential equation:

̇ =  ( )−  (21)

Here we view  as a function of a notional time variable  and ̇ denotes  .

Under LQ.1-LQ.3 the stability of (21) at  ∗ is proved formally established using
Theorem 1 below, but some intuition is available. For arbitrary state vector , we

may apply the envelope theorem to the maximization problem

−0 ( ) = max

−
³
0̂+ 0+ 20

´
− (+)0 (+)

to get

0 = (+)0 (+) = 0Ω( )0Ω( ) or (22)

 = Ω( )0Ω( ) (23)

Here the controls  in the middle expression of (22) are chosen optimally, the second

equality of (22) follows from (20), and the equality (23) holds because  is arbitrary.

As is discussed in more detail in the next paragraph, the stability of the matrix

system (21) turns on the Jacobian of its vectorization, which may be determined by

applying the “vec” operator to (23).17 Since

 (Ω( )0Ω( )) = (Ω( )0 ⊗Ω( )0)  ( ) 

17The vec operator is the standard isomorphism coupling R× with R. Intuitively, the vec-
torization of a matrix  is obtained by simply stacking its columns. More formally, let  ∈ R×.
For each 1 ≤  ≤ , use the division algorithm to uniquely write  =  + , for 0 ≤  ≤  and

0 ≤   . Then

() =

⎧⎨⎩ 1 if  = 0

 if  = 0

+1 else
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and since the set of eigenvalues of Ω( )0 ⊗ Ω( )0 is the set of all products of the
eigenvalues of Ω( ) it can be seen that  ∗ is a stable rest point of (21) whenever the
eigenvalues of Ω( ∗) are smaller than one in modulus, that is, whenever Ω( ∗) is a
stable matrix. This is precisely where detectability plays its central role. As discussed

above, by LQ.3, an agent facing the transformed problem desires to “stabilize the

state,” that is, send ̂ → 0 Also, by (20), the state dynamics in the transformed

problem are given by ̂+1 = Ω( ∗) It follows that Ω( ∗) must be a stable matrix.

Formal analysis of stability requires additional machinery. Before stating the

principal result, we first secure the notation needed to compute derivatives when

we have matrix-valued functions and matrix-valued differential equations. If  :

R → R then () is the matrix of first partials, and for  ∈ R, the notation

()() emphasizes that the partials are evaluated at the vector . Notice that 

is an operator that acts on vector-valued functions — we do not apply  to matrix-

valued functions. The analysis of matrix-valued differential equations is conducted

by working through the vec operator. If  : R× → R× then we define  : R2 →
R2 by  =  ◦  ◦ −1, where the dimensions of the domain and range of the
vec operators employed are understood to be determined by  . Thus suppose  :

R× → R×, assume (∗) = 0, and consider the matrix-valued differential equation
̇ = (), where ̇ denotes the derivative with respect to time. Let  = (), and

note that ̇ = (̇). Then

̇ = () =⇒ (̇) = (())

=⇒ ̇ =
¡
 ◦  ◦ −1¢ (()) =⇒ ̇ = ()

Hence if ∗ = (∗) then Lyapunov stability of ∗ may be assessed by determining
the eigenvalues of ()(

∗). As is well known, Lyapunov stability holds if these
eigenvalues have negative real parts. A sufficient condition for this is that()(

∗)+
2 is a stable matrix.

The T-map and its fixed point  ∗ are central to our analysis. The relevant prop-
erties are summarized by the following theorem.

Theorem 1 Assume LQ.1 — LQ.3. There exists an × symmetric, positive semi-

definite matrix  ∗ such that for any ×  symmetric, positive semi-definite matrix

0, we have 
 (0)→  ∗ as →∞ Further,

1.  ( ∗) =  ∗.

2. ()((
∗)) is stable.

3.  ∗ is the unique fixed point of  among the class of × symmetric, positive

semi-definite matrices.
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Corollary 1 ( 
 )((

∗
 )) is stable.

The theorem and corollary are proven in the appendix.

3.1.3 The LQ solution

Theorem 1 concerns the T-map and its fixed point  ∗ The connection between the
T-map and the LQ-problem (7) is given by the Bellman equation. In fact, Theorem

1 can be used to prove:

Theorem 2 Under assumptions LQ.1 — LQ.3, the Riccati equation (9) has a unique

symmetric positive semi-definite solution,  ∗, and iteration of the Riccati equation
yields convergence to  ∗ if initialized at any positive semi-definite matrix 0. The

value function for the optimization problem (7) is given by

 ∗() = −0 ∗− 

1− 

³
2

∗
0
´

and  = − ( ∗) is the optimal policy rule.

Theorem 2 is, of course, not original to us. That LQ.1 — LQ.3 are sufficient to guar-

antee existence and uniqueness of a solution to (7) appears to be well known: see

Bertsekas (1987) pp. 79-80 and Bertsekas and Shreve (1978), Chapters 7 and 9. We

include the statement and key elements of the proof of Theorem 2 for completeness,

and because these elements, together with Theorem 1 and Corollary 1, are founda-

tional for our main results. Hansen and Sargent (2014), Ch. 3, discuss the stability

results under the assumptions LQ.1 — LQ.3.18

Proving Theorem 2 involves applying the general theory of dynamic programming

to the sequence problem and showing that analyzing the Bellman system corresponds

to analyzing the T-map. The challenge concerns the optimality of a linear policy

rule: this optimality must be demonstrated by considering non-linear policy rules,

which, in effect, eliminates the technical advantage of having a quadratic objective.

The stochastic case is further complicated by issues of measurability: even if the

perceived value function (which, when corresponding to a possibly non-linear policy

rule, cannot be assumed quadratic) is Borel measurable, the realized value function

may not be. Additional technical machinery involving the theories of universal mea-

surability and lower-semi-analytic functions is required to navigate these nuances. In

the Appendix we work through the deterministic case in detail. The stochastic case

is then addressed, providing a road-map to the literature.

18Other useful references are Anderson and Moore (1979), Stokey and Lucas Jr. (1989), Lancaster

and Rodman (1995) and Kwakernaak and Sivan (1972). Alternative versions of Theorem 2 often

use the somehwat stronger assumptions of controllability and observability.
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3.2 Bounded optimality: shadow-price learning

For an agent to solve the programming problem (7) as described above, he must

understand the quadratic nature of his value function as captured by the matrix  ∗,
he must know the relationship of this matrix to the Riccati equation, he must be

aware that iteration on the Riccati equation provides convergence to  ∗, and finally,
he must know how to deduce the optimal control path given  ∗. Furthermore, this
behavior is predicated upon the assumption that he knows the conditional means of

the state variables, that is, he knows  and .

We modify the primitives identifying agent behavior, first by imposing bounded

rationality and then by assuming bounded optimality. It is natural to assume that

while our agent knows the impact of his control decisions on the state, i.e. he knows

, the agent is not assumed to know the parameters of the state-contingent transition

dynamics, i.e. he must estimate .19 Our agent is also not assumed to know how

to solve his programming problem: he does not know Theorem 2. Instead, he uses

a simple forecasting model to estimate the value of a unit of state tomorrow, and

then he uses this forecast, together with his estimate of the transition equation, to

determine his control today. Based on his control choice and his forecast of the value

of a unit of state tomorrow, he revises the value of a unit of state today. This provides

him new data to update his state-value forecasting model.

We develop our analysis of the agent’s boundedly rational behavior in two stages.

In the first stage, which we call “stylized learning,” we avoid the technicalities in-

troduced by the stochastic nature of data realization and forecast-model estimation;

instead, we simply assume that the agent’s beliefs evolve according to a system of

differential equations that have a natural and intuitive appeal. In the second stage,

we will then formally connect these equations to the asymptotic dynamics of the

agent’s beliefs under the assumption that he is recursively estimating and updating

his forecasting models, in real time, and behaving accordingly.

3.2.1 Stylized shadow-price learning

To facilitate intuition for our learning mechanism, we reconsider the above problem

using a Lagrange multiplier formulation. The Lagrangian is given by

L = 0
X
≥0

 (−0 − 0 − 20 + ∗0 (−1 +−1 +  − )) 

where again for  = 0 the last term in the sum is replaced by ∗00 (̄0 − 0). As usual,

∗ may be interpreted as the shadow price of the state vector  along the optimal

19There may be circumstances in which the agent does not know , and hence will need to estimate

it as well. We discuss this briefly later.
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path. The first-order conditions provide

L = 0⇒ ∗0 = −20− 20 0 + 
∗0
+1

L = 0⇒ 0 = −20− 20 + 
∗0
+1

Transposing and combining with the transition equation yields the following dynamic

system:

∗ = −2 − 2 + 0
∗
+1 (24)

0 = −2 0 − 2 + 0
∗
+1 (25)

+1 =  + + +1 (26)

This system, together with transversality, identifies the unique solution to (7). It also

provides intuitive behavioral restrictions on which we base our notion of bounded

optimality.

We now marry the assumption from the learning literature that agents make

boundedly rational forecasts with a list of behavioral assumptions characterizing the

decisions agents make given these forecasts; and, we do so in a manner that we

feel imparts a level of sophistication consistent with bounded rationality. Much of

the learning literature centers on equilibrium dynamics implied by one-step-ahead

boundedly rational forecasts; we adopt and expand on this notion by developing as-

sumptions consistent with the following intuition: agents make one-step-ahead fore-

casts and agents know how to solve a two-period optimization problem based on their

forecasts. Formalizing this intuition, we make the following assumptions:

1. Agents know their individual instantaneous return function, that is, they know

 and  ;

2. Agents know the form of the transition law and estimate the coefficient matrix

;

3. Conditional on their perceived value of an additional unit of  tomorrow, agents

know how to choose their control today;

4. Conditional on their perceived value of an additional unit of  tomorrow, agents

know how to compute the value of an additional unit of  today.

Assumption one seems quite natural: if the agent is to make informed decisions

about a certain vector of quantities , he should at least be able to understand

the direct impact of these decisions. Assumption two is standard in the learning

literature: our agent needs to forecast the state vector, but is uncertain about its

evolution; therefore, he specifies and estimates a forecasting model, which we take as

having the same functional form as the linear transition equation, and forms forecasts
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accordingly. Denote by ̃ the agent’s perception of . As will be discussed below,

under stylized learning, these perceptions are assumed to evolve over time according

to a differential equation, whereas under real-time learning, the agent’s perceptions

are taken as estimates which he updates as new data become available.

Assumptions three and four require more explanation. Let  be the agent’s

perceived shadow price of  along the realized path of  and . One should not think

of  as identical to ∗; indeed ∗ is the vector of shadow prices of  along the optimal
path of  and  and the agent is not (necessarily) interested in this value. Let ̂+1
be the agent’s time  forecast of the time  + 1 value of an additional increment

of the state . Assumption three says that given ̂+1, the agent knows how to

choose , that is, he knows how to solve the associated two-period problem. And

how is this choice made? The agent simply contemplates an incremental decrease

 in  and equates marginal loss with marginal benefit. If  is the “rate function”

( ) = − (0+ 0+ 20) then the marginal loss is . To compute the

marginal gain, he must estimate the effect of  on the whole state vector tomorrow.

This effect is determined by , where  is the 
th-column of . To weigh this

effect against the loss obtained in time , he must then compute its inner product

with the expected price vector, and discount. Thus

 = ̂ (+1)
0


Stacking, and imposing our linear-quadratic set-up, gives the bounded rationality

equivalent to (25):

0 = −2 0 − 2 + 0̂+1 (27)

Equation (27) operationalizes assumption three.

To update their shadow-price forecasting model, the agent needs to determine the

perceived shadow price . Assumption four says that given ̂+1, the agent knows

how to compute . And how is this price computed? The agent simply contemplates

an incremental increase in  and evaluates the benefit. An additional unit of 
affects the contemporaneous return and the conditional distribution of tomorrow’s

state; and the shadow price  must encode both of these effects. Specifically, if  is

the rate function then the benefit of  is given by³
 + ̂ (+1)

0
̃

´
 = 

where the equality provides our definition of  Stacking, and imposing our linear

quadratic set-up yields the bounded rationality equivalent to (24):

 = −2 − 2 + ̃0̂+1 (28)

Equation (28) operationalizes assumption four.

Assumption three, as captured by (27), lies at the heart of bounded optimality: it

provides that the agent makes one-step-ahead forecasts of shadow prices and makes
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decisions today based on those forecasted prices, just as he would if solving a two-

period problem. Assumption four, as captured by (28), provides the mechanism by

which the agent computes his revised evaluation of a unit of state at time : the agent

uses the forecast of prices at time + 1 and his control decision at time  to reassess

the value of time  state; in this way, our boundedly optimal agent keeps track of

his forecasting performance. Below, the agent uses  to update his shadow-price

forecasting model. We call boundedly optimal behavior, as captured by assumptions

one through four, shadow price learning.

We now specify the shadow-price forecasting model, that is, the way our agent

forms ̂+1 Along the optimal path it is not difficult to show that 
∗
 = −2 ∗,

and so it is natural to impose a forecasting model of this functional form. Therefore,

we assume that at time  the agent believes that

 =  +  (29)

for some  ×  matrix  (which we assume is near −2 ∗) and some error term .

Equation (29) has the feel of what is known in the learning literature as a perceived

law of motion (PLM): the agent perceives that his shadow price exhibits a linear

dependence on the state as captured by the matrix . When engaged in real-time

decision making, as considered in Section 3.2.2, our agent will revisit his belief  as

new data become available. Under our stylized learning mechanism,  is taken to

evolve according to a differential equation as discussed below.

We can now be precise about the agent’s behavior. Given beliefs ̃ and , ex-

pectations are formed using (29):

̂+1 = (̃ +) (30)

Equations (27) and (30) jointly determine the agent’s time  forecast ̂+1 and time

 control decision .
20 Finally, (28) is used to determine the agent’s perceived shadow

price of the state ∗ .

It follows that the evolution of  and  satisfy

 = (2− 0)−1(0̃− 2 0)
≡  ( ̃) and (31)

 =
³
−2− 2 ( ̃) + ̃0

³
̃+ ( ̃)

´´
 (32)

≡  ( ̃) (33)

20The control decision is determined by the first-order condition (27), which governs optimality

provided suitable second-order conditions hold. These are satisfied if the perceptions matrix  is

negative semi-definite, which we assume unless otherwise stated.
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where the second lines of each equation define notation.21 Here it is convenient to

keep the explicit dependence of  and  on  as well as on the beliefs ( ̃).

The decision rule (31) is of course closely related to the decision rule given in Part 1

of Lemma 1, specifically:

 () = − (−2)

Note that it is not necessary to assume, nor do we assume, that our agent computes

the map   .

We now turn to stylized learning, which dictates how our agent’s beliefs, as sum-

marized by the collection ( ̃), evolve over time. In order to draw comparisons and

promote intuition for our learning model, it is useful first to succinctly summarize the

corresponding notion from the macroeconomics adaptive learning literature. There,

boundedly rational forecasters are typically assumed to form expectations using a

forecasting model, or PLM, that represents the believed dependence of relevant vari-

ables (i.e. variables that require forecasting) on regressors; the actions these agents

take then generate an implied dependence, or actual law of motion (ALM), and the

map taking perceptions, say as summarized by a vector Θ, to the implied dynamics,

is denoted with a ̃ . This map captures the model’s “expectational feedback” in that

it measures how agents’ perceptions of the relationship between the relevant variables

and the regressors feeds back to the realized relationship.

A fixed point of ̃ , say Θ∗, corresponds to a rational expectations equilibrium
(REE): agents’ perceptions then coincide with the true data-generating process, so

that expectations are being formed optimally. Conversely, the discrepancy between

perceptions and reality, as measured by ̃ (Θ)−Θ, captures the direction and magni-

tude of the misspecification in agents’ beliefs. Under a stylized learning mechanism,

agents are assumed to modify their beliefs in response to this discrepancy according

to the expectational stability (E-stability) equation Θ = ̃ (Θ)−Θ. Notice that

Θ∗ represents a fixed point of this differential equation. If this fixed point is Lyapunov
stable then the corresponding REE is said to be E-stable, and stability indicates that

an economy populated with stylized learners would eventually be in the REE.22

Returning to our environment in which a single agent makes boundedly optimal

decisions, we observe that shadow-price learning is quite similar to the model of

boundedly rational forecasting just discussed. Equation (29) has already been inter-

preted as a PLM, and equation (33) acts as an ALM and reflects the model’s feedback:

21Since  is positive definite and  ∗ is positive semi-definite, it follows that  + 0 ∗ is

invertible; thus 2− 0 is invertible for  near −2 ∗.
22Besides having an intuitive appeal, stylized learning is closely connected to real-time learning

through the E-stability Principle, which states that REE that are stable under the E-stability differ-

ential equation are (locally) stable under recursive least-squares or closely related adaptive learning

rules. See Evans and Honkapohja (2001). Formally establishing that the E-stability Principle holds

for a given model requires the theory of stochastic recursive algorithms, as discussed and employed

in Section 3.2.2 below.
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the agent’s beliefs, choices and evaluations result in an actual linear dependence of his

perceived shadow price on the state vector as captured by   ( ̃). Notice that

the actual dependence of +1 on  and  is independent of the agent’s perceptions

and actions: there is no feedback along these beliefs’ dimensions. For this reason, we

assume for now that ̃ = , and, abusing notation, we suppress the corresponding

dependency in the T-map:  () ≡  (). We will return to this point

when we consider real-time learning in Section 3.2.2.

Letting ∗ = −2 ∗, it follows that  (∗) = ∗. With beliefs ∗, our agent
correctly anticipates the dependence of his perceived shadow price on the state vector;

also, since

 (∗ ) = − (+ 0 ∗)−1 (0 ∗+ 0)

it follows from equation (11) that with beliefs ∗, our agent makes control choices op-
timally: a fixed point of the map   corresponds to optimal beliefs and associated

behaviors. Conversely, the discrepancy between the perceived and realized depen-

dence of  on , as measured by 
 ()−, captures the direction and magnitude

of the misspecification in our agent’s beliefs. Whereas in the literature on adap-

tive learning this discrepancy arises because the agent does not fully understand the

conditional distributions of the economy’s aggregate variables, here the discrepancy

reflects our agent’s limited sophistication: he does not fully understand his dynamic

programming problem, and instead bases his decisions on his best measure of the

trade-offs he faces, as reflected by his belief matrix .

In Theorem 3 we embrace the concept of stylized learning presented above and

assume our agent updates his beliefs according to the matrix-valued differential equa-

tion  =   () −. This system can be viewed as the bounded optimality

counterpart of the E-stability equations used to study whether expectations updated

by least-squares learning converge to RE. Note that ∗ is a fixed point of this dy-
namic system. The following theorem together with Theorem 4, which demonstrates

stability under real-time learning, constitute the core results of the paper.

Theorem 3 If LQ.1 — LQ.3 are satisfied then ∗ is a Lyapunov stable fixed point of
 =  ()−. That is, ∗ is stable under stylized learning.

