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Abstract

Recently empirical research has emphasized that theoretical models of price-setting must

distinguish between the effects of aggregate and sector-level shocks, and moreover that they

must support heterogeneous behavior across sectors. This paper develops a model that can

deliver these features by extending the rational inattention price-setting approach pioneered by

Maćkowiak and Wiederholt (2009) to a multisector setting. Our analytic solution to a special

case of the rational inattention problem allows us to detail attention allocation mechanisms

and explore implications. More generally, we find that the multisector setting preserves the

desirable characteristic that firms respond differently to different types of shocks, allows for

heterogeneous responses, and reduces the need for extreme calibration of key parameters.

*The most current version of this paper is available at http://pages.uoregon.edu/cfulton/research.html
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1 Introduction

A large branch of macroeconomic literature is concerned with the apparent non-neutrality of mon-

etary policy in the short-run, addressing the question of why nominal changes have real effects.1

This literature stretches back to Keynes who suggested wage and price stickiness as a mechanism

by which an economy might fail to fully and immediately adjust to nominal changes - and, thus,

why an economy might operate out-of-equilibrium. Speaking somewhat loosely, if not all prices

and wages adjust each period - whether due to existing contracts, menu costs, informational costs,

etc. - then, for example, it may be in a recession that wages are “stuck” too high relative to their

“natural” level resulting in unemployment “stuck” too high until such time passes that wages ad-

just, at which point the economy returns to long-run equilibrium.

This paper augments a typical general equilibrium model with monopolistically competitive inter-

mediate goods firms by considering a multisector extension in which prices are fully flexible but

firms face uncertainty about aggregate variables and real marginal costs. Following Maćkowiak

and Wiederholt (2009), this uncertainty is modeled with rationally inattentive firms and results in

a delay in the response of prices to monetary policy shocks. The baseline multisector model and

an extension with relative demand shocks and intermediate production inputs provide additional

targets for the attention of firms. Compared to Maćkowiak and Wiederholt (2009), we are able to

relax the need for extreme calibration of volatilities in order to achieve a reasonable delay.

Contemporary sticky price general equilibrium models often introduce such stickiness by assuming

a la Calvo (1983) that monopolistically competitive firms may only adjust their price each period

with some constant exogenous probability related to the length of time since the adjustment (more

generally, in these so-called “time-dependent” models the probability of adjustment may be related

to the length of time since the previous adjustment). Other mechanisms include “state-dependent”

1This question can equivalently be put in terms of aggregate demand (why can governments manipulate aggregate
demand in order to produce short-run economic effects?), aggregate supply (why is there an upward sloping short-run
aggregate supply curve?), or the Phillips curve (why is there a short-run trade-off between inflation and output?).
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models in which the probability that a firm may adjust their price depends also on the state of

the economy (see for example Dotsey et al., 1999); the introduction of fixed costs associated with

price-setting (see Golosov and Lucas Jr., 2007 for a recent example of this “menu-cost” approach);

or the assumption that prices are fixed due to contracts (see for example Chari et al., 2000).

There exists another branch of the literature, however, that addresses the issue of short-run mone-

tary non-neutralities by focusing instead on informational limitations of agents, so that the imped-

iment to full adjustment is not a restriction on the flexibility to perform such changes, but rather

a restriction on the information that would prompt change.2 This idea was famously described by

Phelps (1968) and Friedman (1968) and soon after was formalized by Lucas (1972) in the epony-

mous Lucas Islands model, in which agents face a signal-extraction problem to distinguish aggre-

gate from idiosyncratic conditions. More recent incarnations of this idea can be found in Mankiw

and Reis (2002), in which agents have a Calvo-like probability of receiving new information each

period (the “sticky information” approach); Woodford (2001), in which agents face a dynamic

signal-extraction problem; Angeletos and La’O (2010), in which the focus is on the heterogeneity

of information imperfections across agents takes pride of place; and Maćkowiak and Wiederholt

(2009), in which, following Sims (2003) in a a so-called “rational inattention” model, agents must

split a limited amount of attention between observing aggregate and idiosyncratic conditions. It is

within this literature that the current paper falls, following the rational inattention approach.