The proof of Theorem 3, which is given in Appendix A, simply involves connecting

the maps  and  , and then using Theorem 1 to assess stability. While Theorem

3 provides a stylized learning environment, the main result of our paper, captured

by Theorem 4, considers real-time learning. In essence Theorem 4 shows that the

stability result of Theorem 3 carries over to the real-time learning environment.
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3.2.2 Real-time shadow-price learning

To establish that stability under stylized learning carries over to stability under real-

time learning, we now assume that our agent uses available data to estimate his

forecasting model, and then uses this estimated model to form forecasts and make

decisions, thereby generating new data. The forecasting model may be written

+1 =  + + error

 =  + error

where the coefficient matrices are time  estimates obtained using recursive least-

squares (RLS).23 Because we assume the agent knows , to obtain the estimates 

he regresses  − −1 on −1, using data { −1 −1     0 0}. To estimate
the shadow-price forecasting model at time , and thus obtain the estimate , we

assume our agent regresses −1 on −1 using data {−1     0 −1     0}.24
For the real-time learning results we require that the regressors  be non-explosive

and not exhibit asymptotic perfect multicollinearity. The assumptions LQ.1 - LQ.3

do not address perfect multicollinearity and imply only that the state variables either

do not diverge or that they diverge less rapidly than −12. We therefore now impose
the additional assumptions:

LQ.RTL The eigenvalues of  +  (∗ ) not corresponding to the constant
term have modulus less than one, and the associated asymptotic second-moment

matrix for the process  = (+ (∗ ))−1 +  is non-singular.

We note that under LQ.RTL fully optimal behavior leads to stationary state dynam-

ics and precludes asymptotic perfect multicollinearity; however, LQ.RTL does not

require that the dimension of  be smaller than . For an example, see Section 5.1.

More explicit conditions that guarantee satisfaction of LQ.RTL are given in Appendix

A. We note that asymptotic stationarity of regressors, as implied by LQ.RTL, is a

standard assumption in the learning literature. Econometric analysis of explosive re-

gressors involves considerable complexity, which would require a non-trivial extension

of the treatment here.

We may describe the evolution of the estimate of  and  over time using RLS.

The following dynamic system, written in recursive causal ordering, captures the

23An alternative to RLS is “constant gain” learning (CGL), which discounts older data. Under

CGL asymptotic results along the lines of the following Theorem provide for weak convergence to

a distribution centered on optimal behavior. See Ch. 7 of Evans and Honkapohja (2001) for some

general results, and for applications and results concerning transition dynamics, see Williams (2014)

and Cho, Williams, and Sargent (2002).
24As is standard in the learning literature, when analyzing real-time learning, the agent is assumed

not to use current data on  to form current estimates of  as this avoids technical difficulties with

the recursive formulation of the estimators. See Marcet and Sargent (1989) for discussion and details.
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evolution of agent behavior under bounded optimality:

 = −1 +−1 + 

R = R−1 +  (
0
 −R−1)

 0
 =  0

−1 + R−1−1−1 (−1 −−1−1)
0

0 = 0−1 + R−1−1−1 ( −−1 −−1−1)
0

(34)

 =   (  )

 =   (  )

 = (+)−.

Here  is a standard specification of a decreasing “gain” sequence that measures the

response of estimates to forecast errors. We assume that 0    ≤ 1 and  is a

non-negative integer. It is standard under LS learning to set  = 1.

Theorem 4 (Asymptotic Optimality of SP-learning) If LQ.1 — LQ.3 and LQ.RTL

are satisfied then, locally,

( )
a.s.−→ (∗ )

  (  )
a.s.−→ − ∗

when the recursive algorithm is augmented with a suitable projection facility.

See Appendix A for the proof, including a more careful statement of the Theorem, a

construction of the relevant neighborhood, and a discussion of the “projection facil-

ity,” which essentially prevents the estimates from wandering too far away from the

fixed point.25 A detailed discussion of real-time learning in general and projection fa-

cilities in particular is provided by Marcet and Sargent (1989), Evans and Honkapohja

(1998) and Evans and Honkapohja (2001). We conclude that under quite general con-

ditions, our simple notion of boundedly optimal behavior is asymptotically optimal,

that is, shadow-price learners learn to optimize.

While Theorem 4 is a strong result, as it provides for almost sure convergence,

one might wonder whether convergence is global or whether the projection facility

is necessary. The theory of stochastic recursive algorithms does provide results in

this direction. However, in our set-up dispensing with the projection facility is not

generally possible. An unusual sequence of random shocks may push perceptions

 and ̃ into regions that impart explosive dynamics to the state . Numerical

25Theorem 4 does not require the initial perception 0 to be negative semi-definite, which would

ensure that the agent’s second-order condition holds. However, for 1 sufficiently small, if 0 is

negative semi-definite then  will be negative semi-definite for all  ≥ 1.
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investigation suggests that our learning algorithm is remarkably robust. Not surpris-

ingly we observe that stability without a projection facility is governed in large part

by the maximum modulus of the eigenvalues of both the derivative of the T-map,

(
∗ ) and the matrix governing the state dynamics,  +  (∗ ):

the further these eigenvalues are below one the less likely a projection facility will be

activated.

To illustrate these points, we examine several examples. First, consider the sim-

ple univariate case, with  = 0  = 1  = 2  = 1 and  = 1 A straightforward

computation shows that  () = 4(−1 + (2 − )−1) With  = 95, we find that

∗ ≈ −32 and that there is another, unstable fixed point  ≈ 131 Figure 1

plots the T-map and the 45-degree line, and illustrates that, under the iteration dy-

namic  =  (−1) the fixed point ∗ is asymptotically obtained provided that
0   We note also that for the agent corresponding to this specification of the

decision problem, more 0 is welfare reducing, thus it is reasonable to assume that

even boundedly optimal agents would hold initial beliefs satisfying 0  0  

Finally, since behavior under the iteration dynamic is closely related to behavior un-

der real-time learning, this result suggests that the dynamic (34) is likely to converge

without a projection facility if agents hold reasonable initial beliefs, i.e. 0  0  

and we find this to be borne out under repeated simulation.
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Figure 1: Univariate T-map

Next, we consider a two-dimensional example. A simple notation is helpful: if 
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is a square matrix then () is the spectral radius, that is, the maximum modulus of

the eigenvalues. In this example, the primitive matrices are chosen so as to promote

instability:

 ((
∗ )) = 9916 and  (+ (∗ )) = 9966.

The first equality implies that the T-map does not correct errors quickly and the

second equality means that along the optimal path the state dynamics are very nearly

explosive. When conditions like these hold, even small shocks can place beliefs

within a region resulting in explosive state dynamics, which, when coupled with an

unresponsive T-map, leads to unstable learning paths. We find, using simulations,

that even if the dynamic (34) is initialized at the optimum, 80% of the learning paths

diverge within 300 periods.26

Finally, we consider another two-dimensional example. In this case, the primitive

matrices are chosen to be less extreme than the previous example, but still have

reasonably high spectral radii:

 ((
∗ )) = 8387 and  (+ (∗ )) = 8429.

Under this specification we find that the dynamic (34) is very stable. To examine

this, we drop the projection facility and we adopt a constant gain formulation (setting

 = 001 and  = 0 so that  = 001) so that estimates continue to fluctuate

asymptotically, increasing the likelihood of instability. We ran 500 simulations for

2500 periods, each using randomly drawn initial conditions, and found that all 500

paths converged toward and stayed near the optimum.

Returning now to our general discussion, the principal and striking result of the

adaptive learning literature is that boundedly rational agents, who update their fore-

casting models in natural ways, can learn to forecast optimally. Theorem 4 is com-

plementary to this principal result, and equally striking: boundedly optimal decisions

can converge asymptotically to fully optimal decisions. By estimating shadow prices,

our agent has converted an infinite-horizon problem into a two-period optimization

problem, which, given his beliefs, is comparatively straightforward to solve. The level

of sophistication needed for boundedly optimal decision-making appears to be quite

natural: our agent understands simple dynamic trade-offs, can solve simultaneous

linear equations and can run simple regressions. Remarkably, with this level of so-

phistication, the agent can learn over his lifetime how to optimize based on a single

realization of his decisions and the resulting states.

26Here we have employed a constant gain learning algorithm. Also, by diverge we mean that the

paths escape a pre-defined neighborhood of the optimum.
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4 Extensions

We next consider several extensions of our approach. The first adapts our analysis to

take explicit account of exogenous states. This will be particularly convenient for our

later applications. We then show how to modify our approach to cover value-function

learning and Euler-equation learning.

4.1 Exogenous states

Some state variables are exogenous: their conditional distributions are unaffected by

the control choices of the agent. To make boundedly optimal decisions, the agent

must forecast future values of exogenous states, but it is not necessary that he track

the corresponding shadow prices: there is no trade-off between the agent’s choice

and expected realizations of an exogenous state. In our work above, to make clear

the connection between shadow-price learning and the Riccati equation, we have

ignored the distinction between exogenous and endogenous states; however, in our

examination of Euler equation learning in Section 4.2.2, and for the applications in

Sections 5.1 and 5.2, it is helpful to leverage the simplicity afforded by conditioning

only on endogenous states. In this subsection we show that the analogue to Theorem

3 holds when the agent restricts his shadow-price PLM to include only endogenous

states as regressors.

Assume that the first 1 entries of the of the state vector  are exogenous and

that 2 = − 1. For the remainder of this subsection, we use the notation

 =

µ
11 12

21 22

¶
to emphasize the block decomposition of the  ×  matrix , with 11 being an

1 × 1 matrix, and the remaining matrices conformable. Also, for × matrix ,

we use

 =

µ
1

2

¶
 and  0 =

¡
 0
1  0

2

¢
(35)

with 1 an 1 × matrix and 2 conformable. With this notation, we may write

the matrices capturing the transition dynamics as

 =

µ
11 0

21 22

¶
and  =

µ
0

2

¶


where the zeros represent conformable matrices with zeros in all entries, and thus

capture the exogeneity of 1.
27 Since it is always possible to reorder the components

of the states, we will assume this ordering whenever exogenous states are present.

27We assume that the exogenous states are either stationary or unit root: the eigenvalues of 11
lie within the closed unit disk.
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Endogenous-state SP learners are assumed to know the structure of  and , i.e.

to know which states are exogenous; and we assume they use this knowledge when

making their control decisions, and updating perceived shadow prices, based on the

perceived trade-offs between today and tomorrow. These trade-offs are reflected in

the following marginal conditions, which we take as behavioral primitives for these

agents:

0 = −2 0̌ − 2̌ + 0
2̂̌2+1

̌2 = −2̌ − 2̌ + ̃022̂̌2+1

where ̃ is the perceived transition matrices, which are assumed to satisfy ̃12 = 0 and

1 = 0. Here the notation ̌ ̌ ̌2 is used to indicate the control decisions, state

realizations and perceived shadow prices of the endogenous SP learner. Note that

these primitives are precisely the equations that would be obtained from (27)-(28)

under the exogeneity restrictions assumed for the transition dynamics.

For simplicity we focus on stylized learning in which the agent knows the transition

dynamics  and . To make his control decisions, he forecasts the future values of

the endogenous states’ shadow prices, which we denote by ̌2, using the PLM

̌2 = ̌̌ + noise (36)

Notice that the price of an additional unit of endogenous state may depend on the

realization of an exogenous state; hence, we condition ̌2 on the entire state vector

̌.

We now compare the behavior of an endogenous state SP learner with that of a

“full-state” SP learner of Section 3.2, who uses the PLM  = + noise. Since

under the structural assumptions on  and 

0̂+1 = 0
2̂2+1 and (

0̂+1)2 = 022̂2+1

where the notation ()2 identifies the last 2 rows of the matrix (), it follows that

 = ̌  = ̌ and 2 = ̌2 whenever 2 = ̌. Thus Theorem 3 applies: by

only forecasting endogenous states our agent learns to optimize. Furthermore, it is

straightforward to generalize this framework and result to allow for real-time estima-

tion of the transition dynamics and the shadow-prices PLM.

In fact it is clear that this result is more general. Continuing to assume that all

agents know the transition dynamics  and  two agents forecasting distinct sets of

shadow prices will make the same control decisions, provided that both sets include

all endogenous states and the agents’ forecasting models of the endogenous shadow

prices coincide. In particular, it is natural to assume that agents do not forecast the

shadow price of the constant term and when convenient we will make this assumption.

SP learners who forecast some or all exogenous states will additionally asymptoti-

cally obtain the shadow prices of these exogenous states, but these shadow prices are
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not needed or used for decision-making. Also, SP learners of any these types, whether

they forecast all, some or none of the exogenous states, will learn to optimize even if

they do not know which states are exogenous.

The results of this Section are useful for applications in which particular states are

exogenous and in which it is natural to assume that agents understand and impose

knowledge of this exogeneity. Because our stability results are unaffected by whether

the agent forecasts exogenous shadow prices, in the sequel we will frequently assume

that agents make use of this knowledge.

4.2 Bounded optimality: alternative implementations

Although shadow-price learning provides an appealing way to implement bounded

rationality, our discussion in the Introduction suggests that there may be alternatives.

In this section we show that our basic approach can easily be extended to encompass

two closely related alternatives: value-function learning and Euler-equation learning.

Shadow-price learning focuses attention on the marginal value of the state, as this is

the information required to chose controls, and under SP-learning the agent estimates

the shadow prices directly. In contrast, value-function learning infers the shadow

prices from an estimate of the value function itself. A second alternative, when

the endogenous states exhibit no lagged dependence, is for the agent to estimate

shadow prices simply using marginal returns , leading to Euler-equation learning.

We consider these two alternatives in turn.

4.2.1 Value-function learning

Our implementation of value-function learning leverages the intuition developed in

Section 3.1.1: given a perceived value function  , represented by the symmetric

positive semidefinite matrix  , i.e.  () = −0, the agent chooses control  =
− ( ), which results in a realized, or actual value function   represented by

 ( ), i.e.   () = −0 ( ). See Lemma 2 for the result and corresponding

formulae.

As with shadow-price learning, here we assume that the agent updates his per-

ceptions in a manner consistent with the use of regression analysis, and to model

this, some additional notation is required. Let () = ()1≤≤≤ ∈ R , where

 = (+1)2, be the vector of relevant regressors, i.e. the collection of all possible

pairwise products of states. We remark that 1 = 1, so that  includes a constant

and all linear terms . Let S() ⊂ R× be the vector space of symmetric matrices,
and letM : R → S() be the vector space isomorphism that provides the following
correspondence:

 ∈ R =⇒ 0() = −0M()
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with this notation, the perceived value function corresponding to perceptions  may

be written as depending on analogous perceptions  =M−1( ):

 () = −0 = 0() whereM() = 

and because of this, we will speak of perceptions  ∈ R 

To update his perceptions , the agent regresses estimates ̂ () of the value func-

tion on states () Now note that given perceptions , the agent’s control decision is

given by  = − (M()) which may then be used to obtain the estimate ̂ ():

̂ () = −0− 0− 20+ ̂0 (++ ) =    ()0()

where the second equality defines the map    : R → R  Now notice

   ()0() = −0− 0− 20− ̂(++ )0M() (++ )

= −0 (M())

It follows that    =M−1 ◦   ◦M  i.e.    and   are conjugate operators.

That    is related to   via conjugation has two immediate implications. First, if

∗ =M−1( ∗ ) then 
  (∗) = ∗ and ∗ corresponds to fully optimal beliefs. Second,

since conjugation preserves stability, by Corollary 1 we know that ∗ is a Lyapunov
stable fixed point of the differential equation  =    () − . We summarize

these findings in the following theorem, which is the value-function learning analog

of Theorem 3:

Theorem 5 Assume LQ.1 — LQ.3 are satisfied. Then ∗ =M−1( ∗ ) is a Lyapunov
stable fixed of the differential equation  =    ()−  and  ∗() = ∗

0 · ().

We now briefly discuss the real-time algorithm that corresponds to value-function

learning. Our agent is assumed to use available data to estimate the transition equa-

tion and his perceived value-function  () = 0(), and then use these estimates to
form forecasts and thereby generate new data. The transition equation is estimated

just as in Section 3.2.2. To estimate the value-function at time , and thus obtain an

estimate of the beliefs coefficients , we assume our agent regresses ̂−1 on (−1)
using data {−1     0 ̂−1     ̂0}. Given , the agent’s control choice is

 =  (()  ) 

where  is given by (31), () = −2M() Finally, the agent’s estimated value at

time  is given by

̂ =    (  )
0 · 

where we abuse notation somewhat by incorporating into the function    the time-

varying estimates of . A causal recursive dynamic system analogous to (34) may

then be used to state and prove a convergence theorem analogous to Theorem 4.
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4.2.2 Euler-equation learning

Euler equation learning takes as primitive the agent’s first-order conditions (FOC),

written in terms of primal variables and derived using e.g. a variational argument,

and assumes decisions are taken to meet this condition subject to boundedly rational

forecasts. In this section, we focus on decision-making environments that result in

“one-step-ahead” Euler equations, that is, LQ-problems yielding FOCs with only one

lead. Existence of one-step-ahead Euler equations is an important consideration,

and it is closely related to the problem’s state-control specification: a given dynamic

programming problem may have several natural (and equivalent) state-control specifi-

cations, and a generic variational argument may yield a one-step-ahead Euler equation

against one set of states and controls and not against another.

To address in generality the issues just laid out, in Appendix B we develop a

transformation framework that will allow us to formally move between different state-

control specifications; then we establish a general condition providing for the existence

of a one-step-ahead Euler equation; next, we develop Euler equation learning assuming

this condition holds, and show that LQ.1 - LQ.3 imply a stable learning environment.

To facilitate the presentation here we focus on two special cases commonly met in

practice.

The Bellman system associated with the standard dynamic programming problem

(1)-(2) is given by

 () = max
∈Γ()

( ) +  ((  ))

The first-order and envelope conditions are

0 = ( )
0 + (  +1)

0(+1)
0 (37)

()
0 = ( )

0 + (  +1)
0(+1)

0 (38)

Stepping (37) ahead one period and inserting into (38) yields

0 = ( )
0+ ((  +1)

0 ((+1 +1)
0 + (+1 +1 +2)

0(+2)
0)) 

Observe that if

(  +1)
0(+1 +1 +2)

0(+2)
0 = 0 (39)

then we obtain the usual Euler equation

0 = ( )
0 + (  +1)

0(+1 +1)
0

Equation (39) provides a natural condition for the existence of one-step-ahead Euler

equations. Within the LQ framework, this condition becomes 
0
+2 = 0: the
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value two periods hence of a change in the control today is expected to be zero. The

corresponding Euler equation is given by

 + 0 + 0(+1 ++1) = 0 (40)

Using the ordering of variables established in Section 4.1, we note that 22 = 0 pro-

vides a simple condition sufficient for the existence of one-step-ahead Euler equations

within an LQ-framework.

If 22 6= 0 it may still be possible to use variational arguments to derive a one-step
ahead first-order condition that can be interpreted as an Euler equation. The key

is whether one can choose a variation in controls at time  that leaves the state at

time + 2 unaffected. Recalling the ordering convention of Section 4.1, consider the

case in which 2 = , i.e. the number of controls equals the number of endogenous

states, and det(2) 6= 0. A variation  results in the change in endogenous states

2+1 = 2, which may be offset by the control choice

+1 = −−12 222

so that 2+2 = 0. The impact of this variation on the agent’s objective, set equal

to zero, yields the first-order condition

( ) +  ((+1 +1)+1 + (+1 +1)+1) = 0

where 1+1 = 0. Combining with 2+1 = 2 and +1 = −−12 222,

and using the quadratic form for ( ) we get

 + 0 + 0

³
̆+1 + ̆+1

´
= 0 (41)

where

̆ = −
µ
0



¶
022

¡
−12

¢0
 0 and ̆ = −

µ
0



¶
022

¡
−12

¢0
 (42)

Note that if 22 = 0 equation (40) is recovered.

We now turn to Euler equation learning based on (41). It is convenient to treat our

two special cases simultaneously. Therefore, abusing notation somewhat, whenever

22 = 0, we set ̆ =  and ̆ = . Otherwise, we assume 2 =  and det(2) 6= 0,
and ̆ and ̆ are given by (42). We adopt stylized learning and for simplicity we

assume the agent knows the transition matrix  as well as . The agent is required

to forecast his own future control decision, and we provide him a forecasting model

that takes the same form as optimal behavior:  = −. The agent computes

̂+1 =  + and ̂+1 = −̂+1 (43)
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which may then be used in conjunction with (41), with replaced by ̂, to determine

his control decision. The following notation will be helpful: for “appropriate” × 

matrix , set

Φ() = (+ 0)−1 and Ψ() = 0+ ̆ 0

where  is appropriate provided that det( + 0) 6= 0. Then, combining (43)
with (41) and simplifying yields

 = −( ) where 
( ) = Φ(̆− ̆ )Ψ(̆− ̆ ) (44)

Equation (44) may be interpreted as the actual law of motion given the agent’s beliefs

 . Finally, the agent updates his forecast of future behavior by regressing the control

on the state. This updating process results in a recursive algorithm analogous to (34),

which identifies the agent’s behavior over time.

Let  ∗ = Φ( ∗)Ψ( ∗), where  ∗ is the solution to the Riccati equation. By
Theorem 2, we know that  = − ∗ is the optimal feedback rule. In Appendix B we
show Φ

³
̆− ̆ ∗

´
= Φ( ∗) and Ψ(̆ − ̆ ∗) = Ψ( ∗), and thus it follows from

(44) that ( ∗) =  ∗. It can be shown that  ∗ is stable under stylized learning.
We have:

Theorem 6 Assume LQ.1 — LQ.3 are satisfied, and that either 22 = 0 or else both

2 =  and det(2) 6= 0. If agents behave as Euler equation learners with perceptions
 = − and use (41) as their behavioral primitive then  ∗ is a Lyapunov stable
fixed point of the differential equation  = ( ) −  . That is,  ∗ is stable
under stylized learning.

We now briefly discuss the real-time algorithm that corresponds to Euler-equation

learning. Our agent is assumed to use available data to estimate the transition equa-

tion and the coefficients  of his decision-rule  = −, and then to use these esti-
mates to form forecasts and make decisions, thereby generating new data. The transi-

tion equation is estimated just as in Section 3.2.2. To estimate the beliefs coefficients

 , we assume our agent regresses −1 on −1 using data {−1     0 −1     0}.
Given the time  estimate , the agent’s control choice satisfies

 = − (  )

where again we abuse notation somewhat by incorporating into the function  the

time-varying estimates of . A causal recursive dynamic system along the lines of

(34) may then be used to state and prove a convergence theorem for Euler-equation

learning analogous to Theorem 4.

The above results on the Euler-equation learning procedure are based on first-

order Euler-equation learning. Often it is possible in more general circumstances to

derive an Euler equation that involves multiple leads. We illustrate this point in the

context of the example given in Section 5.1.
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4.3 Summary

Section 3, which presents our main results, provides theoretical justification for a

class of boundedly rational and boundedly optimal decision rules, based on adaptive

learning, in which an agent facing a dynamic stochastic optimization problem makes

decisions at time  to meet his perceived optimality conditions, given his beliefs about

the values of an extra unit of the state variables in the coming period and his perceived

trade-off between controls and states between this period and the next. We fully

develop the approach in the context of shadow-price learning in which our agent

uses natural statistical procedure to update each period his estimates of the shadow

prices of states and of the transition dynamics. Our results show that in the standard

Linear-Quadratic setting, an agent following our decision-making and updating rules

will make choices that converge over time to fully optimal decision-making. In the

current Section we have extended these convergence results to alternative variations

based on value-function learning and Euler-equation learning. Taken together, our

results are the bounded optimality counterpart of the now well-established literature

on the convergence of least-squares learning to rational expectations. In the remaining

sections we show how to apply our results to several standard economic examples.

5 Examples and Applications

We now examine implementation of bounded optimality in several well-known models.

We first consider a single agent LQ economy, the “Robinson Crusoe” model, in which

the assumptions of Section 3 hold, so that convergence to optimal decision-making is

guaranteed. Next we turn to a stochastic Ramsey growth model to illustrate how SP

learning can be implemented in a non-LQ general equilibrium framework. Finally,

we consider how to implement SP learning in a New Keynesian model, both in the

standard case of homogeneous expectations and also in the case in which agents hold

heterogeneous beliefs and thus have heterogeneous assets. This range of examples

illustrates broad applicability of our results.

5.1 SP-learning in a Crusoe economy

By Theorem 4, an individual with quadratic preferences and facing a linear constraint

can learn to make optimal choices provided he makes boundedly rational forecasts

and uses boundedly optimal behavior. To illustrate our results, we turn to a simple

Crusoe environment with quadratic preferences and linear production specification.
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5.1.1 A Robinson Crusoe economy

A narrative approach may facilitate intuition. Thus, imagine Robinson Crusoe, a

middle class Brit, finding himself marooned on a tropical island. An organized young

man, he quickly takes stock of his surroundings. He finds that he faces the following

problem:

max −̂
X
≥0


¡
( − )

2 + 2
¢

(45)

s.t.  = 1 +2−1 +  (46)

+1 =  −  + +1 (47)

 =  (48)

 = ∗ +∆(−1 − ∗) + 

 = −1 + 

with −1 0 and 0 0 given.

Here  is fruit and  is consumption of fruit. Equation (46) is Bob’s production

function — he can either plant the fruit or eat it, seeds and all — and the double

lag captures the production differences between young and old fruit trees. All non-

consumed seeds are planted. Some seasons, wind brings in additional seeds from

nearby islands; other seasons, local voles eat some of the seeds: thus +1, the number

of young trees in time  + 1, is given by equation (47), where the white noise term

+1 captures the variation due to wind and voles. Note that  is both the quantity

of young trees in  and the quantity of old trees in  + 1. Weeds are prevalent on

the island: without weeding around all the young trees, the weeds rapidly spread

everywhere and there is no production at all from any trees: see equation (48). This

is bad news for Bob as he’s not fond of work:   0. Finally,  is a productivity

shock (rabbits eat saplings and ancient seeds sprout) and  is stochastic bliss: see

Ch. 5 of Hansen and Sargent (2014) for further discussion of this economy as well

as many other examples of economies governed by quadratic objectives and linear

transitions.28

Some comments on  and the constraint (48) are warranted, as they play impor-

tant roles in our analysis. Because   0 and  = , it follows that an increased

stock of productive trees reduces Bob’s utility. In the language of LQ programming,

these assumptions imply that a diverging state  is detected and must be avoided:

specifically,   0 is necessary for the corresponding matrix pair to be detectable —

see Assumption LQ.3 and Appendix C. In contrast, and somewhat improbably, Bob’s

28The only novelty in our economy is the presence of a double lag in production. The double lag

is a mechanism to expose the difference between Euler equation learning and SP-learning. Other

mechanisms, such as the incorporation of habit persistence in the quadratic objective, yield similar

results.
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disheveled American cousin Slob is not at all lazy: his  is zero and his behavior,

which we analyze in a companion paper, is quite different from British Bob’s.

When he is first marooned, Bob does not know if there is a cyclic weather pat-

tern; but he thinks that if last year was dry this year might be dry as well. Good

with numbers, Bob decides to estimate this possible correlation using RLS. Bob also

estimates the production function using RLS. Finally, Bob contemplates how much

fruit to eat. He decides that his consumption choice should depend on the value of

future fruit trees forgone. He concludes that the value of an additional tree tomor-

row will depend (linearly) on how many trees there are, and makes a reasoned guess

about this dependence. Given this guess, Bob estimates the value of an additional

tree tomorrow, and chooses how much fruit to eat today.

Belly full, Bob pauses to reflect on his decisions. Bob realizes his consumption

choice depended in part on his estimate about the value of additional trees tomorrow,

and that perhaps he should revisit this estimate. He decides that the best way to

do this is to contemplate the value of an additional tree today. Bob realizes that

an additional young tree today requires weeding, but also provides additional young

trees tomorrow (if he planted the young tree’s fruit) and an old tree tomorrow, and

that an additional old tree today provides young trees tomorrow (if he planted the

old tree’s fruit). Using his estimate of the value of additional trees tomorrow, Bob

estimates the value of an additional young tree and an additional old tree today. He

then uses these estimates to re-evaluate his guess about the dependence of tree-value

on tree-stock. Exhausted by his efforts, Bob falls sound asleep. He should sleep well:

Theorem 4 tells us that by following this simple procedure, Bob will learn to optimally

exploit his island paradise.

This simple narrative describes the behavior of our boundedly optimal agent. It

also points to a subtle behavioral assumption that is more easily examined by adding

precision to the narrative. To avoid unnecessary complication, set ∆ = 0  = 0,

 = 0. The simplified problem becomes

max −̂
X
≥0


¡
( − ∗)2 + 2

¢
(49)

s.t. +1 = 1 +2−1 −  + +1

In notation of Section 3, the state vector is  = (1  −1)0 and the control is
 = . We assume that 1 + 22  1 and   0 to guarantee that steady-state

consumption is positive and below bliss: see Appendix C for a detailed analysis of

the steady state and fully optimal solution to (49). In particular, it is shown there

that LQ.1 - LQ.3 are satisfied. For the reasons given in Section 4.1 there is no need

to forecast the shadow price of the intercept. Thus let 1 be the time  value of an

additional new tree in time  and 2 the time  value of an additional old tree in time

. Bob guesses that  depends on  and −1:

 =  +  + −1, for  = 1 2 (50)
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He then forecasts +1:

̂+1 =  + ̂+1 + , for  = 1 2 (51)

Because he must choose consumption, and therefore savings, before output is realized,

Bob estimates the production function and finds

̂+1 = 1 +2−1 − 

where  is obtained by regressing  on (−1 −2)0 He concludes that

̂+1 =  + (1 + ) + 2−1 −  (52)

which, he notes, depends on his consumption choice today.

Now Bob contemplates his consumption decision. By increasing consumption by

, Bob gains −2( − ∗) and loses ̂1+1. Bob equates marginal gain with

marginal loss, and obtains

 = ∗ − 

2
̂1+1 (53)

This equation together with equation (52) for  = 1 is solved simultaneously by Bob

to obtain numerical values for his consumption  and the forecasted shadow price

̂1+1.
29

Finally, Bob revisits his parameter estimates   and . He first thinks about

the benefit of an additional new tree today: it would require weeding, but the fruits

could be saved to produce an estimated 1 new trees tomorrow, plus he gets an

additional old tree tomorrow. He concludes

1 = −2 + 1̂1+1 + ̂2+1 (54)

Equations (53) and (54) reflect a novel feature in Bob’s problem: a reduction in

consumption in period  necessarily leads to additional old trees in period  + 2,

which means that Bob needs to track two shadow prices and cannot use one-step-

ahead Euler equation learning.

To complete his contemplations, Bob finally considers the benefit of an additional

old tree today: the fruits could be saved to produce an estimated 2 new trees

tomorrow. Thus

2 = 2̂1+1 (55)

Because Bob has numerical values for ̂+1, (54) and (55), together with the esti-

mates , generate numerical values for the perceived shadow prices. Bob will then

use these data to update his estimates of the parameters   and . We have the

following result.

29See Appendix C for formal details linking this example to the set-up of Section 3.
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Proposition 1 Provided LQ.RTL holds, Robinson Crusoe learns to optimally con-

sume fruit.

A brief comment is required concerning the assumption LQ.RTL. As noted, LQ.1

- LQ.3 imply that the state dynamics explode no faster than −12. On the other
hand, LQ.RTL requires that the state be asymptotically stationary. When 2 =

0, and hence when 2 is small and positive, it can be shown that the conditions

1 + 22  1 and   0 imply LQ.RTL. However, there are cases with 2  0 in

which the optimal state dynamics are explosive. See Appendix D for more details.

This implementation of the narrative above highlights our view of Bob’s behavior:

he estimates forecasting models, makes decisions, and collects new data to update

his models. Thus Bob understands simple trade-offs, can solve simultaneous linear

equations and can run simple regressions. These skills are the minimal requirements

for boundedly optimal decision-making in a dynamic, stochastic environment. Re-

markably, they are also sufficient for asymptotic optimality.

One might ask whether Bob should be more sophisticated. For example Bob

might search for a forecasting model that is consistent with the way shadow prices

are subsequently revised: Bob could seek a fixed point of the  -map. We view this

alternative behavioral assumption as too strong, and somewhat unnatural, for two

reasons. First, we doubt that in practice most boundedly rational agents explicitly

understand the existence of a   -map. Even if an agent did knew the form of the

 -map, would he recognize that a fixed point is what is wanted to ensure optimal

behavior? Why would the agent think such a fixed point even exists? And if it

did exist, how would the agent find it? Recognition that a fixed point is important,

exists, and is computable is precisely the knowledge afforded those who study dynamic

programming; our assumption is that our agent does not have this knowledge, even

implicitly.

Our second reason for assuming Bob does not seek a fixed point to the   -map

relates to the above observation that obtaining such a fixed point is equivalent to

full optimality given the “perceived transition equations.” However, if the perceived

coefficients  are far from the true coefficients, , it is not clear that the behavior

dictated by a fixed point to the   -map is superior to the behavior we assume.

Given that computation is unambiguously costly, it makes more sense to us that Bob

not iterate on the  -map for fear that he might make choices based on magnified

errors.

The central point of our paper is precisely that with limited sophistication, plau-

sible and natural boundedly optimal decision-making rules converge to fully optimal

decision-making.
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5.1.2 Comparing learning mechanisms in a Crusoe economy

The simplified model (49) provides a nice laboratory to compare and contrast SP-

learning with Euler equation learning. For simplicity we adopt stylized learning and

assume that our agent knows the true values of . Shadow price learning has been

detailed in the previous section: the agent has PLM for shadow prices (50), and

using this PLM, he forecasts future shadow prices: see (51). As just discussed, these

forecasts are combined with (53) to yield his consumption decision

 = 1(  ) + 2(  ) + 3(  )−1 (56)

The control choice is then used to compute shadow price forecasts via (52). By

Proposition 1 his decision-making is asymptotically optimal.

Turning to Euler-equation learning, if 2 = 0 then there is a one-step ahead

Euler equation that can be obtained using a suitable transform: see Appendix C.

In this case Theorem 6 applies and Euler-equation learning provides an alternative

asymptotically optimal implementation of bounded optimality. When 2 6= 0 it is

not possible to obtain a one-step-ahead Euler equation; however, a simple variational

argument leads to the following FOC:

 − ̂+1 = Ψ+ 1̂+1 + 22̂+2 (57)

where Ψ = ∗(1−1−22). We refer to (57) as a second-order Euler equation.
30

We can then proceed analogously to Section 4.2.2 and implement Euler equation

learning by taking (57) as a behavioral primitive: the agent is assumed to forecast

his future consumption behavior and then choose consumption today based on these

forecasts. The agent is assumed to form forecasts using a PLM that is functionally

consistent with optimal behavior:

 = 1 + 2 + 3−1

Using this forecasting model and the transition equation

+1 = 1 +2−1 −  + +1

the agent chooses  to satisfy (57). This behavior can then be used to identify the

associated  map. See the Appendix for a derivation of the  map.

Our interest here is to compare shadow price learning and Euler equation learn-

ing. Although we have not explored this point in the current paper, it is known

from the literature on stochastic recursive algorithms that the speed of convergence

of the real-time versions of our set-ups is governed by the maximum real parts of

30The Euler equation can be derived by a direct variational argument. Alternatively it can be

obtained from (53), (54) and (55).
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the eigenvalues of the T-map’s derivative: this maximum needs to be less than one

for stability and larger values lead to slower convergence. Here, if 2 = 0 then the

agent’s problem has a one dimensional control and a two dimensional state, with one

dimension corresponding to a constant: in this case the Euler equation is first-order

and shadow price learning and Euler equation learning are equivalent. However, for

2  0 the endogenous state’s dimension is two and the equivalence may break down,

as is evidenced by Figure 2, which plots the maximum real part of the eigenvalues for

the respective T-maps’ derivatives.

Euler Equation Learning

Shadow Price Learning

0.2 0.4 0.6 0.8 1.0
A2

0.25

0.30

0.35

0.40

0.45
DT

Figure 2: SP learning vs Euler learning: largest eigenvalue

The intuition for the inequivalence of shadow-price learning and Euler equation learn-

ing is straightforward: shadow price learning recognizes the two endogenous states

and estimates the corresponding PLM. In contrast, under Euler equation learning

agents need to understand and combine several structure relationships: they must

understand the relationship between the two shadow prices;31 and, they must com-

bine this understanding with the first-order condition for the controls to eliminate

the dependence on these shadow prices. In our simple example, Bob, as a shadow-

price learner, would need to combine equations (54) and (55) with his decision rule

to obtain the Euler equation (57). In this sense, shadow-price learning requires less

structural information than Euler equation learning.

31We note that for the general LQ-problem, the relationship between shadow prices may be quite

complicated.
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5.2 SP Learning in a Ramsey Model

Our principal result on SP learning formally establishes that an agent in an LQ setting

can, by estimating the transition equation and making control decisions conditional on

forecasts of the states’ shadow prices, learn to behave optimally. The LQ environment

is key to obtaining analytic results — the resulting stochastic system is linear — and

it is arguably natural in some economic settings; however, most DSGE frameworks

embrace a more general stochastic decision-making model. As emphasized in Section

2.2, while the theoretical arguments are not known to hold in the general settings,

the intuition on which SP learning is built — that agents make decisions contingent

on perceived values of states — still has obvious merit and its implementation can be

explored computationally. Here, we consider a Ramsey model as a simple example

of SP-learning in a non-LQ environment. Even though we will assume homogeneity

in this example, it is important, when implementing agent-level learning in a DSGE

environment, to distinguish between individual and aggregate variables; thus we index

agents by  ∈ Ω. In the next subsection, which involves analysis of a New Keynesian

model, we allow also for agent-level heterogeneity in beliefs and asset holdings.