While many of the above mechanisms rely to at least some degree on an ad hoc imposition of sub-

optimal behavior, in the seminal work on rational inattention Sims (2003) lays out a framework

for microfoundations of imperfect information. While agents are still fully optimizing, in Sims’

model they face an information-processing capacity constraint. Recognizing that they cannot pay

attention to everything - that their information must necessarily be imperfect - they optimally use

what capacity they do have.

We pursue this approach in this paper. In the perfect-information case firms set prices as a markup

2See Mankiw and Reis (2010) for a summary of the recent literature.
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over nominal marginal costs, a step which requires knowledge of the contemporaneous aggregate

price level, one’s own contemporaneous productivity shock, and, due to the effect on aggregate de-

mand, the contemporaneous shocks to every other firm. In the imperfect-information case, firms’

uncertainty is formalized in terms of an information-processing capacity constraint, requiring firms

to optimally divide their attention between aggregate and idiosyncratic shocks. In the special case

of Gaussian white noise shocks, we derive analytic results on the optimal allocation of atten-

tion. More generally, the equilibrium behavior allows heterogeneous behavior related to firm- and

sector-level characteristics.

This line of research is motivated by recent empirical work - in particular Bils and Klenow (2004),

Golosov and Lucas Jr. (2007), Klenow and Kryvtsov (2008), and Boivin et al. (2009) - that sug-

gests first that the results from traditional models of inducing monetary non-neutralities are not

consistent with all observed inflation dynamics, and second that because disaggregated price series

display markedly different inflation dynamics than do aggregated series, a successful model must

begin work at the level of individual sectors. The former suggestion motivates the use of rational

inattention as the key deviation allowing monetary non-neutralities - a suggestion which was also

made in Sims’ original work and has been already been followed up on, in particular in Maćkowiak

and Wiederholt (2009). The latter implies that special attention must be paid to modeling sectors

themselves; pursing this is one of the contributions of this paper.

Finally, this paper is especially related to three recent theoretical models. Woodford (2001), key

in the recent revival of imperfect information models, describes a one-sector model in which firms

face a dynamic signal-extraction problem. Whereas it motivates information imperfections by

appealing to rational inattention, this paper (as does Maćkowiak and Wiederholt, 2009, below)

derives the imperfections from optimizing behavior. Angeletos and La’O (2010) use a multisector

real business cycle model to emphasize that heterogeneity of information can generate business cy-

cles. The current paper’s multisector approach and its focus on sectoral heterogeneity in particular

follows from this realization. Finally, this paper can be thought of most directly as an extension
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of Maćkowiak and Wiederholt (2009) who present a one-sector rational inattention model and de-

rive conditions for optimal allocation in the cases of Gaussian white-noise and stationary shocks.

In the stationary case they describe the implications for inflation dynamics but are forced to use

computational techniques. A one-sector special case of the current paper’s primary result reduces

to the model found in section IV of their work.

The remainder of this paper is structured as follows. In section 2, the literature is reviewed in some

detail. Section 3 introduces information theory and details some useful results. Section 4 presents

the model, section 5 the equilibrium conditions, and section 6 the results. Section 7 concludes.

2 Related Literature

With the threefold goal of (1) positioning the current paper along the arc of the existing literature,

(2) explaining the relationship between this model and closely related models, and (3) describing

relevant features of the data that inform modeling choices, this section proceeds by briefly describ-

ing the imperfect information literature, presenting related empirical research, and introducing

recent theoretical models against which this paper’s model will be contrasted.

2.1 Lucas (1972, 1973)

Robert Lucas, Jr. laid out the first formal models with imperfect information leading to monetary

non-neutrality using geographically separated islands as the device preventing perfect information.