5.2.1 The Ramsey model

Firms own CRTS technology, which is given by  = () in per-worker units. Here,

log  is a stationary AR(1) stochastic productivity shock with small support, namely

 = 

−1, where  is  exogenous with mean one. Markets are competitive so

that factor prices are assigned their marginal products.

There is a unit mass of households indexed as  ∈ Ω. Labor is supplied inelasti-

cally. Household ’s problem is given by

max ̂
X

(())

+1() = (1 + )() +  − () (58)

We use ̂ to denote (), the expected value of agent  computed using his subjective

probability distribution. We put the agent’s decision problem in the general form

(1)-(2) as follows. The control is () and the state is 
0
() = (1 ()   ).

Including the productivity shock as an observed exogenous state is not necessary,

but provides a helpful simplification for our illustrative purposes here. The state’s

transition function (() () +1) is given by

(() () +1) =

⎛⎜⎜⎜⎜⎝
1

(1 + )() +  − ()

(() () +1)

(() () +1)

+1



⎞⎟⎟⎟⎟⎠ 
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where, again for simplicity, it is assumed that household  knows the transition

dynamics of . As discussed below, agents will not need to directly estimate the

wage and interest-rate dynamics.

The agent treats   and  as exogenous. For the reasons given in Section 4.1

the only relevant shadow price for decision-making measures the value () of the

variable (). Under optimal decision-making the shadow price of () depends

in a non-linear way on the state vector (). Instead of assuming that the agent

understands this non-linear dependency, we follow the discussion of Section 2.2 and

assume that the agent uses a linear model to forecast the shadow price. This is a

plausible misspecification consistent with the view that, in general environments in-

volving uncertainty, agents are unlikely to know the true data-generating process and

will thus approximate its functional form. Using linear forecasting models is one par-

ticularly natural approximation; other common approximations include parsimonious

forecasting models that economize on the number of independent variables and their

lags.

With this discussion in mind, the PLM for the shadow price, as in Section 2.2, is

() = ()(). However, in case of homogeneity as is assumed below, including

all of the state components as regressors leads to severe multicollinearity problems

because  and  are exact functions of  and , and because in equilibrium () =

. To deal with this problem, we need to reduce by two the number of regressors,

and we choose the regressors to be ̃() = (1 () ). This choice corresponds,

in addition to the intercept, to one agent-level state and the exogenous aggregate

driving variable.32

As in Section 2.2, the agent needs to forecast ̃+1(), and in the current setting

this is straightforward. Because (58) is the agent’s flow budget constraint, we natu-

rally assume that this equation is known by the agent and used to perfectly forecast

+1(). For simplicity we also assume that the linearized transition for productivity

is known so that ̂+1 = −+  Thus

̂+1() = ()̂̃+1() = () +()+1() +()̂+1, i.e.

̂+1() = ()− () +() ((1 + )() + ) (59)

+() −()()

Given forecasts of the shadow-price of savings, the household’s consumption decision

satisfies

 0(()) = ̂+1() (60)

32An alternative to using  as an agent-level regressor we could instead assume agents regress on,

for example, wages and/or interest rates. This would complicate matters in two ways. First, agents

would then need to have forecasting models for wages and interest rates. Secondly, asymptotic

multicollinearity can be a severe issue.
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The household’s shadow price is updated via

() = (1 + )̂+1() (61)

where we remark that () may be equivalently written as () = (1+)
0(())

Combining (58), (59), and (60) yields decision rules for consumption and savings

as well as the updating equation:

() = (()    ()) (62)

+1() = (()    ()) (63)

() = (()   ()) (64)

Equations (62) — (64) summarize the behavior of household  in terms of states and

beliefs.

The temporary equilibrium prices and quantities are determined by market clear-

ing. We have the following conditions:

 =

Z
()

 = ()

 =

Z
+1() − (1− )

Z
() +

Z
()

 = 
0()− 

 = (()−  0())

We note that goods market clearing is redundant via Walras’s law.

5.2.2 Rational Expectations

To provide a benchmark, we first analyze the rational expectations equilibrium, which

is the unique bounded path satisfying

 0() = (1 + +1
0(+1)− ) 0(+1)

+1 = () + (1− ) − 

 = 

−1

Near the non-stochastic steady state ( ), the REE is approximated by

 = ∗ + +

+1 = ∗ +  −  + ()

 = −+ −1 + 
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for  =  0()+1− and appropriate  ∗ and ∗. Notice that we are representing
the REE in levels.

Finally, note that if () = log(), () = , and  = 1, then we have that

 = (1− )

 and +1 = 


 

This formulation will be handy when assessing the quality of our boundedly rational

agent’s behavior.

5.2.3 SP-learning in the Ramsey model

We now return to the SP-learning analysis, as developed in Section 5.2.1, and assume

homogeneity of beliefs. This assumption allows us to dispense with the argument

, and to identify savings and capital. The beliefs parameters  are determined

using RLS. Thus , the time  estimate of , is obtained by regressing  on ̃
using data {̃0  ̃−1} and {0  −1} 33 A recursive causal system determining

the evolution of the economy is given by

R = R−1 + (̃−1̃
0
−1 −R−1)

 0
 =  0

−1 + R−1 ̃−1(−1 −−1̃−1)
0

 = 

−1

 = (()−  0())

 = 
0()− 

 =  (    )

+1 = (1 + ) +  − 

 = (1 + )
0()

To simulate the model, an initial condition is needed. In a REE the true shadow price

satisfies ∗ = (1 + )
0() Linearizing the dependence of 

∗ on  and  and the

dependence of  on  and  and combining with the linearized REE dependence of

 on  and  yields the linear approximation

∗ = ̂ + ̂ + ̂

Because in equilibrium  = , ̂ provides a natural benchmark for the initial value

of , and we can also compute the covariance matrix of ( ) in the linearized

REE to help determine a benchmark for R0. Initial conditions are then chosen as

perturbations of these values.

33The estimate  is determined using time − 1 data because computation of  requires 
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5.2.4 An illustration

As an experiment, we set  = 1, () =  and () = log(). The analytic REE

shadow price is computed to be

∗ =


(1− )
 (65)

Note that in this special case there is no dependency of ∗ on .
34

Given a beliefs vector , the agent holds time  perceptions  = (1  )
0.

To assess the quality of our agent’s asymptotic behavior, we run a simulation and

record his initial and final-period beliefs.35 We then plot his initial and final per-

ceived shadow-price dependence against , setting  = 1 (its steady-state value), and

compare these plots to each other and to the plot of ∗ as given by (65): see Figure
2.
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Figure 3: Convergence of beliefs in Ramsey model. Curved (blue) dashed line gives

actual shadow price in REE. Straight (red) solid line gives initial perceived shadow

price. Straight (black) dashed line is asymptotic perceived shadow price under

learning.

In Figure 3, the (red) solid line is initial perceptions and the (black) dashed line is

final perceptions. The dashed (blue) curve is the true multiplier in the REE. We note

34Of course, in this special case the model’s dynamics and the shadow-price relationship are linear

in logs. This could be exploited by the agent to learn to fully optimize. Having the agent use a

linear in levels approximation here is a useful way to illustrate approximate optimal behavior.
35In the simulations we set  = 13  = 099  = 05 and  is uniformly distributed over

[−01 01].
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that the long-run perceptions of the agent appear to coincide, to first order, with the

true dependence of the (optimal) shadow price on capital. We take this as evidence

that even in our non-LQ environment our representative agent’s asymptotic behavior

is approximately optimal.

Finally, we remark that the asymptotic value of , the beliefs coefficient on ,

is positive (around 002), which implies that productivity shocks directly affect the

perceived shadow price of saving. This direct effect is not present under RE — see

equation (65). The discrepancy arises from the agent’s misspecified forecasting model:

the appropriate equilibrium notion here under SP-learning is a “restricted perceptions

equilibrium” which reflects the agents’ use of a linear forecasting rule in a nonlinear

environment.

5.3 SP-learning in a New Keynesian model

Our final example illustrates how SP-learning can be incorporated into a DSGE set-

ting that is more typical of policy-oriented analysis. Specifically, we implement SP

learning in a model of monopolistic competition with Rotemberg-style price frictions,

and with government spending and monetary policy shocks. This framework facili-

tates the preservation of the model’s inherent nonlinear structure in which we may

embed SP-learning agents who use linear forecasting models to form expectations

and make decisions. In addition to the standard representative agent setup, we also

analyze learning dynamics with heterogeneous beliefs and bond holdings. Our pre-

sentation here is compact. A detailed examination of shadow price learning in a New

Keynesian environment is provided in a separate paper.

A unit mass of households indexed as  ∈ Ω maximizes discounted expected

utility, where the utility flow is given by

1

1− 

¡
()

1− − 1¢+logµ−1()
()

¶
−  ()

1+

1 + 
− 

2

µ
()

−1()
− 1
¶2
+L(−1())

where     0. Here household ’s consumption index is

() =

µZ
()

−1
 

¶ 
1−



with () denoting the consumption by household  of good . Household 

produces the quantity () of good  using labor () via the technology () =

()
, for 0    1. The household then sells this good at price () under con-

ditions of monopolistic competition against the demand curve () =  · (())− 1
 ,

for   1, where 1− =
R
()1− and 

−1
 =

R
()

−1
  are the usual CES

aggregates. Also, −1() is real money holdings at − 1 and () = ()−1()
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is the household-specific inflation rate. Finally −1() is the real bond holdings at
the start of period . The first three terms of the utility flow are standard. The

fourth term involving ()−1() reflects the internalized cost of price adjustment.
The final term L(−1()) is included as a modeling convenience used in lieu of an
explicit borrowing constraint. We assume that it is zero for positive bond holdings

and decreases rapidly as debt levels approach some threshold.

The budget constraint of the household is

() +() + () + T = −1()


+
−1


−1() +
()


()

where −1 is the nominal interest rate factor,  = −1 is the aggregate inflation
factor, and T is lump-sum taxes net of transfers (including real monetary injections).
The government prints money, levies lump sum taxes, and consumes goods. The

government’s flow constraint is given by


 + T =  +


−1


 (66)

where  aggregates goods in the same way as the private consumption index. Through

transfers, the government may choose 
 so that the nominal interest rate satisfies a

Taylor rule:

 = 1 + () with   0  0 (67)

where  captures a serially correlated policy shock. Government spending  is also

assumed serially correlated. Specifically, we take

 − ̄ = (−1 − ̄) + 

 (68)

 − 1 = (−1 − 1) + 

  (69)

where 0 ≤    1 and where 

 and 


 are  zero mean with small support. This

summarizes the behavior of the government.

Next we identify the household’s controls and endogenous states. The agent treats

() as a time  control and sets () and () accordingly. Thus the agent’s vector

of endogenous states is given by () = (−1() −1() −1())0 and the time 
controls are () = (()() ())

0. The transition dynamics for +1() are
trivial in the first and last component and 2+1() ≡ () is determined by the

budget constraint.

Our SP-learner assigns a shadow price to each endogenous state variable: () =

( () 

() 


 ())

0. However, from the budget constraint it can be seen that()

and () trade one for one, so that ̂

+1() = ̂


+1(). It follows that it is

unnecessary for the agent to forecast the shadow price of money. His control decisions

satisfy

()
− = ̂


+1() (70)
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−(()− 1)
−1()

− ()
()() + ̂


+1()

= −(1− )

µ
()



¶1− µ




¶
̂


+1() (71)

where () = ()−1() and ()() is the time  derivative of the labor supply

function () =
¡
 (())

−¢1
with respect to (). The first equation measures

the trade-off between consumption today and overnight bond holdings. The second

condition is more involved because it incorporates the contemporaneous nature of the

price-setting, labor-supply and production decisions. An increase in the price today

is costly because of the price friction: this cost is measured as −(()−1)−1().
Because price increases, the quantity demanded falls, so that the labor supply may be

reduced: this is captured by −()()() where   0. Since () is a time +1
state variable, its direct impact must be measured, and this is given by ̂


+1().

Finally, an increase in () affects today’s real income through the demand curve,

which, all else (i.e. other controls) equal, affects overnight bond holdings: this is effect

is measured by the RHS of (71). We remark that the usual money demand equation

() = ( − 1)−1() (72)

can be obtained as a result of log utility.

Below we will specify the forecasting models for the shadow prices and the relevant

state dynamics. With these forecasting models equations (70), (71) and (72) deter-

mine household ’s time  control decisions and shadow-price forecasts. These data

are then used to update the perceived shadow prices using the following relationships:

() =
−1


()
− + L0 (−1())  (73)



 () = ()

(()− 1)
−1()

 (74)

To make decisions, agent  must forecast +1() = (

+1() 


+1()) Let ()

be collection of regressors used by agent  in his forecasting model — this collection

includes some or all of the components of () as well as relevant aggregates like

government spending. He takes as his PLM () = Ψ()(). Assuming agent 

either knows, or has beliefs concerning the transition dynamics of (), so that he

may form ̂+1(), it follows that

̂

+1() =  (Ψ() ()) and ̂


+1() =  (Ψ() ()) 

These forecast models are updated using the data from (??) — (74), and are used in

conjunction with (70), (71) and (72) to produce household ’s decision rules for ()

() () () () and (). This summarizes ’s behavior.
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The decisions of agents and the policies of the government are connected through

the following market-clearing conditions:

() =

Z
() + ()

 =

Z
() + 


 =

Z
()

0 =

Z
()

These conditions relate the consumption decisions of individual agents to aggregate

output and to a policy instrument of the government.

The decision rules and market-clearing conditions set forth above characterize the

model given the beliefs of agents as summarized by the matrices Ψ(). Closing the

model requires taking a stand on how agents arrive at their beliefs. Below, we will

adopt the least-squares learning approach, which will lead agents to hold optimal

linear beliefs.

Standard RE analysis involves imposing rationality and studying the solution

to the corresponding linearized model. For comparison purposes we present the lin-

earized model here — see Appendix D for details. The so-called IS, AS, and policy-rule

relations, linearized around the steady state, are given by

 = +1 −  ( −+1) + 

 = +1 +  + ̂ (75)

 =  +

µ
1− 

∗

¶


where variables are written in proportional-deviation form. This system can be solved

in the usual way to obtain   as linear functions of the exogenous variables  .

5.3.1 SP-learning: the homogeneous case

Now we turn to the behavior of the model under the assumption that our agents are

SP-learners. We begin with the special case that agents are homogeneous (in beliefs,

initial conditions, etc.), and in particular we assume that in − 1 each household 

set its price so that −1() = −1. Let 

 () = −1()


 () be the shadow price

of agent-specific inflation — this will aid in our comparison to the REE. Multiplying
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each side of (71) by () yields





³


´ 1+


µ
()



¶−(1+)



− ()(()− 1) + 

+1()

= −(1− )

µ
()



¶1−



+1() (76)

Equation (76) details how  chooses time  individual inflation () given aggregates

and forecasts of shadow prices. The shadow-price updating equations become

() =
−1


()
− (77)

 () = ()(()− 1)

where equation (77) follows from (73) from homogeneity and market clearing, i.e.

−1() = −1 = 0, and the assumption that marginal borrowing near zero is painless,
i.e. L0 (0) = 0.
To forecast shadow prices, agents would naturally condition on aggregate states

such as government spending, and on agent-specific states such as bond holdings.

However, because of the imposed homogeneity, bonds are not held or traded, and

thus are of no value for forecasting. Further, under homogeneity, the equilibrium

behavior of the model is determined by the fundamentals  and , thus including

many additional regressors leads to multicollinearity issues. For these reasons we

provide agents with the regressor  = (1   −1)0, and the forecasting model
 = Ψ(). Letting Ψ−1() be the beliefs matrix determined using time  − 1
information, it follows that

̂+1() = Ψ−1()̂+1

We further assume the agent knows the time-series properties of  and , and observes

 when forming forecasts. It follows that ̂

+1() and ̂


+1() depend only on

  Ψ−1(). Using these expectations, agent ’s time  consumption and pricing
decisions are made by solving (76) for (), and by setting ()

− = ̂

+1()

Now we impose homogeneity, and let Ψ−1 represent common beliefs. Given −1,
, and , the temporary equilibrium of the model determines {   T}
Next, using time  data agents update beliefs to Ψ and we move to the next period.

See Appendix D for details. This fully characterizes the path under SP-learning.

Because agents use a linear forecasting rule within a nonlinear model, there can-

not be convergence to the REE with fully optimal decision-making. However, we

anticipate that there is a RPE (restricted perceptions equilibrium), corresponding to

approximately optimal behavior and approximately rational forecasts, to which the

economy might converge. When we simulate the model under small constant gain

54



learning36 we indeed find convergence of beliefs to a distribution centered on the SP

learning RPE. Furthermore we find that when the variance of the exogenous distur-

bances is small the agents’ decision rules closely approximate those of the REE.
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Figure 4: Consumption and inflation under SP learning in NK model with

homogeneous agents.

As an illustration, Figure 4 shows the resulting time paths of consumption and in-

flation in a typical simulation. Observe that after a transition, the time paths of

consumption and inflation fluctuating around the respective nonstochastic steady

states, which are indicated by the solid blue lines.

5.3.2 SP-learning with multiple agent types and borrowing constraints

We now extend the model to allow for heterogeneous agents. More specifically we

allow agents to have heterogenous beliefs, which implies that they are likely to have

different wealth levels and that they will be setting different price levels. Solving New

Keynesian models with heterogenous wealth under RE presents major difficulties. It

is therefore not surprising that under SP-learning there are additional complications.

However we will show that the additional technical complexity under SP-learning is

manageable and that it is possible to obtain interesting results.

Several issues arise when heterogeneity among households is allowed. We enumer-

ate them here to track their impact on the model.

1. Borrowing constraints. Agents with distinct wealth levels and SP forecasts

will make distinct consumption and savings decisions; it follows that the model

must allow for non-degenerate debt distributions. To avoid Ponzi schemes,

we must impose some type of borrowing constraint. One natural approach

is for agents to use an SP-learning implementation that includes inequality

constraints.37 An alternative approach, which is in our view also natural and

36We set  = 096  = 075  = 5  = 15  = 1 ̄ = 01  = 25,  = 15, 
∗ = 1 ∗ = −1

and gain ̂ = 0015.
37This is an avenue we are exploring in related research.
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we adopt for simplicity, is to assume a utility specification that imparts “pain”

when an agent’s debt level nears a fixed borrowing constraint.

2. Agent-specific prices. With heterogeneity, −1() 6= −1, which means that
−1() must be tracked. Because of this, prices, rather than inflation, become
a more natural state variable.

3. Money and bonds. To forecast the shadow price of bonds, agents will natu-

rally condition on current bond holdings. This means that agent-specific bond

levels must be tracked. Bond holdings are determined via the budget constraint

by subtracting off from current wealth the money holding and consumption de-

cisions. Thus agent-specific real money balances must be tracked. Finally, to

implement the Taylor rule, real money supply and real bonds supply must be

tracked.

It is important in the heterogeneous agent case to specify L(−1), and we take
L0(−1) to be defined by the following graph:
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Figure 5: Marginal disutility of debt in NK model.

From equation (73) it can be seen that the shadow price of bonds accounts for the

agent’s desire to stay away from the borrowing constraint. In Figure 5 we have set

the marginal disutility at zero for small levels of debt, i.e. L0() = 0 for  ≥ ̂, where

̂ ≤ 0. In the first simulations below (Figure 6) we set ̂ = −01 (for comparison,
mean output levels are around 07).

Next, we assume agent  forms expectations against the agent-specific state vector

() = (1   −1 −1())

via the forecasting model () = Ψ−1() together with full knowledge of the
exogenous processes  and . It follows that ̂


+1() and ̂


+1() depend only
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on   Ψ−1() and (). These forecasts together with the agents’ decision

rules and market clearing identify the temporary equilibrium values of the time  en-

dogenous variables. The economy is closed, as usual, by assuming that agents update

their parameter estimates using least-squares learning. This defines recursively the

equilibrium path of the economy. See appendix D for details.

An issue of considerable interest is whether, with SP learning and heterogeneity,

agents can come to have different asset positions. Suppose, for example, that there

are two types of otherwise identical agents who have different initial beliefs about

shadow prices. Both agents start with zero initial debt. Figure 6 gives a typical

simulation under SP learning showing the times paths of aggregate output, inflation

and the bond holdings of the two agents (which sum to zero since we are assuming no

government bonds). The difference in initial beliefs leads agents to save at different

rates and for one agent to lend to the other. The level of indebtedness of agent two

eventually stabilizes as a result of the disutility he experiences from having high levels

of debt.
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Figure 6: Path of output, inflation and bond holding in NK model under SP

learning with heterogeneous beliefs and two types of agents. Dislike of debt above a

specified threshold.

In Figure 7 we again have two types of agents, but instead start with homogeneous

beliefs and different initial levels of debt. For this simulation we assume that ̂ = 0.

Thus, there is some disutility to holding even low levels of debt, though the marginal

disutility for small debt levels is very small. Nonetheless in the simulation shown in

Figure 6 we see that over time the heterogeneity in debt levels is eventually eliminated
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under SP learning.
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Figure 7: Path of bond holdings in NK model under SP learning with heterogeneous

initial bond holdings, two types of agents, and dislike of debt.

Our examples show the versatility of SP learning: it would appear straightforward

to incorporate SP learning into a wide range of dynamic macroeconomic models in

which long-lived agents are confronted with dynamic optimization problems. The

examples have been chosen to illustrate the range of applications possible. Although

the theoretical results of this paper assume an LQ set-up, which we illustrated using

a Robinson Crusoe model, we have seen that SP learning can be readily incorporated

into DSGE models, including setups in which heterogenous agents play a central role.

6 Conclusion

The prominent role played by micro-foundations in modern macroeconomic theory

has directed researchers to intensely scrutinize the assumption of rationality — an as-

sumption on which these micro-foundations fundamentally rest; and, some researchers

have criticized the implied level of sophistication demanded of agents in these micro-

founded models as unrealistically high. Rationality on the part of agents consists of

two central behavioral primitives: that agents are optimal forecasters; and that agents

make optimal decisions given these forecasts. While the macroeconomics learning lit-

erature has defended the optimal forecasting ability of agents by showing that agents

may learn the economy’s rational expectations equilibrium, and thereby learn to fore-

cast optimally, the way in which agents make decisions while learning to forecast has

been given much less attention.

In this paper, we formalize the connection between boundedly rational forecasts

and agents’ choices by introducing the notion of bounded optimality. Our agents fol-

low simple behavioral primitives: they use econometric models to forecast one-period

ahead shadow prices; and they make control decisions today based on the trade-off
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implied by these forecasted prices. We call this learning mechanism shadow-price

learning. We find our learning mechanism appealing for a number of reasons: it

requires only simple econometric modeling and thus is consistent with the learning

literature; it assumes agents make only one-period-ahead forecasts instead of estab-

lishing priors over the distributions of all future relevant variables; and it imposes

only that agents make decisions based on these one-period-ahead forecasts, rather

than requiring agents to solve a dynamic programming problem with parameter un-

certainty.

Investigation of SP-learning reveals that it is behaviorally consistent at the agent

level: by following our simple behavioral assumptions, an individual facing a standard

dynamic programming problem will learn to optimize. Our central stability results

are shown to imply asymptotic optimality of alternative implementations of bound-

edly optimal decision-making, including value-function and Euler-equation learning.

Further, we find that SP-learning embeds naturally in the Ramsey model, and clearly

this procedure can be used in more elaborate DSGE settings.

It may appear tempting to take our results to suggest that agents should simply

be modeled as fully optimizing. However, we think the implications of our results are

far-ranging. Since agents have finite lives, learning dynamics will likely be significant

in many settings. If there is occasional structural change, transitional dynamics will

also be important; and if agents anticipate repeated structural change, say in the

form of randomly switching structural transition dynamics, and if as a result they

employ discounted least squares, as in Sargent (1999) and Williams (2014), then there

will be perpetual learning that can include important escape dynamics. Finally,

as we found in the Ramsey model example of Section 5.2, agents with plausibly

misspecified forecasting models will only approximate optimal decision making. Such

misspecification can be along other dimensions as well, e.g. economizing on the

components of the state vector. As in the adaptive learning literature, we anticipate

that our convergence results will be the leading edge of a family of approaches to

boundedly optimal decision making. We intend to explore this family of approaches

in future work.
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Appendix A: Proofs

Notation. Throughout the Appendices, we use without further comment the fol-

lowing notation: For ×  matrix  ,

Φ( ) = (+ 0)−1 and Ψ( ) = 0+ 0

Proof of Lemma 1: We reproduce the problem here for convenience:

  () = max

− (0+ 0+ 20)− (+)0 (+)

The first-order condition, which is sufficient for optimality and uniqueness of solution

because  is symmetric positive semi-definite, is given by

−20− 20 − 2 (00 + 00) = 0 or

 = − (+ 0)−1 (0+ 0) = −Φ( )Ψ( ).
To compute the value function we insert this into the objective:

  () = −0 (+Ψ0Φ0ΦΨ− 2ΦΨ+ (−ΦΨ)0 (−ΦΨ))

= −0 (+Ψ0Φ0ΦΨ− 2ΦΨ)

−0 (0+ Ψ0Φ00ΦΨ− 0ΦΨ− Ψ0Φ00)

= −0 (+ 0)

−0 (Ψ0Φ0 (+ 0)ΦΨ− 2ΦΨ− 0ΦΨ− Ψ0Φ00)

= −0 (+ 0+Ψ0Φ0 (Ψ− 0)− 2ΦΨ− 0ΦΨ)

= −0 (+ 0+Ψ0Φ0 0 − (2 + 0)ΦΨ) 

= −0 (+ 0−Ψ0ΦΨ)

where the last step is obtained by noting that 0Ψ0Φ0 0 = 0ΦΨ.

Proof of Lemma 2: Observe that

 ((++ )0 (++ )| ) = (+)0 (+)− ( )

where ( ) = −tr
³
2

0
´


This follows since

0 0 = tr (0 0) = tr (0 0)

= tr (0 0) = tr ((0) 0)

= tr
¡
2

0¢ = tr³2 0
´


Since ( ) does not depend on , it follows that, given  , the control choice that solves

(12) solves (14). Using Lemma 1 this establishes item 1. Noting that the stochastic
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objective is the deterministic objective shifted by ( ) and inserting  = − ( )
into the objective of (14) yields

−0 ( ) = −0 ( )+ ( )

= −0 ( ( )− ∆( ))

where the second equality follow from the fact that the first component of the state

equals one. This establishes item 2.

To prove the last statement, first note that ( )11 = 0. This follows because

the first row of , and hence the first row of  0 is zero. Now, let ̃ be a fixed point
of  , and let ̃ be given by (15). We now compute

 
³
̃

´
= 

µ
̃ − 

1− 
∆(̃ )

¶
− ∆

µ
̃ − 

1− 
∆(̃ )

¶
= 

µ
̃ − 

1− 
∆(̃ )

¶
− ∆

³
̃
´

= 
³
̃
´
− 2

1− 
∆(̃ )− ∆

³
̃
´

= ̃ − 

1− 
∆(̃ ) = ̃

To establish the third equality, we show that for any perceptions  ∈ U ,
 ( +Υ) =  ( ) + Υ (78)

where Υ =  ⊕ 0−1×−1 simply captures a perturbation of the (1 1) entry of  . To
establish this equation first note that by Remark 1,  ( + Υ) =  ( ). It follows

that

−0 ( +Υ) = − (0+ 0+ 20)− (+)0 ( +Υ) (+)

where  is the optimal control decision given perceptions  . Straightforward algebra

shows that

−0 ( +Υ) = −0 ( )− (+)0Υ(+)

By the forms of  and  we have that 0Υ = 0, Υ = 0 and 00Υ = Υ. Thus

−0 ( +Υ) = −0 ( ( ) + Υ)

This establishes (78), which completes the proof.

Proof of Lemma 3: To establish the first equation, let

1( ) = + 0− (0 + )Φ( )(0+ 0)

2( ) = ̂+ ̂0̂− ̂0̂Φ( )̂0̂
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Our goal is to show 1( ) = 2( ) First, we expand each equation.

1( ) = + 0− 0Φ( )0 −Φ( ) 0

−0Φ( ) 0 −Φ( )0

2( ) = −−1−1 0 + 0+ −10−1 0

−0−1 0 − −10− 0Φ( )0

−−10Φ( )0−1 0

+0Φ( )0−1 0 + −10Φ( )0

For notational convenience, we will number each summand of each equation in the

natural way, being sure to incorporate the sign. Thus 12 = 0, 22 =
−−1−1 0 and 1 = 11+   + 16, where we drop the reference to  to

simplify notation. Now notice

22 + 24 + 28 = −1 (−+ 0 − 0Φ( )0)−1 0

25 + 29 = 0 (Φ( )0 − )
−1 0 (79)

26 + 210 = −1 (0)Φ( )− )
0

Since

−+ 0 − 0Φ( )0 = −+ 0Φ( )
¡
Φ( )−1 − 0

¢
= −Φ( )−1Φ( )+ 0Φ( )

= −Φ( ) and
Φ( )0 −  = Φ( )(0 −Φ( )−1) = −Φ( )
0Φ( )−  = (0 −Φ( )−1)Φ( ) = −Φ( )

we may write (79) as

22 + 24 + 28 = −Φ( ) 0

25 + 29 = −0Φ( ) 0

26 + 210 = −Φ( )0

It follows that

2 = 21 + 23 + 27 + (22 + 24 + 28)

+(25 + 29) + (26 + 210)

= 11 + 12 + 13 + 14 + 15 + 16 = 1

thus establishing item 1.
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To demonstrate item 2, compute

Ω( 0)0Ω( )+̂ ( 0)0̂ ( ) + ̂

= ̂0̂+ ̂ ( 0)0
³
+ ̂0̂

´
̂ ( )− ̂ ( 0)0̂0̂− ̂0̂̂ ( ) + ̂

= ̂0̂+ ̂0̂
³
+ ̂0̂

´−1
̂0̂− ̂0̂(+ ̂0̂)−1̂0̂

−̂0̂
³
+ ̂0̂

´−1
̂0̂+ ̂

= ̂+ ̂0̂− ̂0̂
³
+0̂

´−1
̂0̂ =  ( )

where the last equality holds by item 1.

Proof of Theorem 1. The proof involves connecting the T-map to the maximiza-

tion problem (7). For notational simplicity, we consider the equivalent minimization

problem

 ∗(0) = min 0
X

 (0 + 0 + 2
0
)

 +1 =  + + +1

where we are abusing notation by also denoted by  ∗ this problem’s value function.

We begin with a well-known series computation that will facilitate our work:

Lemma 4 If  and  are × matrices and if the eigenvalues of  have modulus

less than one then there is a matrix  such that

 =
X
≥0
( 0) () 

Furthermore,  satisfies  = 0 + .

Proof. Since the eigenvalues of  have modulus less than one, there is a unique

solution to the linear system  = 0 +

() = ( − 0 ⊗ 0)−1()

Now let 0 =  and  = 0−1 + Then

 =

X
=0

( 0) () 
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We compute

 −  =  0 + − ( 0−1 +)

=  0( − −1) =    = ( 0)( −)() → 0

where the ellipses indicate induction.

The now proceed with the proof of Theorem 1, which involves a series of steps.

Step 1: We first consider a finite horizon problem. Recall that for  an  × 

symmetric, positive semi-definite matrix, define

  () = min


0̂+ 0+ (̂+ ̂)0 (̂+ ̂)

By Lemmas 1 and 3, this problem is solved by  = −̂ ( ), so that   () =

0 ( ). Now consider the finite horizon problem

 () = min

−1X
=0

³
0̂ + 0

´
(80)

+1 = ̂ + ̂ 0 = 

We note that (80) is the finite horizon version of the transformed problem (18). Notice

that 1 () = 0 (0) Now we induct on  :

 () = min

−1X
=0

³
0̂ + 0

´
= min

Ã
00̂0 + 000 +

−1X
=1

³
0̂ + 0

´!
= min

³
0̂+ 000 + (̂+ ̂0)

0−1(0)(̂+ ̂0)
´
= 0(0)

where here it is implicitly assumed that the transition +1 = ̂ + ̂ is satisfied.

Thus (0) identifies the value function for the finite horizon problem (80).

Step 2: We claim that there is an × symmetric, positive semi-definite matrix ̂

satisfying 0(0) ≤ 0̂ for all  To see this, let  be any matrix that stabilizes³
̂ ̂

´
 Let {̃} be the state sequence generated by the usual transition equation
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(with ̃0 = ) and the policy  = − Then

 () = 0(0) ≤
−1X
=0

̃0
³
̂+  0

´
̃

= 0
Ã

−1X
=0

³
̂0 − ̂0

´ ³
̂+  0

´³
̂− ̂

´!


≤ 0
Ã ∞X

=0

³
̂0 − ̂0

´ ³
̂+  0

´³
̂− ̂

´!
 ≡ 0̂

where the convergence of the series is guaranteed by Lemma 4

Step 3: We claim 0(0) ≤ 0+1(0) To see this, let {   } solve (80) 
Then

0(0) ≤
−1X
=0

³¡
+1

¢0
̂
¡
+1

¢
+
¡
+1

¢0

¡
+1

¢´
≤

X
=0

³¡
+1

¢0
̂
¡
+1

¢
+
¡
+1

¢0

¡
+1

¢´
= 0+1(0)

Step 4: We show that there is an × symmetric, positive semi-definite matrix  ∗

so that (0)→  ∗ Let  be the usual -dimensional coordinate vector, and notice
that if  is any  ×  matrix then 0 =  By steps 2 and 3, 

0


(0) is an

increasing sequence bounded above by ̂ and thus converges. More generally, if 

is an -dimensional vector with 1s in the 1 · · ·   entries and zeros elsewhere then

0 =

X
=1

X
=1

  (81)

By steps 2 and 3, 0
(0) is an increasing sequence bounded above by ̂ and thus

converges. Now let  = (1 1 0 · · ·  0) Then by (81)

0(0) = (0)11+(0)22+(0)12+(0)21 = (0)11+(0)22+2
(0)12

where the second equality follows from the fact that  preserves symmetry. Since

0(0) is increasing and bounded above by 0̂  it follows that the sum (0)11+

(0)22+2
(0)12 converges. Since the diagonal elements have already been shown

to converge, we conclude that (0)12 converges. Continuing to work in this way

with (81) we conclude that (0) converges to a symmetric matrix  ∗. That  ∗

is positive semi-definite follows from the fact that the zero matrix is positive semi-

definite, and by part 2 of Lemma 3, the T-map preserves this property: thus 0 ∗ =
lim0(0) ≥ 0
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Step 5: To see that  ( ∗) =  ∗ we work as follows: Let

 ( ∗) = 
³
lim
→∞

(0)
´
= lim

→∞

¡
(0)

¢
= lim

→∞
+1(0) =  ∗

where the second equality follows from the continuity of 

Step 6: We claim

Ω( ) = 12− 12(+ 0)−1(0+ 0) (82)

To see this, simply recall that Ω( ) = ̂ − ̂̂ ( ). The equation (82) follows

immediately from the definitions of ̂ ̂ and ̂ .

Step 7: We turn to the stability of ()((
∗)). Using

 ( ) = + 0−Ψ( 0)0Φ( )Ψ( )

and noting that

Φ( ) = −Φ( )0Φ( ) and

 (Ψ( 0)0) = (Ψ( 0))0 = (0 0)0 = 0

we have

 = 12012 − 120Φ( )Ψ( )12

+ 12Ψ( 0)0Φ( )0Φ( )Ψ( )12 − 12Ψ( 0)0Φ( )012

= (120 − 12Ψ( 0)0Φ( )0) (12− 12Φ( )Ψ( )) = Ω( 0)0Ω( )

where the last equality follows from step 6. Using ( ) = ( 0 ⊗) ( ) for

conformable matrices  it follows that38 ( ) = (Ω( )0 ⊗Ω( 0)0) ( ) or
()(( )) = Ω( )0 ⊗ Ω( 0)0.

We are interested in computing the eigenvalues of ()((
∗)). Since  ∗ is

symmetric, since the eigenvalues of Ω( ∗)0 are the same as the eigenvalues of Ω( ∗),
and since the eigenvalues of the Kronecker product are the products of the eigenvalues,

it suffices to show that any eigenvalue  of Ω( ∗) is strictly inside the unit circle. We
will follow the elegant proof of Anderson andMoore (1979). We work by contradiction.

Let  6= 0 satisfy Ω( ∗) =  and assume || ≥ 1 Since  ∗ is a symmetric fixed
point of  , we may use item 2 of Lemma 3 to write

 ∗ = Ω( ∗)0 ∗Ω( ∗)+̂ ( ∗)0̂ ( ∗) + ̂ (83)

38This result, as well as the result that the eigenvalues of  ⊗  where  and  are square

matrices is equal to the products of the eigenvalues of  and the eigenvalues of  , can be found in

Section 5.7 of Evans and Honkapohja (2001) and Chapters 8 and 9 of Magnus and Neudecker (1988)
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Acting on the left of (83) by 0 and on the right by , and exploiting Ω( ∗) = ,

we get39

(1− ||2)0 ∗ = 0̂ ( ∗)0̂ ( ∗) + 0̂̂0

where we recall that ̂ = ̂̂0 Since  ∗ is positive semi-definite, the left-hand-side is
non-positive and the right-hand-side is non-negative, so that both sides must be zero,

and thus both terms on the right-hand-side must be zero as well. Since  is positive

definite, ̂ ( ∗) = 0 Since Ω( ∗) = ̂− ̂̂ ( ∗) it follows that Ω( ∗) = ̂ = ,

i.e.  is an eigenvector of ̂ Also, since ̂ has full rank, 0̂̂0 = 0 implies ̂0 = 0

But by assumption,
³
̂ ̂

´
is detectable, which means ||  1, thus yielding the

desired contradiction, and step 7 is established.