Agents on each island receive signals about unknown variables and must solve a (static) signal

extraction problem each period to distinguish idiosyncratic from aggregate conditions, with the

key result that individuals’ misperceptions of movements in nominal price for movements in real

price can allow monetary policy to affect real variables. In particular, if firms (individuals in the

model) mistake a purely nominal increase in the price level for an increase in their real price

they will increase employment. While these simple models have been superseded, the insight that
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individuals’ optimizing behavior depends on aggregate variables that may be unknown permeates

all of the subsequent imperfect information literature, and will be a central focus in the model

presented in the current paper.

Despite a high level of subsequent interest in imperfect information models, the literature largely

died out by the early 1990s due especially to several critiques that could not at the time be over-

come. The first was the difficulty of squaring the model with data - for example, the model re-

quired all information to become available after one period, implying that effects of monetary

policy would not be more persistent than that delay. However, “periods” long enough to match the

observed persistence of monetary policy effects implied an implausibly long delay before agents

were made aware of that policy. Second, technical difficulties arose in modeling higher order

expectations (see Townsend, 1983).

Strategic effects between individuals, a feature not highlighted in Lucas’ models, have since be-

come important and are considered in more recent imperfect information models as well as in

models with other mechanisms inducing stickiness; for example, the implications of pricing deci-

sions as strategic substitutes or as strategic complements are important to New Keynesian models

(see Woodford, 2003 sections 3.1.3 - 3.1.4). Strategic considerations are similarly important in

Angeletos and La’O (2010), described below, and will aid interpreting the current paper’s results.

2.2 Morris and Shin (2002)

Stephen Morris and Hyun Song Shin (2002) were instrumental in restarting the discussion of im-

perfect information models, demonstrating welfare implications of imperfect and heterogeneous

information in the presence of strategic complementarities and drawing out the link between higher

order expectations and strategic behavior. In their model, agents receive public and private signals

about unknown variables; one important result is that increasing precision of public signals may

actually reduce welfare. While they do not focus specifically on pricing decisions, they show that

Lucas’ model is equivalent to the one they consider. Their intuition and solution techniques carry
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over to a wider range of modeling approaches, including the multisector model in Angeletos and

La’O (2010) and the current paper.

2.3 Sims (2003)

Chris Sims (2003) introduced rational inattention, a modeling paradigm in which rational opti-

mizing agents could fail to take into account even freely available information, thus providing

microfoundations for information imperfections.3 His suggestion provides a response to one cri-

tique of the Lucas model: if agents do not pay attention to monetary policy, it does not matter how

quickly the information is made available. The technical component of these models introduces

information theory to economics, a topic which is described below in some detail (see Information

Theory).

Notice that many of the papers described here use “signals” received by agents as the technical

device encoding imperfect information. Sims shows that in a special case - a linear quadratic

optimization problem along with Gaussian stochastic processes - rational inattention can lead to

results that are identical to simply assuming agents receive noisy signals, but the rational inattention

approach provides a framework for the optimal selection of signals by agents and shows how the

noise varies systematically with underlying model parameters.

The central contribution of the current paper is the solution of a rational inattention problem by

intermediate goods firms in the presence of both idiosyncratic and aggregate shocks.

2.4 Woodford (2001)

A paper prepared by Michael Woodford for a conference commemorating Edmund Phelps was

similarly important in the revival of the imperfect information literature. It extended Lucas’ model

to one in which information does not become available after a one period delay, so that individuals

3For more on modeling rational inattention, see Sims (1998), Sims (2005), and Sims (2010).
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face a dynamic signal extraction problem. Agents are also less informed than in Lucas’ model:

not only are they unaware of aggregate conditions, they are also unaware of other agents’ expec-

tations of aggregate conditions (and their expectations of expectations of ...). Woodford shows in

a one-sector model that results hinge on an infinite sum of higher order expectations and uses the

Kalman filter to solve the (dynamic) signal extraction problem. The key result, driven largely by

sluggishness in the response of higher-order expectations, is that the real effects of monetary policy

can persist for an arbitrary number of periods.