Step 8: Now let 0 be an × symmetric, positive semi-definite matrix. We want

to show (0)→  ∗. An argument analogous to that provided in step 1 shows

0(0) = min

Ã
00 +

−1X
=0

³
0̂ + 0

´!
+1 = ̂ + ̂ 0 = 

Because 00 ≥ 0 it follows that 0(0) ≤ 0(0)

Next consider the policy function  = −̂ ( ∗). By Remark ??, the correspond-
ing state dynamics is given by  = Ω( ∗)0. It follows that 0(0) ≤ 0(0)

where (0) measures the value of the policy ̂ (
∗), that is,

(0) = (Ω(
∗)0) 0 (Ω(

∗)) +
−1X
=0

³
(Ω( ∗)0)

´³
̂+ ̂ ( ∗)0̂ ( ∗)

´
(Ω( ∗)) 

Since Ω( ∗) is stable, (Ω( ∗)0) 0 (Ω(
∗)) → 0, and by Lemma 4

−1X
=0

³
(Ω( ∗)0)

´³
̂+ ̂ ( ∗)0̂ ( ∗)

´
(Ω( ∗)) →  ∗

Since 0(0) ≤ 0(0) ≤ 0(0), and since both (0) and (0) con-

verge to  ∗, step 8 is complete.

Step 9: With this step we show uniqueness, thus completing the proof. Suppose

̃ is a symmetric positive definite fixed point of the T-map. Then ̃ =  (̃ ) =

(̃ )→  ∗. Thus ̃ =  ∗.

Proof of Corollary 1: First notice that  
 =  − 

1−∆ Since ∆( ) = ( ) ⊕
0−1×−1 and ( )11 = 0 it follows that

eig ◦ 
 (( )) = eig ◦ (( ))  (84)

39If  is complex, then 0 is taken to be the conjugate transpose of 
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Next, notice that, by (78),  ( )1111 =  and  ( )11 = 0 for   not both

one. It follows that for  ∈ R2

()1 =

½
  = 1

0   1


We conclude that if Υ =  ⊕ 0−1×−1 then
eig ◦ (( +Υ)) = eig ◦ (( )) 

which shows that

eig ◦ ((
∗
 )) = eig ◦ ((

∗)) 

The result follows from (84) and Lemma 2.

Discussion of Theorem 2: See Appendix B.

Proof of Theorem 3. It is straightforward to show that  () = −2 ¡−
2

¢
. It

follows that

 
 (()) = −2

µ


µ
−
2

¶¶


By the chain rule,


¡



¢
((∗)) =  ()

µ


µ
−

∗

2

¶¶
=  () ((

∗))

and the result follows from Theorem 1.

Discussion of LQ.RTL. We recall the statement of LQ.RTL for convenience:

LQ.RTL The eigenvalues of  +  (∗ ) not corresponding to the constant
term have modulus less than one, and the associated asymptotic second-moment

matrix for the process  = (+ (∗ ))−1 +  is non-singular.

As noted in the body, the eigenvalue condition, which provides for the asymptotic

stationarity of regressors, allows us to avoid the complex issues involving economet-

ric analysis of explosive regressors. The non-singularity of the asymptotic second-

moment matrix is needed so that the regressors remain individually informative; oth-

erwise, asymptotic multicollinearity would destabilize the learning algorithm.

It is interesting to note that a natural condition sufficient to guarantee the needed

non-singularity may be stated in terms of "controllability" which is dual to stabiliz-

ability. To make the connection, consider the stationary process

 = Ξ−1 + 
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where  ∈ R is i.i.d., zero-mean with invertible variance-covariance matrix 2, and

so that Ξ stable (roots strictly inside unit circle). We may write

 =

X
≥0

Ξ−

so that the variance of  is given by

Ω = 
0
 =

X
≥0

Ξ2
0(Ξ0)

The following definition captures the condition needed for non-singularity of Ω.

Definition. The matrix pair (Ξ ) is controllable provided\
≥0

ker 0(Ξ0) = {0} (85)

It can be shown that (Ξ ) is controllable provided

rank(ΞΞ2    Ξ−1) = 

In this way, controllability acts as a mixing condition, guaranteeing that the variation

in  is transmitted across the full span of the state space.

Proposition 2 If (Ξ ) is controllable then detΩ 6= 0

Proof. Since Ω is symmetric, positive semi-definite it suffices to show that for any

non-zero  ∈ R we have 0Ω  0. Now notice that for any   0,

0Ω ≥
X

=0

0Ξ2
0(Ξ0)

Since 2 is positive definite, to show the RHS is strictly positive, it suffices to show

that there is a  so that
X

=0

0(Ξ0) 6= 0

Let  be the least positive integer so that 0(Ξ0) 6= 0. Such a  exists because (Ξ )
is controllable. Then

X
=0

0(Ξ0) = 0(Ξ0) 6= 0

and the result follows.
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We remark that the stated condition also guarantees the second moment matrix

of the corresponding VAR(1) is non-singular, and further, the result holds in case the

VAR includes a constant term.

Proof of Theorem 4. The proof involves using the theory of stochastic recursive

algorithms to show that the asymptotic behavior of our system is governed by the

Lyapunov stability of the differential system




=  ()−

The proof is then completed by appealing to Theorem 3.

Recall the dynamic system under consideration:

 = −1 +−1 + 

R = R−1 +  (
0
 −R−1)

 0
 =  0

−1 + R−1−1−1 (−1 −−1−1)
0

0 = 0−1 + R−1−1−1 ( −−1 −−1−1)
0

(86)

 =   (  )

 =   (  )

 = (+)−,

where 0    ≤ 1 and  is a non-negative integer. To apply the theory of stochastic

recursive algorithms, we must place our system in the following form:

 = −1 + H(−1) (87)

 = A(−1)−1 + B(−1)̂ (88)

where ̂ is , but not necessarily mean zero, and A() must be a stable matrix,
i.e. has roots strictly inside the unit circle. Here  ∈ R for some  . For extensive

details on the asymptotic theory of recursive algorithms such as this, see Chapter 6 of

Evans and Honkapohja (2001).40 Note that R and 
0
 are matrices and  is a column

vector. Therefore, we identify the space of matrices with R for appropriate  in

the usual way using the  operator.

To put (86) in the form (87)-(88) we define

 =

⎛⎝ vec(R)

vec( 0
)

vec(0)

⎞⎠ ,  =

⎛⎝ 
−1
−1

⎞⎠ and

µ
1



¶


40Other key references are Ljung (1977) and Marcet and Sargent (1989).
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Note that  ∈ R for  = 32.

For matrix  define ()
F
as the matrix obtained from by replacing its first row

by a row of zeros. Note that, by LQ.RTL, the eigenvalues of (+ (∗ ))F

are all less than one in modulus. Fixing an estimate , define the matrices A() and
B() as follows:

A() =

⎛⎜⎝
³
+ ( ̃)

´F
0 0

 0 0

 ( ̃) 0 0

⎞⎟⎠ and B() =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎝
1

0
...

0

⎞⎟⎟⎟⎠ 

0 0

0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠


where  ̃ are the matrices corresponding to the relevant components of . Recall

that the first row of  is zeros. Finally let R∗ be the asymptotic second-moment
matrix for the state  under optimal decision-making, i.e.

R∗ = lim
→∞

0
0
 where  = (+ (∗ ))−1 + 

We now restrict attention to an open set  ⊂ R such that whenever  ∈ 

it follows that  is well-defined, i.e. det (2− 0) 6= 0, R−1 exists, and the
eigenvalues of A() have modulus strictly less than one. The existence of such a set
is guaranteed by: (i) LQ.1 and Theorem 2, which together with ∗ = −2 ∗ imply
that det (2− 0) 6= 0 for  near ∗, and (ii) LQ.RTL, which implies that R
is invertible near R∗.
Given  ∈ , define ̄() as the stochastic process ̄() = A()̄−1()+B()

Let ̄() denote the first  components of ̄() and ̄−1() denote the last 

components of ̄(). With the restriction on  the following limit is well defined:

N ( ̃) = lim
→∞

0̄()̄()
0

Set

∗ =

µ
vec(N (∗ ))

vec(∗)

¶


where clearly ∗ ∈

We now write the recursion (86) in the form (87)-(88). To this end, we define the

function H(· ) : → R component-wise as follows:

H1(−1 ) = vec (
0
 −R−1)

H2(−1 ) = vec
³
R−1−1−1

¡
(  (−1 −1 )−−1)−1

¢0´
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The theory of stochastic recursive algorithms tells us to consider the function  :

 → R defined by

() = lim
→∞

0H( ̄())

where existence of this limit is guaranteed by our restrictions on  . The function 

has components

1() = vec (N ()−R) (89)

2() = vec

µ
R−1N ()

³
  ( ̃)−

´0¶
 (90)

and captures the long-run expected behavior of .

We will apply Theorem 4 of Ljung (1977), which directs attention to the ordi-

nary differential equation ̇ = (), i.e.  = (), where  denotes notational

time. Notice that (∗) = 0, so that ∗ is a fixed point of this differential equation.
Ljung’s theorem tell us that, under certain conditions that we will verify, if ∗ is a
Lyapunov stable fixed point, then our learning algorithm will converge to it almost

surely. The determination of Lyapunov stability for the system ̇ = () involves

simply computing the derivative of  and studying its eigenvalues: if the real parts of

these eigenvalues are negative then the fixed point is Lyapunov stable. Computation

of the derivative of  at ∗ is accomplished by observing that the term multiplying

N () in equation (90) is zero when evaluated at ∗ so that, by the product rule, the
associated derivative is zero. The resulting block diagonal form of the derivative of 

yields repeated eigenvalues that are −1 and the eigenvalues of 2vec( 0)0, which
have negative real part by Theorem 3. It follows that ∗ is a Lyapunov stable fixed
point of ̇ = ().

To complete the proof of Theorem 4, we must verify the conditions of Ljung’s

Theorem and augment the algorithm (86) with a projection facility. First we address

the regularity conditions on the algorithm. Because  has compact support, we apply

Theorem 4 of Ljung (1977) using his assumptions A. Let the set  be the intersection

of  with the basin of attraction of ∗ under the dynamics ̇ = (). Note that 

is both open and path-connected. Let  be a bounded open connected subset of 

containing ∗ such that its closure is also in . We note that for fixed , H() is
continuously differentiable (with respect to ) on , and for fixed  ∈ , H()
is continuously differentiable with respect to . Furthermore, on  the matrix

functions A() and B() are continuously differentiable. Since the closure of  is

compact, it follows from Coddington (1961), Theorem 1 of Ch. 6, that A() and B()
are Lipschitz continuous on . The rest of assumptions A are immediate given the

gain sequence .

We now turn to the projection facility. Because ∗ is Lyapunov stable there exists
an associated Lyapunov function  :  → R+. (See Theorem 11.1 of Krasovskii

(1963) or Proposition 5.9, p. 98, of Evans and Honkapohja (2001).) For   0, define
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the notation

() = { ∈  : () ≤ }
Pick 1  0 such that (1) ⊂ , and let 1 = int ((1)). Pick 2  1 and let

2 = (2). Let ̄ ∈ 2. Define a new recursive algorithm for  as follows:

 =

(
̂ = −1 + H(−1 ) if ̂ ∈ 1

̄ if ̂ ∈ 1



With these definitions, Theorem 4 of Ljung applies and shows that  → ∗ almost
surely.

We remark that if  does not have compact support but has finite absolute mo-

ments then it is possible to use Ljung’s assumptions B or the results presented on p.

123 — 125 of Evans and Honkapohja (2001) and Corollary 6.8 on page 136.

Appendix B: Details on Euler-equation Learning

As noted in Section 4.2.2, if 22 6= 0 it may still be possible to derive a one-step-
ahead FOC that may interpreted as an Euler equation. The particular example we

considered in that section held that det2 6= 0, but a more general result is available
through the use of transformations. In this Appendix, we begin with a discussion

of transformations, and then prove a general result that will yield Theorem 6 as a

corollary.

Recall the LQ-problem under consideration:

 ∗(0) = max −
X


 (0 + 0 + 2
0
) (91)

 +1 =  + + +1 (92)

The usual dimensions of controls and states (and corresponding matrices) apply. We

say that the 5-tuple () satisfies LQ.1 — LQ.3 provided that  is positive

semi-definite,  is positive definite, and the transformed matrices ̂ = 12( −
−1 0), ̂ = 12 and ̂ = −−1 0 satisfy LQ.1 — LQ.3.

A transformation of problem (91) is a linear isomorphism S : R⊕R → R⊕R

of the form

S =
µ

 0

S21 ±

¶


The idea is to use this transformation to change the notions of states and controls:µ
̆
̆

¶
= S

µ



¶
 (93)

We require S12 = 0 so that the transformed problem remains recursive, i.e. so that

the new (pre-determined) state ̆ does not depend on the new control ̆.
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Now write

0 + 0 + 2
0
 =

¡
0 0

¢µ  

 0 

¶µ



¶
=

¡
̆0 ̆0

¢ ¡S−1¢0µ  

 0 

¶
S−1

µ
̆
̆

¶
= ̆0̆̆ + ̆0̆̆ + 2̆

0
̆ ̆ (94)

and

̆+1 = +1 =
¡
 

¢µ 


¶
+ +1

=
¡
 

¢S−1µ ̆
̆

¶
+ +1 = ̆̆ + ̆̆ + +1 (95)

where the last equalities of each displayed equation provide notation.

A transformation S provides a formal mechanism though which a problem’s states
and controls may be modified in order to facilitate analysis. The following example

helps motivate the general approach. Consider again the original problem (91). Let

S̃() =

µ
 0×

−1 0 

¶


This transformation removes the interaction term in the objective: ̆ = 0. It provides

the transformation used in our paper to define LQ.1 — LQ.3, except that here we are

not eliminating discounting.

We now use S to transform problem (91). Specifically, the corresponding trans-

formed problem is given by

̆ ∗(̆0) = max −0
X



³
̆0̆̆ + ̆0̆̆ + 2̆

0
̆ ̆

´
(96)

 ̆+1 = ̆̆ + ̆̆ + +1 (97)

We have the following theorem, which provides the sense in which the original problem

and its associated transform are equivalent.

Lemma 5 Given () and transform S : R ⊕ R → R ⊕ R, let

(̆ ̆ ̆  ̆ ̆) be as determined by (94) and (95). Then

Theorem 7 1. The 5-tuple () satisfies LQ.1 — LQ.3 if and only if

the 5-tuple (̆ ̆ ̆  ̆ ̆) satisfies LQ.1 — LQ.3.
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2. The state-control path ( ) solves (91) if and only if the state-control path

(̆ ̆) solves (96), where ( ) and (̆ ̆) are related by (93).

Proof of Lemma 5. To prove part 1 notice that we only need to prove one direction

because of the invertibility of the transform. Thus we assume () satisfy

LQ.1 — LQ.3 and we show (̆ ̆ ̆  ̆ ̆) satisfies LQ.1 — LQ.3. Next, notice that

we can redefine the control as its negation:  → − by also sending  →− and

 →−: it is immediate that LQ.1 — LQ.3 remain satisfied. Thus we may consider
only transforms of the form

S =
µ

 0

S21 

¶


Using

S−1 =
µ

 0

−S21 

¶


we may compute directly that ̆ =  ̆ =  and

̆ = −S21 − S 021 0 + S 021S21
̆ =  − S 021
̆ = −S21

Denote with a tilde matrices associated to the transform of the problem (96) used

to examine LQ.1 - LQ.3, and recall that hats identify the corresponding matrices of

problem (92). Thus, for example, ̂ =  −−1 and ̃ = ̆ − ̆̆−1̆ 0. We
compute ³

S̃(̆  ̆)−1
´0µ ̆ ̆

̆ 0 ̆

¶
S̃(̆  ̆)−1 =

µ
−−1 0 0

0 

¶


which shows that ̃ = ̂ Next we find that

̃ = 12(̆−−1̆ 0)

= 12(−S21 −−1( − S 021)0)
= 12(−−1 0) = ̂

Since it is immediate that ̃ = ̂ and ̃ = ̂ part 1 is established.

To prove part two, we use the invertibility of S and the definitions (95) to see that
the state-control path ( ) is feasible under (92) if and only if the state-control

path (̆ ̆) is feasible under (97). The proof is completed by observing that equation

(94) implies the objective of (91) evaluated at ( ) is equal to the objective of (96)

evaluated at (̆ ̆)

We now use transforms to identify conditions guaranteeing the existence of one-

step-ahead Euler equations. Let () characterize a problem and suppose
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22 6= 0. Suppose further that S is a transform that yields (̆ ̆ ̆  ̆ ̆). If ̆22 = 0

then the optimal path (e e) satisfies
̆̆ + ̆ 0

 ̆+ ̆0(̆̆+1 + ̆ ̆+1) = 0 (98)

Inverting the transform, it follows that the optimal path ( ) satisfies an FOC of

the form ¡
̆ 0 ̆

¢S µ 


¶
+ ̆0 ¡ ̆ ̆

¢S

µ
+1
+1

¶
= 0 (99)

We interpret equation (99) as an Euler equation on which agents may base their

boundedly optimal decision making. In particular, given a PLM of the form  =

−, equation (99) may be used to identify the corresponding T-map which de-
termines the ALM. We call label this T-map by  just as before because it is a

direct generalize of the map identified in Section 4.2.2. In particular, if 22 = 0

then we may take  to be the identity matrix, and equation (99) reduces to the usual

Euler equation (40). Also, if 22 6= 0 2 =  and det2 6= 0 then we may form the

transform41

S =
⎛⎝ 1 01×2 01×
02×1 2 02×
0×1 −12 22 

⎞⎠ 

The new control becomes ̆ =  +−12 222. We find that

̆ =

µ
1 01×2
21 02×2

¶
and

̆ =  =

µ
01×
2

¶


and we have that ̆22 = 0. Finally, in this case, equation (99) reproduces the Euler

equation (40).

The discussion just provided shows that the following theorem holds Theorem 6

as a special case:

Theorem 8 Assume LQ.1 — LQ.3 are satisfied and that there is a transform  so

that ̆22 = 0 If agents behave as Euler equation learners with perceptions  = −
and use (41) as their behavioral primitive then  ∗ is a Lyapunov stable fixed point of
the differential equation  = ( ) −  . That is,  ∗ is stable under stylized
learning.

41We note that the ̆ and ̆ produced by this transform will not be the same as in equation (41)

because this later equation is written in terms of  and not ̆
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Proof of Theorem 8. The proof proceeds in two parts. In part I we assume that

22 = 0 so that no transform is applied to the matrices. In part II the general case

is considered.

Part I. To show Φ (+ ∗) = Φ( ∗) and Ψ( + ∗) = Ψ( ∗) we use the
Riccati equation we compute

 ∗ = + 0 ∗−Ψ( ∗)0Φ( ∗)Ψ( ∗)

= −Φ( ∗)Ψ( ∗) + 0 ∗− 0 ∗Φ( ∗)Ψ( ∗)

so that

 ∗ = + ∗ + 0 ∗(+ ∗)

Noting that 00 = 0 and using the preceding equation, we conclude that

Ψ( ∗) ≡ 0 ∗+ 0 = Ψ(+ ∗)

and similarly for Φ.

We next compute matrix differentials. At arbitrary (appropriate)  , we have that

 = −(Φ ·Ψ+ Φ · Ψ), and

Φ = − ¡(+ 0(+ ))−10
¢ ·  · ¡(+ 0(+ ))−1

¢
Ψ = (0 ) ·  · ()

Evaluated at  ∗, we obtain

 = (Φ( ∗)0 ) ·  · (Φ( ∗)Ψ( ∗)−) 

Applying the vec operator to each side, we obtain


¡



¢
( ∗) = −Ω( ∗)0 ⊗ 12Φ( ∗)0

where we recall that

Ω( ∗) = 12− 12(+ 0 ∗)−1(0 ∗+ 0)

= 12(−Φ( ∗)Ψ( ∗))

In the proof of Theorem 1 it is shown that eig ◦ Ω( ∗) have modulus less than one;
thus the proof will be complete if we can show that the eigenvalues of 12Φ( ∗)0
are inside the unit circle. This requires three steps.

Step 1. We show that the eigenvalues of 12Φ( ∗)Ψ( ∗) are inside the unit circle.

To see this let  = −12Φ( ∗)Ψ( ∗) and notice that since the first 1 rows of 
are zeros we have

 =

µ
0 0

21 22

¶
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Because 22 = 0 we conclude that

Ω( ∗) = 12 (−Φ( ∗)Ψ( ∗)) =

µ
1211 0

∗ 22

¶


and step 1 is complete by Theorem 1.

Step 2. Now we show that

eig ◦Φ( ∗)Ψ( ∗) = eig ◦Φ( ∗) 0

Let  = Φ( ∗)0 ∗ and  = Φ( ∗) 0, so that Φ( ∗)Ψ( ∗) =  + . The

structures of  and  imply

 =

µ
0 0

21 0

¶
and  =

µ
0 0

21 22

¶


and step 2 is follows.

Step 3. Finally, we show that

eig ◦ Φ( ∗)0 ⊂ eig ◦Φ( ∗) 0

Since eigenvalues are preserved under transposition, it suffices to show that

eig ◦ 0Φ( ∗) ⊂ eig ◦Φ( ∗) 0

To this end, let  = Φ( ∗), and notice 0 =
¡
0 2

0 ¢  Writing the  × matrix

 as  0 =
¡
1

0 2
0 ¢, we compute  0 =2

02 and

 0 =

µ
0 0

21
0 22

0

¶


Since 2 and 2 are  × matrices, it follows that eig ◦ 22
0 = eig ◦2

02, and
step 3 is complete.42

By steps 3 and 2 we have

eig ◦ 12Φ( ∗)0 ⊂ eig ◦ 12Φ( ∗) 0

= eig ◦ 12Φ( ∗)Ψ( ∗)

The result then follows from step 1.

42If  is a × matix and is a ×matrix then every non-zero eigenvalue of  is an eigennvalue

of . To see this suppose  = , where  and  are non-zero. Then () = , where

 is non-zero because  is non-zero. Thus  is a non-zero eigenvalue of .

If    then the null space of  is nontrivial. Thus zero is an eigenvalue of , though it may

not be an eigenvalue of .
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Part II. Now we turn to the case the general case in which 22 6= 0 and there is a

transform  so that ̆22 = 0 Denote by ̆
 the T-map that obtains from equation

(98) using the PLM ̆ = −̆, and let ̆ ∗ be the corresponding fixed point. By

Lemma 5 and Part I of the proof, we know that ̆
³
̆ ∗
´
is a stable matrix. We

claim that

( ) = ̆ ( − 21) + 21 (100)

 ∗ = ̆ ∗ + 21 (101)

To see this, notice that the PLM  = − corresponds to the PLM ̆ = − ( − S21)where
we are using  = ̆ Also the ALM  = −( ) implies that

̆ = −
¡
( )− S21

¢
 = −̆ ( − S21)

where the second equality follows from the construction of ̆ This demonstrates

(100) and (101). It follows that  ( ∗) = ̆
³
̆ ∗
´
and the result obtains.

Appendix C: Solving the Quadratic Program

While the LQ-framework developed Section 3.1 is well-understood under various

sets of assumptions, we include here, for completeness, precise statements and proofs

of the results needed for our work. Here we begin with the deterministic case —

the stochastic case, as presented in the next section, relies on the same types of

arguments but requires considerably more technical machinery to deal with issues

involving measurability. The proofs presented here follow the work of Bertsekas (1987)

and Bertsekas and Shreve (1978) with modifications as required to account distinct

assumptions.

Solving the LQ-Problem: the Deterministic Case.

The problem under consideration is

min
X
≥0

 (0 + 0 + 2
0
) (102)

 +1 =  + (103)

with 0 given. Notice that we have shut down the stochastic shock. Also, we are con-

sidering the equivalent minimization problem: this is only for notational convenience.

We assume LQ.1 — LQ.3 are satisfied.

Formalizing the programming problem

To make formal the problem (102) we define a policy  to be a sequence of func-

tions  : R → R. For the problems under consideration, optimal policy will
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be stationary policies, that is,  =  However, at a key step in the proof of the

Principle of Optimality below, it is helpful to allow for time-varying policies. Set

 : R → [0∞] as

() = lim
→∞

X
=0

 (0 + 0 + 2
0
)

+1 =  + and  = ()

By equation (16), and LQ.1 - LQ.3, the summands in the above limit are positive:

0+ 0+ 20 ≥ 0
Thus  is well defined. Letting Π be the collection of all policies, we define  ∗ :
R → [−∞∞] by

 ∗() = inf
∈Π

() (104)

While  ∗ is now well defined, more can be said. Specifically,

Lemma 6  ∗() ∈ [0∞)

Proof: That  ∗() ≥ 0 is immediate. To establish that  ∗ is finite-valued, choose
̂ to stabilize (̂ ̂) and set  = −1 0 + ̂  Then


1
2 (− ) = 

1
2

³
−

³
−1 0 + ̂

´´
= 

1
2

¡
−−1 0¢− 1

2̂ = ̂−̂̂ 

so that 
1
2 (− ) is stable. Let the policy  be given by  () = − It follows

that

 ∗() ≤  () = 0
ÃX

≥0
 (0 −  00) (+  0 − 2 ) (− )



!


= 0
ÃX

≥0

³

1
2 (0 −  00)

´
(+  0 − 2 )

³

1
2 (− )

´!
 ∞

where the inequality comes from Lemma 4.

We conclude that the solution to the sequence problem (104) is a well-defined, non-

negative, real-valued function.

The S-map

Characterization of  ∗ is provided by the Principle of Optimality. To develop

this characterization carefully, we work as follows. As noted above, under LQ.1 —

LQ.3 we have that

0+ 0+ 20 ≥ 0
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It follows that given any function  : R → [0∞), we may define ( ) : R → [0∞)
by

( )() = inf
∈R

(0+ 0+ 20+  (+)) 

It is helpful to observe that given  and   0 we can find the stationary policy

 : R → R so that for each  ∈ R, the control choice  = () implies objective

0+ 0+ 20+  (+) is within  of the infimum, that is,

0+ ()
0() + 2

0() +  (+()) ≤ ( )() + 

The following result is the work-horse lemma for dynamic programming in the deter-

ministic case. The proofs, which be provide for completeness, follow closely Bertsekas

(1987) and Bertsekas and Shreve (1978).

Lemma 7 The map  satisfies the following properties:

1. (Monotonicity) If 1 2 : R → [0∞) and 1 ≤ 2 then (1) ≤ (2).

2. (Principle of Optimality)  ∗ =  ( ∗) 

3. (Minimality of  ∗) If  : R → [0∞) and ( ) =  then  ∗ ≤ 

Proof. To establish item 1, let   0 and choose a stationary policy  so that

0+ ()
0() + 2

0() + 2(+()) ≤ (2)() + 

Then

(1)() ≤ 0+ ()
0() + 2

0() + 1(+())

≤ 0+ ()
0() + 2

0() + 2(+()) ≤ (2)() + 

Turning to item 2, let  be any policy. Then

() = 0+ 0()
00() + 2

00() + (+0())

≥ 0+ 0()
00() + 2

00() +  ∗(+0())

≥ inf
∈R

0+ 0+ 20+  ∗(+) = ( ∗)()

It follows that  ∗ ≥ ( ∗) To establish the reverse inequality, define  1
 () to be

the value at time 1 given policy  Thus

 1
 () = lim

→∞

X
=1

 (0 + 0 + 2
0
)

+1 =  + and  = () with 1 = 
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Let    0 and choose  so that

0+ 0()
00() + 2

00() +  ∗(+0()) ≤ ( ∗)() +  and

 1
 (+0()) ≤  ∗(+0()) + 

We find that

 ∗() ≤ () = 0+ 0()
00() + 2

00() +  1
 (+0())

≤ ( ∗)() + + 

and the result follows.

To establish item 3, let  be a fixed point of  and   0 and let  = 12(1−) 
0 Choose stationary policy  so that

0+ ()
0() + 2

0() +  (+()) ≤ ( )() + 

Now fix  ∈ R, and let ( ) be the sequence generated by the policy  the

transition dynamic (103)  and the initial condition 0 = Then

 ∗() ≤ lim
→∞

X
=0

 (0 + 0 + 2
0
)

≤ lim
→∞

Ã
+1 (+1) +

X
=0

 (0 + 0 + 2
0
)

!

= lim
→∞

Ã
+1 ( + ) +

X
=0

 (0 + 0 + 2
0
)

!

= lim
→∞

Ã
 (0 + 0 + 2

0
 +  ( + ))

+

−1X
=0

 (0 + 0 + 2
0
)

!

≤ lim
→∞

Ã
 (( )( ) + ) +

−1X
=0

 (0 + 0 + 2
0
)

!

= lim
→∞

Ã
 ( ) +

−1X
=0

 (0 + 0 + 2
0
) +  

!
...

≤ lim
→∞

Ã
 (0) + 

X
=0



!
=  () + 

∞X
=0

   () + 

Solving the deterministic LQ-problem
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The following lemma relates the -map to the  -map, and we use this Lemma to

prove Theorem 9:

Lemma 8 If  is symmetric positive semi-definite and  () = 0 is the corre-
sponding quadratic form then ( )() = 0( )

Proof. That ( )() = 0 ( ) follows from Lemma 1. Thus ( )() =

 ( )() Working by induction,

( )() =
¡
−1 ◦ ¢ ( )() = −1(( ))()

= −1( ( ))() = 0−1( ( ))

= 0( )

Theorem 9 Assume LQ.1 — LQ.3 and let  ∗ be as in Theorem 1. Then

1.  ∗() = 0 ∗.

2. If () = − ( ∗) then () =  ∗()

Proof. To demonstrate item 1, we lean heavily on Lemma 1. Let  ∗() = 0 ∗.
Then

 (∗) () = 0 (∗) = 0 ∗ = ∗()

where the first equality follows from Lemma 1 and the second follows from the fact

that  ∗ is a fixed point of  . It follows from item 3 of Lemma (7) that  ∗() ≤ ∗()

Next notice that 0 ≤  ∗, so that by items 1 and 2 of Lemma 7 that (0) ≤  ∗ But
by Lemma 8, (0)() = 0(0) Thus 0(0) ≤  ∗() Taking limits we have

∗() = 0 ∗ = lim
→∞

0(0) ≤  ∗()

and the item 1 is established.

To determine the optimal policy consider the optimization problem

inf
∈R

(0+ 0+ 20+ ∗ (+))  (105)

By Lemma 1 the unique solution is given by  = − ( ∗) Now note that
̂ ( ∗) = (+ 0 ∗)−1̂0 ∗̂

= (+ 0 ∗)−10 ∗
¡
−−1 0¢

= (+ 0 ∗)−1
¡
0 ∗+ 0 −−1 0 − 0 ∗−1 0¢

= (+ 0 ∗)−1
£
(0 ∗+ 0)− (+ 0 ∗)−1 0¤

=  ( ∗)−−1 0
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From ̂ = −−1 0 we have

0+ 0+ 20

= 0̂+ (+−1)0(+−1)

It follows that under the policy  = − ( ∗)

0+ 0+ 20 = 0
³
̂+ ( ( ∗) +−1 0)0( ( ∗) +−1 0)

´


= 0
³
̂+ ̂ ( ∗)0̂ ( ∗)

´


Now let  be given by () = − ( ∗) We claim that () =  ∗() that is, 
solves the sequence problem (102). If this policy is followed then the state dynamics

are given by  = −12Ω( ∗)−1 Thus

() =
X
≥0

 (0 + 0 + 2
0
) =

X
≥0

0
³
̂+ ̂ ( ∗)0̂ ( ∗)

´


= 0
ÃX

≥0
(Ω( ∗)0)

³
̂+ ̂ ( ∗)0̂ ( ∗)

´
(Ω( ∗))

!
 = 0̂

where the last equality identifies notation. The existence of ̂ is guaranteed by Lemma

4. Note also that ̂ is symmetric, positive semi-definite. That same Lemma shows

̂ = Ω( ∗)0̂Ω( ∗) + ̂+ ̂ ( ∗)0̂ ( ∗)

But by Lemma 3 and Theorem 1,  ∗ is the unique symmetric, positive semi-definite
satisfying this equation. It follows that ̂ =  ∗ and thus () =  ∗().

Solving the LQ-Problem: the Stochastic Case. We now turn to the stochastic

formulation of the quadratic problem. Certainty equivalence will yield that the policy

function takes precisely the same form as in the deterministic case:  =  ( ∗); how-
ever, establishing this result requires considerably machinery. The difficulty involves

measurability of the value function, a property that is needed in order to properly

formulate the expectational form of Bellman’s functional equation. The development

presented here follow the work of Bertsekas (1987), Bertsekas and Shreve (1978) and,

at a key point, leans heavily on Theorem 1.

The problem under consideration is

min 
X
≥0

 (0 + 0 + 2
0
) (106)

 +1 =  + + +1 (107)

where 
0
 = 2 To make this problem precise, and in particular to make sense

of the expectations operator, we must establish the collection of admissible policies.
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Because objective involves an integral, it is necessary to restrict attention to mea-

surable policies, and to remain connected to the inherent topology of the state and

controls spaces, we follow the literature and require that our policy functions be Borel

measurable. Unfortunately, Borel measurability is not sufficiently flexible to allow

for integration of all of the types of functions arising from a general (unbounded) DP

problem. At issue is the projection of a Borel subset of a Cartesian product onto one

of the factors, is not necessarily Borel measurable. Since, as we will emphasize below,

the infimum operation involves precisely this type of projection, we are required to

expand our notion of measurability to include these projected sets. We turn to this

development now, which is somewhat involved.

Preliminaries.

First, we work to make infima well behaved. Let   0 represent any dimension,

and let B be the Borel sets in R  that is, the -algebra generated by the opens sets

of R . Let Y be any uncountable Borel space. If X ⊂ R ×Y define the projection
of X onto R in the usual way:

Pr
R
(X ) = © ∈ R : ( ) ∈ Xª 

The collection A of analytic sets in R is the set of all subsets of R of the form

PrR (X ) for any Borel set X ⊂ R × Y43 Note that B ⊂ A, but the reverse
inclusion does not hold. The function  : R → R∗ is lower semi-analytic provided
that its lower contours are analytic, that is, for any  ∈ R∗©

 ∈ R : ()  
ª ∈ A

A lower semi-analytic function is not necessarily Borel measurable. The following

result is Proposition 7.47 on page 179 of Bertsekas and Shreve (1978):

Lemma 9 Suppose  : R ×R → R∗ is lower semi-analytic. Define ∗ : R → R∗

by

∗() = inf {( ) : ( ) ∈ R ×R} 
Then ∗ is lower semi-analytic.

43As is implied by this definition, any two distinct uncountable Borel spaces Y and Y 0 identify
the same collection of analytic sets. While this does mean we could have simply take Y to be a

familiar set like R, the generality of this definition will be useful.
There is a variety of equivalent definitions of analytic sets: see Bertsekas and Shreve (1978),

Proposition 7.41, page 166. The one we chose to emphasize highlights the relationship between

analyticity and infima, though other defintions are more useful for establishing the useful properties

of analytic sets.
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Next, we extend measurability in the appropriate way. Let Λ
¡
R
¢
to be the

collection of all probability measures on B  For  ∈ Λ
¡
R
¢
and  ⊂ R we define

the outer measure of  with respect to  in the usual way:

∗() = inf{() :  ⊂  ∈ B}
Then, using the method of Caratheodory, we define B () to be the largest -algebra
on which ∗ is countably additive:

B () = { ⊂ R : ∗() + ∗() = 1}
Notice that B ⊂ B () and ∗|B =  Finally, set

U =
\

∈Λ(R )
B () 

Then U is a -algebra containing B onto which all  ∈ Λ
¡
R
¢
extend. Impor-

tantly, by Corollary 7.42.1 on page 169 of Bertsekas and Shreve (1978), analytic sets

are universally measurable.

If  : R → R∗ then  is universally measurable provided that −1 () ∈ U for
any open  ⊂ R  Notice that universally measurable functions may be integrated

against any (properly extended) Borel measure  ∈ Λ
¡
R
¢
 Also, since analytic sets

are universally measurable it follows that lower semi-analytic functions are universally

measurable.

To illustrate more concretely the relationships between analyticity, universal mea-

surability, infima and projections, let  : R×R → R∗ be Borel measurable. Also,
for any set X ⊂ R ×R let

Pr
R
(X ) = { ∈ R : ( ) ∈ X} 

Finally, define ∗ as in Lemma 9. If  ∈ R let  ⊂ R×R be the pre-image under

 of (−∞ ) and let ∗ ⊂ R be the pre-image of (−∞ ) under ∗ These sets are
related by

∗ = Pr
R
() 

Since  is Borel measurable it follows that  is Borel measurable. However, 
∗
 may

not be Borel measurable since Borel measurability is not preserved under projection.

But if  is lower semi-analytic then by Lemma ?? together with the inclusion U ⊂
A, we know that ∗ is universally measurable, and thus ∗ may be integrated.
Finally, we connect universal measurability to evaluation of the objective. To

allow for the computation of

 lim
→∞

X
=0

 (0 + 0 + 2
0
) 
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the policy and transition dynamics must preserve universal measurability and de-

termine a distribution over the history   The needed result relies on the notion

of a universally (Borel) measurable stochastic kernel, which is defined as a function

 : U×R → [0 1] so that  (· ) ∈ Λ
¡
R
¢
 properly extended, and for any  ∈ U,

the map

 →  ( ) : R → [0 1]

is universally (Borel) measurable.The following Lemma, which is Proposition 7.48 on

page 180 of Bertsekas and Shreve (1978), provides a needed result.