In solving the model, the assumption is made that individuals are given signals about aggregate

quantities. To justify it, Woodford briefly refers to Sims (2003) but does not explore the rational

inattention problem. Pursuit of microfoundations for the optimal selection of signals by agents has

been an area of subsequent research; one example is Maćkowiak and Wiederholt (2009) who solve

the rational inattention optimal price problem for a one-sector model comparable to Woodford’s.

Their paper is described in detail below, and the current paper is a partial extension of their results

to a multisector setting.

2.5 Angeletos and La’O (2010)

While imperfect information has traditionally been an amplification mechanism for monetary pol-

icy, Angeletos and La’O (2010) consider its ability to induce business cycles in a purely real

setting. They develop a multisector model in which islands provide boundaries to information dis-

persion and in which intermediate goods firms set quantities (rather than prices, as has been the

case above). They show that it is the heterogeneity of information across the islands rather than

the magnitude of imperfection that drives their results.

They find that dispersed (and heterogeneous) information can lead to fluctuations and inertia in

macroeconomic variables and that the generated fluctuations match qualitative facts about business

cycles that other imperfect information models cannot (although they do not pursue any quantita-

tive investigation). Furthermore, they emphasize that the model can generate these fluctuations
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even when individuals are nearly perfectly informed, so long as information is dispersed.

Strategic complementarities (although not those of the New Keynesian type, as they point out)

induced by “trade linkages” (the between-island elasticity of substitution) are important in under-

standing the interdependence of firms’ decisions and are crucial to their results. In particular, it is

only when firms’ decisions are complementary (goods across islands are not perfect substitutes)

that imperfect information has real effects.

Their paper provides both the theoretical motivation and basic model setup for the current pa-

per, although here we return to the consideration of price-setting firms. Their emphasis on the

importance of modeling the interactions of heterogeneous agents in the presence of imperfect in-

formation provides an impetus for the extensions of Maćkowiak and Wiederholt (2009) that this

paper considers (this point discussed at greater length below).

2.6 Mackowiak and Wiederholt (2009)

Bartosz Mackowiak and Mirko Wiederholt (2009) (hereafter MW) consider optimal price-setting

behavior of rationally inattentive firms in the face of idiosyncratic and aggregate shocks, finding

that for certain calibrations (in which idiosyncratic shocks are an order of magnitude more volatile

than aggregate shocks) the real effects of monetary policy can persist for an arbitrary number of

periods, a result that hinges on agents choosing not to pay much attention to monetary policy.

They first consider a special case of the model in which stochastic processes are Gaussian white

noise and in which case an analytical result may be found. Although this case does not induce

persistence in the model (since all shocks are purely transitory), it draws out the intuition of rational

inattention and shows how the firms’ attention allocation decision depends on model parameters.

One interesting point involves strategic complementarities: strategic complementarities in price

setting imply strategic complementarities in information acquisition. It is this portion of their

paper which the current paper extends to a multisector setting.
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Second, they consider more realistic stochastic processes for shocks, which sufficiently compli-

cates results that computational techniques must be used to solve the information allocation prob-

lem, and show that their model can generate real effects of monetary policy and explain why firms

might respond quickly to idiosyncratic shocks but slowly to aggregate shocks. In order to do this,

their model requires calibrating the volatility of idiosyncratic shocks to be at least an order of mag-

nitude larger than the volatility of aggregate shocks. While the data suggests that idiosyncratic

shocks are more volatile than aggregate shocks, it does not support this degree of difference (see

the discussion of the related empirical work, below, for details). One of the contributions of this

paper is relaxing the differential in volatility required to achieve the appropriate behavior.

A more complete discussion of the contributions of the current paper vis a vis MW follows a brief

summary of Maćkowiak et al. (2009), below.

2.7 Boivin et al. (2009)

Jean Boivin et al. (2009) use a factor augmented vector autoregression (FAVAR) approach to es-

timate separately the effects of aggregate and idiosyncratic disturbances on price-setting behavior,

finding that prices are flexible with respect to idiosyncratic shocks but sticky with respect to ag-

gregate (in particular monetary) shocks, a feature of the data which they suggest is not consistent

with many contemporary stickiness-inducing mechanisms (for example they suggest that the Calvo

mechanism cannot explain the flexibility with respect to idiosyncratic disturbances). They lay out

seven stylized facts, all of which provide a rich research agenda with respect to the theoretical

modeling of imperfect information, and two of which may justify modeling decisions in this paper.

First, their primary result is the importance of distinguishing between idiosyncratic and aggregate

components of price change; this is of central consideration in the rational inattention approach

to modeling optimal pricing decisions. Note that this result is not specific to Boivin et al. (2009)

but is also borne out in related empirical efforts.4 Second, they suggest that idiosyncratic shocks

4See in particular Bils and Klenow (2004) and Klenow and Kryvtsov (2008) for supporting empirical evidence.
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driving price changes are supply shocks at the sectoral level, providing support for the approach

in the current paper for integrating idiosyncratic shocks (as opposed to introducing them as, for

example, demand shocks).

Their other facts have implications for extensions of the current paper and will be of particular im-

portance when introducing persistence in shocks. Several are suggestive of interesting extensions

(for example, including a further integration of the effects of market power, see below), while sev-

eral others appear to present challenges to the current approach. For example, they suggest that the

reaction to all types of shocks is faster in sectors with more volatile idiosyncratic shocks, whereas

the results of MW specifically suggest that increased volatility in idiosyncratic shocks reduces the

reaction to aggregate shocks.

Finally, the FAVAR approach allows them to estimate the relative volatilities of the aggregate and

idiosyncratic components. They find that “while the mean volatility of the common component of

inflation lies at 0.33 percent, the volatility of the sector-specific component is more than three times

as large”. While this differential is not enough to generate the appropriate behavior in the single-

sector model of MW, it can be enough in the multisector model presented here. Thus our model

insulates the rational inattention approach from criticism that extreme calibrations are required.

2.8 Mackowiak et al. (2009)

Mackowiak et al. (2009) (hereafter MMW) consider a simple multisector extension to their model

in MW as part of an effort to compare the ability of several mechanisms for stickiness to match

empirical results. The mechanisms they consider including the Calvo model, sticky information,

menu costs, and rational inattention. The stylized facts they attempt to match are in the same vein

as those described by Boivin et al. (2009), and they find that the rational inattention model is best

able to fit them. There are several key points that distinguish the approach of MW and MMW from

that of the current paper.
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In both papers, Mackowiak et al. consider the tradeoff firms face between paying attention to

aggregate conditions or idiosyncratic conditions, where idiosyncratic conditions refers specifically

to the firm’s own productivity shock. Productivity shocks to other firms either net to zero in

aggregate, as in MW, or are simply grouped with other aggregate shocks (for example monetary

policy incorporated via aggregate demand shocks), as in MWW. This leads to simpler optimization

problems as firms only spread their attention between two signals and still distinguishes nominal

(monetary policy) from real (productivity) shocks.

In contrast, the current paper considers firms’ attention problems as between all shocks separately;

this is desirable for several reasons. First, it embraces the emphasis in Angeletos and La’O (2010)

of the importance of considering how interactions of heterogeneous firms with dispersed informa-

tion alone can generate real effects; they note that “even if one is ultimately interested in a monetary

model, understanding the positive and normative properties of its underlying real backbone is an

essential first step”.

Second, this paper is meant to provide a baseline model for considering more complicated models

of firm interactions and allocation problems, and for introducing firm-level heterogeneity in pricing

decisions. For example, it would make sense that firms are more easily able to pay attention to

shocks of more closely related sectors. Integrating this requires a model like that of the current

paper. Another motivating example can be found in the stylized facts of Boivin et al. (2009), who

find that the speed of reaction to monetary policy shocks is related to the degree of monopoly

power enjoyed by firms, an extension which will require attention to the underlying heterogeneity

of firms’ attention allocation problems.