Lemma 10 Suppose  : R × R → R∗ is lower semi-analytic and  is a Borel

measurable stochastic kernel. Define ̂ : R → R∗

̂() =

Z
( )( )

Then ̂ is lower semi-analytic.

Formalizing the programming problem

For simplicity, we consider only stationary policies. This is possible because we

state without proof the Principle of Optimality, from which it will follow that the

optimal policy will be stationary. The set Π of admissible policies is the collection

of universally measurable functions  : R → R. We note that if  is an admissible

policy and  : R ⊕ R → R∗ is universally measurable then so is the function
 → ( ()): see Bertsekas and Shreve (1978), Proposition 7.44, page 172. Next,

we build the universally measurable stochastic kernel associated to a given policy 

and the transition dynamics (107): Let  ∈ Λ (R) be the Borel measure induced

by the random vector  appropriately extended to U Define  as follows:  ∈ B
and ( ) ∈ R ×R

( ( )) =  ( − (+))  (108)

At the bottom of page 189, Bertsekas and Shreve (1978) argue that  is a Borel

measurable stochastic kernel. Next, for  ∈ Π, and or  ∈ U and  ∈ R define

( ) =  ( − (+())) 

Because universal measurability is preserved under composition,  is a universally

measurable stochastic kernel.

Given a policy  and associated kernel  we may use Proposition 7.45 on page

175 of Bertsekas and Shreve (1978) to construct a distribution over histories of the

state. Let

 (
 ) =

X
=0

 (0 + ()
0() + 2

0
()) 
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Then given any initial condition 0 this proposition guarantees the existence of a

measure  (· 0) ∈ Λ
³¡
R
¢´

so thatZ
 (

 ) (
  0) =

Z Z
· · ·
Z

 (
 )(  −1)

(−1 −2) · · · (1 0)

Finally, for admissible policy  we set

() = lim
→∞

Z
 (

 ) (
  )

With this notation, we are finally in a position to make formal the decision problem

(106):

 ∗() = inf
∈Π

() (109)

Note that  ∗ : R → [0∞] We have the following non-trivial result, which is

Corollary 9.4.1 on page 221 of Bertsekas and Shreve (1978), and represents more

than a simple combination of Lemmas 9 and 10:

Lemma 11 The map  ∗ is lower semi-analytic.

The S-map

As in the deterministic case, we would like to identify  ∗ as the solution to asso-
ciated Bellman system. For lower semi-analytic  : R → [0∞], define ( ) : R →
[0∞] by

( )() = inf
∈R

0+ 0+ 20+ 

Z
 (̃)(̃ ( ))

where  is the Borel measurable stochastic kernel defined by (??). By Lemmas 9 and

10, ( ) is lower semi-analytic whenever  is. By Lemma 11 we may act by  on

 ∗ We have the following analog to Lemma 7 from the deterministic case.

Lemma 12 The map  satisfies the following properties:

1. (Monotonicity) If 1 2 : R → [0∞) are lower semi-analytic, and 1 ≤ 2
then (1) ≤ (2).

2. (Principle of Optimality)  ∗ =  ( ∗) 

3. (Minimality of  ∗) If  : R → [0∞) is lower semi-analytic and ( ) = 

then  ∗ ≤ 
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Item 1 is proved just as before and the remaining two results are recorded as Propo-

sitions 9.8 and 9.10 on pages 227 and 228 of Bertsekas and Shreve (1978). One more

(highly non-trivial) result is needed: Define 0 = 0 and  = (−1) Bymonotonic-
ity,  is increasing, and so pointwise convergent in R∗ Denote this limit by ∞ The
following Lemma is Proposition 9.16 on pages 232 of Bertsekas and Shreve (1978):

Lemma 13 If (∞) = ∞ then ∞ =  ∗

Solving the stochastic LQ-problem

As before, we need the following result:

Lemma 14 If  is symmetric positive semi-definite and  () = 0 is the corre-
sponding quadratic form then ( )() = 0

 ( )

Proof. That ( )() = 0( ) follows from Lemma 2. Thus ( )() =

( )() Working by induction,

( )() =
¡
−1 ◦ ¢ ( )() = −1(( ))()

= −1(( ))() = 0−1
 (( ))

= 0( )

.

Theorem 10 Assume LQ.1 — LQ.3 and let  ∗ be as in Theorem 1. Then

1.  ∗() = 0 ∗+ 

1− tr
¡
2

∗
0¢
.

2. If () = − ( ∗) then () =  ∗()

Proof. To demonstrate item 1, note that

∞() = lim
→∞

() = lim
→∞

(0)() = lim
→∞

0
 (0) = 0 ∗ 

where the last equality follows from Theorem 1. Thus

(∞)() = (∗ )() = 0 (
∗
 ) = 0 ∗  = ∞()

By Lemma 13,

 ∗() = ∞() = 0 ∗  = 0 ∗+


1− 

³
2

∗
0
´
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where the last equality follows from Lemma 2. With this, item 1 is established.

To determine the optimal policy consider the optimization problem

inf
∈R

0+ 0+ 20+ 

Z
 ∗(̃)(̃ ( ))

with  ∗ now written as in item 1. By Lemma 2, together with the bulleted comments
that follow, the unique solution is given by  = − ( ∗) The same computation as
in the proof of Theorem 9 demonstrates that under the policy  = − ( ∗)

0+ 0+ 20 = 0
³
̂+ ( ( ∗) +−1 0)0( ( ∗) +−1 0)

´


= 0
³
̂+ ̂ ( ∗)0̂ ( ∗)

´


Now let  be given by () = − ( ∗) We claim that () =  ∗() that is, 
solves the sequence problem (109). If this policy is followed, then, by equation (20),

the state dynamics are given by

 = −12Ω( ∗)−1 + 

=
³
−12Ω( ∗)

´
0 +

−1X
=0

³
−12Ω( ∗)

´
− 
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Thus

()

= 0
X
≥0

 (0 + 0 + 2
0
) = 0

X
≥0

0
³
̂+ ̂ ( ∗)0̂ ( ∗)

´


= 0
ÃX

≥0
(Ω( ∗)0)

³
̂+ ̂ ( ∗)0̂ ( ∗)

´
(Ω( ∗))

!


+0
X
≥1


−1X
=0

µ³
−12Ω( ∗)

´
−

¶0 ³
̂+ ̂ ( ∗)0̂ ( ∗)

´µ³
−12Ω( ∗)

´
−

¶

= 0
ÃX

≥0
(Ω( ∗)0)

³
̂+ ̂ ( ∗)0̂ ( ∗)

´
(Ω( ∗))

!


+

µ


1− 

¶
0
X
≥0


µ³

−12Ω( ∗)
´
+1

¶0 ³
̂+ ̂ ( ∗)0̂ ( ∗)

´µ³
−12Ω( ∗)

´
+1

¶

= 0
ÃX

≥0
(Ω( ∗)0)

³
̂+ ̂ ( ∗)0̂ ( ∗)

´
(Ω( ∗))

!


+

µ


1− 

¶
0
X
≥0

0+1
0 (Ω( ∗)0)

³
̂+ ̂ ( ∗)0̂ ( ∗)

´
Ω( ∗)+1

= 0 ∗+

µ


1− 

¶
0
X
≥0

0+1
0 (Ω( ∗)0)

³
̂+ ̂ ( ∗)0̂ ( ∗)

´
Ω( ∗)+1

where the last equality follows from the work done in proving 9. Since ̂+̂ ( ∗)0̂ ( ∗)
is symmetric, positive semi-definite, we may use the rank decomposition to write

̂+ ̂ ( ∗)0̂ ( ∗) = 0
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Then

0
X
≥0

0+1
0 (Ω( ∗)0)0Ω( ∗)+1

=
X
≥0
tr
³
Ω( ∗)(+1

0
+1)

0 (Ω( ∗)0)0
´

=
X
≥0
tr
³
(Ω( ∗)0)0Ω( ∗)2

0
´

= tr

"ÃX
≥0
(Ω( ∗)0)0Ω( ∗)

!
2

0
#

= tr

"ÃX
≥0
(Ω( ∗)0)

³
̂+ ̂ ( ∗)0̂ ( ∗)

´
Ω( ∗)

!
2

0
#

= tr
£
 ∗2

0¤ = tr³2 ∗ 0
´


and the result follows.

Appendix D: Examples

Proof of Proposition 1. We reproduce the LQ problem (49) here for convenience:

max −
X
≥0


¡
( − ∗)2 + 2−1

¢
(110)

s.t. +1 = 1 +2−1 −  + +1

To place in standard LQ form (see (7)), we define the state as  = (1  −1)0 and
the control as  = . Note that the intercept is an exogenous state. The key matrices

are given by:

 =

⎛⎝ (∗)2 0 0

0  0

0 0 0

⎞⎠   =

⎛⎝ 1 0 0

0 1 2
0 1 0

⎞⎠ 

and  = (−∗ 0 0)0  = (0−1 0)0, and  = 1. The transformed matrices are

̂ = − 0 ̂ = 
1
2 (− 0), and ̂ = 

1
2: thus

̂ =

⎛⎝ 0 0 0

0  0

0 0 0

⎞⎠  ̂ = 
1
2

⎛⎝ 1 0 0

−∗ 1 2
0 1 0

⎞⎠ 

We see immediately that LQ.1 is satisfied: ̂ is positive semi-definite and  is

positive definite. Next let  = (12 3) be any 1× 3 matrix. Then

̂− ̂ = 
1
2

⎛⎝ 1 0 0

−∗ +1 1 +2 2 +3

0 1 0

⎞⎠ 
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By choosing 2 = −1 and 3 = −2, we see that (̂ ̂) is a stabilizable pair: thus
LQ.2 is satisfied. Finally, to verify LQ.3note that

̂ =

⎛⎝ 0√


0

⎞⎠ 

and suppose for some  6= 0 that ̂ =  and ̂0 = 0. The condition ̂0 = 0

implies that 2 = 0 Since the third component of ̂ must then be zero, it then follows

from ̂ =  that 3 = 0 or  = 0. But 2 6= 0 implies all three eigenvalues of ̂
are non-zero; thus 3 = 0. But no non-zero eigenvector of ̂ has the form (1 0 0).

Thus if  is an eigenvalue of ̂ then ̂0 6= 0. Thus detectability holds vacuously and
LQ.3 is satisfied. The proof is completed by application of Theorem 40.

Details of Robinson Crusoe Economy The LQ set-up (110) does not directly

impose non-negativity constraints that are present. We show that under suitable

assumptions these constraints are never violated. Carefully specified as an economics

problem, (110) might include the constraints

0 ≤  ≤ 1 +2−1,  ∈ (0 ∗), and +1 ≥ 0 (111)

To demonstrate these hold under our assumption 1+ 22  1, we first study the

nonstochastic steady sate. Let  and  be the respective nonstochastic steady-state

values of  and . The transition equation implies  = Θ, where Θ = 1 +2 − 1.
Inserting this condition into the Euler equation, reproduced here for convenience,

 − ̂+1 = ∗(1− 1 − 22) + 1̂+1 + 22̂+2 (112)

and solving for  yields

 =
∗(1− 1 − 22)

Θ(1− 1 − 22)− 


It follows that if 1 + 22  1 then   0 and  ∈ (0 ∗). Under LQ.RTL, and
provided suitable initial conditions hold and the support of +1 is sufficiently small,

it follows that (111) holds and   0 and  ∈ (0 ∗)
It remains to consider LQ.RTL within the context of the Crusoe Economy. In

general, the first criterion — asymptotic stationarity of the state under optimal decision

making — will not be satisfied. There is no free-disposal in Bob’s world: to prevent

an accumulation of new trees Bob must consume. Thus, if, for example, new trees

are very productive (1  1) and if weeding them is relatively painless ( ≈ 0) it
may be optimal to allow the quantity of new trees to grow without bound. However,

productive new trees does not preclude the desire to stabilize the state. For example,
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if 1 = 11 and 2 = 1, then even with  = 01, asymptotic stationarity of the state

under optimal decision making obtains.

Satisfaction of the second part of LQ.RTL follows satisfaction of the first part by

an argument in Hayashi, p. 394: for an autoregressive process  = +
P

=1 −+
where  is white noise with positive variance, which satisfies the stationarity condition

that the roots of 1 −P

=1 
 = 0 are strictly outside the unit circle, the second

moment matrix 
0
, where 

0
 = (1 −1    −), is non-singular.

Euler Equation Learning in the Robinson Crusoe Economy Turning to Euler

equation learning, first we note that if 2 = 0 then the following simple transform

allows for the construction of a one-step-ahead Euler equation:

S =
µ

2 02×1
0 1 −1

¶


Next, recall the PLM

 = 1 + 2 + 3−1

Using this PLM, the following expectations may be computed:

̂+1 = 1 + (21 + 3) + 22−1 − 2

̂+2 = 1(1− 2) + ((2(1 − 2) + 3)1 + 2(2 − 3))

+(2(1 − 2) + 3)2−1 − (2(1 − 2) + 3)

Combining these expectations with (112) provides the following T-map:

1 →  + 11 + 221(1− 2)

1 + + 12 + 22(2(1 − 2) + 3)

2 → 1 + 1(21 + 3) + 22((2(1 − 2) + 3)1 + 2(2 − 3))

1 + + 12 + 22(2(1 − 2) + 3)

3 → 2 + 122 + 22(2(1 − 2) + 3)

1 + + 12 + 22(2(1 − 2) + 3)


Details of New Keynesian Model

The IS and AS relations under RE are given by

− = 

µ
−+1
+1

¶




³


´ 1+


= ( − 1)− +1(+1 − 1)− (1− )
−
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Now let ∗ be the inflation target and set ∗ = ∗. Define the policy rule as

() = (∗ − 1)
³ 

∗

´ 
∗−1



Then 1 + (∗) = ∗. It follows that the steady-state level of output satisfies





³ ̄


´ 1+


+ (1− )̄(̄ − ̄)− = (1− )∗(∗ − 1)

Finally, ̄ = ̄ − ̄.

The coefficients of the linearized reduced form (75) are given by  = ̄
̄
,  =

̄

̄
(1− ), and

 = ((2∗ − 1)∗)−1
Ã



2
(1 + )

³ ̄


´ 1+


+ (1− )̄̄−
³
1− ̄

̄

´!
̂ =  ((2∗ − 1)∗)−1 ¡(1− )̄̄−−1̄

¢


In matrix form, we may writeµ
1 

− 1

¶µ



¶
=

µ
1 

0 

¶


µ
+1
+1

¶
+

µ
 −

¡
1− 

∗
¢

̂ 0

¶µ



¶

̂ = ̂+1 +̂

where the second line is notation. Stacking in the usual way yieldsµ
̂
̂

¶
=

µ
−1 −−1
0  ⊕ 

¶µ
̂−1
̂−1

¶
+

µ



¶


where  are forecast errors. Letting Λ
−1 be the eigenvalue decomposition of the

coefficient matrix, we have the (unique in the determinate case) minimal state variable

solution written as

̂ = −(11)−112 = Θ̂

Here

−1 =

µ
11 12

21 22

¶


Finally, for comparison purposes, it will be usual to record the REE in levels:

µ



¶
=

⎛⎝ ̄(1−Θ11 −Θ12)
³
̄

̄

´
Θ11 − 1 ̄Θ12

∗(1−Θ21 −Θ22)
³
∗
̄

´
Θ21 ∗Θ22

⎞⎠⎛⎝ 1




⎞⎠ 
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Real-time learning. The map T E : R3 → R6 is determined implicitly by the
following system of equations:

− = (  Ψ−1)




1+


 = ( − 1) + (  Ψ−1)− (1− )

(  Ψ−1)

 =  + 

 = 1 + ()


 = 

µ


 − 1
¶



 + T =  +


−1




Finally, we can derive the following recursive dynamics for the economy’s time path:

let  = (

  


 )
0  = (1   −1). Let −1 be the sample second moment of the

regressors. Then, given that at the beginning of period  the estimates are

−1Ψ−1 −1 −1 −1

we have

 = ̄ + (−1 − ̄) + 



 = 1 + (−1 − 1) + 



T E → {   

  T}

 = (1   −1)
0

 =
−1


(  Φ−1)

 = ( − 1)
 = −1 + ̂ (

0
 − −1)

Ψ0
 = Ψ0

−1 + ̂
−1
  ( −Ψ−1)

0

Next we write out the explicit formulation of the problem assuming two types of

agents. Agents of type one, identified by 1, have measure Ω̄ ∈ [0 1], and agents
of type 2, identified by 2, have measure 1 − Ω̄. We first establish the temporary

equilibrium, which we label as T E , taking beliefs () as fixed. At the beginning of

time , and after the realization of shocks, the available data are, for  = 1 2,

agent level: −1()−1() −1()

aggregate level: −1 −1 

−1


−1  

The equilibrium variables requiring determination are

agent level: () ()() () ()

aggregate level:   

 T
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Thus T E : R12 → R16

Shadow price expectations are given as follows:

() = 11() + 12()+1 + 13()+1 + 14() + 15()()

() = 21() + 22()+1 + 23()+1 + 24() + 25()()

With these expectations, T E is determined implicitly via the following set of equa-
tions:

()
− = ()

()(()− 1) = (1− )

µ
()



¶1−
()

−

+




Ã




µ
()



¶−! 1+


+  ()

() = 

µ


 − 1
¶
()



() = 

µ
()



¶−
() =

−1()


+

−1


−1() +
()


()

−()−()− T


 + T =  +


−1


 = 1 + ()


−1


 = Ω̄(1)
−1
 + (1− Ω̄)(2)

−1


1− = Ω̄(1)
1− + (1− Ω̄)(2)

1−


 = Ω̄(1) + (1− Ω̄)(2)

0 = Ω̄(1) + (1− Ω̄)(2)

 = Ω̄(1) + (1− Ω̄)(2) + 

There are 17 equations and 15 unknowns. By Walras’s law, the bond- or money-

market clearing condition may be ignored. Also, the four equations in () 
−1




and 1− include one dependency.

With the temporary equilibrium map established, the dynamics can be deter-

mined. The state of the economy at the beginning of time  is summarized by the

following variables:

agent level : Ψ−1() −1() −1()−1() −1()

aggregate level : −1 −1

−1 −1 −1
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Here Ψ−1() are the beliefs formed using −1() and −1() is the time  − 1
estimate of the regressors’ second-moment matrix. The dynamic system, in causal

ordering, can be written

 = ̄ + (−1 − ̄) + 



 = 1 + (−1 − 1) + 



T E → {() ()() () ()    

 


  T}

() =
−1


()
− + L0 (−1())

 () = ()(()− 1)

() = (1   −1 −1() −1())
0

() = −1() + ̂ (()()
0 − −1())

()
0 = −1()

0 + ̂()
−1()

¡
()− −1()()

¢0
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