2.9 De Graeve and Walentin (2014)

Two stylized facts derived in both Boivin et al. (2009) and Maćkowiak et al. (2009) are that aggre-

gate shocks display substantial persistence but are characterized by low volatility, and that idiosyn-

cratic shocks have low persistence but high volatility. It is partially these facts that validate the
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rational inattention approach. More recently, De Graeve and Walentin (2014) suggests that if the

effects of measurement error are properly accounted for, these stylized facts may be overturned. In

particular, they suggest that idiosyncratic shocks may be persistent and have low volatility, poten-

tially presenting a problem for the rational inattention approach. The multisector model presented

here allows the rational inattention approach to respond.

First, the authors note that their estimation approach does not allow them to distinguish between

measurement error and additional structural shocks, but they argue that the rational inattention

model in MW can not obviously account for the required additional shocks. By contrast, the

multisector model developed below can easily accomodate the required additional shocks. Chapter

2 of this prospectus presents evidence that supports the features they identify as measurement error

are more likely structural shocks affecting certain sectors.

Second, as discussed above, the multisector model reduces the volatility differential required by

the rational inattention approach. Thus even if measurement error is distorting the stylized facts as

they argue, rational inattention may still be used to explain observed price dynamics.

3 Information Theory

Rational inattention borrows from the theory of information and communication a mathematical

model of information processing, and applies it to economic agents.5 A telegraph wire serves

as a channel through which a message passes from source as input to recipient as output. That

it can only transmit a finite message in any given time interval is described as a finite Shannon

“capacity”.6 In our model, an agent serves as a channel through which observations about the

economy are translated into economic actions; the inability of the agent to process all information

is modeled in terms of a finite Shannon capacity.

5See Sims (2003) or Sims (2010) for an introduction to rational inattention in economics, or Cover and Thomas
(2006) for a general book length treatment of information theory. This section is largely drawn from chapters 2 and 9
of that work.

6The seminal work in information theory is Shannon (1948).
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The basic quantity in information theory is entropy, a measure of the uncertainty associated with

a random variable. Letting 𝑋 denote a random variable with probability mass function or density

𝑃 , entropy is defined as

𝐻(𝑋) = −𝐸[log(𝑃 (𝑋))] Entropy

Notice that entropy is defined over probabilities and therefore must be positive and that is zero

exactly when the distribution of 𝑋 is degenerate. The units in which entropy is expressed depend

on the base of the logarithm; typically “bits” are used, corresponding to log base 2. Two closely

related quantities are joint entropy and conditional entropy which measure, respectively, the un-

certainty of two random variables together and the uncertainty of a random variable conditional

on the observation of another random variable. Letting 𝑆 denote a second random variable, these

quantities and their connection (called the “chain rule”) are defined

𝐻(𝑋,𝑆) = −𝐸[log(𝑃 (𝑋,𝑆))] Joint entropy

𝐻(𝑋|𝑆) = −𝐸[log(𝑃 (𝑋|𝑆))] Conditional entropy

𝐻(𝑋,𝑆) = 𝐻(𝑋) +𝐻(𝑆|𝑋) Chain rule

In the case that the two random variables are independent, the conditional entropy is identical to

the (unconditional) entropy and so the joint entropy is the sum of the individual entropies.

Using these two definitions, we can define a quantity which will be of central interest in rational

inattention, mutual information. The mutual information between two random variables 𝑋 and 𝑆

is the reduction in uncertainty about 𝑋 given the observation of 𝑆; in that way it measures the

information content contained in one variable about another. It is defined as

ℐ(𝑋;𝑆) = 𝐻(𝑋) −𝐻(𝑋|𝑆) Mutual information

In the case that the variables are independent so that is no reduction in uncertainty, then 𝐼(𝑋;𝑆) =
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𝐻(𝑋) − 𝐻(𝑋) = 0. Supposing that X and S are finite 𝑛-dimensional independent vectors such

that 𝑋𝑖 and 𝑆𝑗 are independent if and only if 𝑖 ̸= 𝑗, then

ℐ(X;S) =
𝑛∑︁
𝑖=1

𝐼(𝑋𝑖;𝑆𝑖)

This result is important because in our model we will consider attention allocation problems in

which 𝑋 and 𝑆 will be vectors and our assumptions will make them internally independent though

mutually dependent. Typically we will think of 𝑋 as fundamentals of interest (for example a

stochastic shock) and 𝑆 as signals received by agents that provides some information about those

fundamentals. In the rational inattention framework, agents optimally choose the signals, but must

do so subject to an information constraint. That constraint is formalized as a maximum level of

mutual information between the fundamental and the signal: ℐ(𝑋;𝑆) ≤ 𝜅. Since the fundamental

is a vector, in addition to respecting the overall information-capacity constraint the agents must

tradeoff between paying close attention to one variable or to another.

Notice that entropy and mutual information are scalar valued regardless of the dimension of the

random variables, so that all of the data regarding uncertainty and information is expressed in a

single number. It is this property that leads to the simplicity of the capacity constraint, which can

be introduced into the model with only a single new free parameter, 𝜅.

Despite the ease of modeling the constraint, calibrating the value of 𝜅 is difficult for two reasons.

First, it is measured in bits, where 1 bit is the level of uncertainty related to a fair coin toss. This is

a difficult to interpret quantity in the context of real-world economic decisions, and is complicated

further by the simplification inherent to an economic model. Second, even supposing that the bit-

value of actual information-processing capacity could be assessed, the model only captures one

aspect of the decision problems facing a firm, so it is unclear what proportion of their attention is

specifically devoted to the stochastic elements represented in the model.

Sims (2010) suggests that when a price is assigned to additional information capacity so that the

amount is variable, agents choose a relatively small amount. In practice, these models are often
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calibrated such that agents set prices that are close to the optimum.

4 Model

There are a continuum of identical households ℎ ∈ 𝐻 with associated measure 𝜇𝐻 , each of which

consumes a continuum of differentiated goods 𝑗 ∈ 𝐽 with associated measure 𝜇𝐽 . Consumers have

nested constant elasticity of substitution (CES) preferences that induce a partition on the goods

(alternatively firms) 𝐽 into sectors {𝐽1, . . . , 𝐽𝐼}, not necessarily of equal size. For convenience

and so that aggregates can be identified with averages assume the total measure of households and

goods is unity, so that 𝜇𝐻(𝐻) = 𝜇𝐽(𝐽) ≡ 1. To ease the remaining notation define 𝜇𝑖 ≡ 𝜇𝐽(𝐽𝑖)

as the size (measure) of sector 𝑖 in the space of all firms.7 Sectors will be typically indexed by 𝑖; 𝑙

will also be used when multiple sector-level indices are required.8

In each period households consume, supply labor to each firm 𝑗9, buy bonds, and receive profits

based on their ownership in firms. For simplicity, each household owns an equal share of every

firm. Firms set their prices each period to maximize the expected value to households of profits.

4.1 Households

Household utility is a discounted stream of expected utility, additively separable in time

𝒰 ({𝐶ℎ𝑗𝑡, 𝑛ℎ𝑗𝑡}𝑗∈𝐽,𝑡≥0) = 𝐸0

∞∑︁
𝑡=0

𝛽𝑡
[︂
𝑈 ({𝐶ℎ𝑗𝑡}𝑗∈𝐽) −

∫︁
𝐽

𝑣(𝑛ℎ𝑗𝑡)𝑑𝑗

]︂

7In general a subscript 𝑗 will refer to a firm 𝑗 ∈ 𝐽 , whereas the subscript 𝑖 will denote a sector 𝐽𝑖 ⊆ 𝐽 . Since the
sectors partition the set of goods, it is implicit that there is exactly one sector 𝑖 corresponding to each firm 𝑗.

8The convention is that when 𝑗 and 𝑖 appear in the same equation, 𝑖 refers to the industry such that 𝑗 ∈ 𝐽𝑖. When
a sector-level variable not referring to the sector of firm 𝑗 is present, it will be indexed by 𝑙.

9This is merely for convenience. An equivalent setup has each household specializing in only one type of labor,
see for example Woodford (2003) section 3.1.
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The nested constant elasticity of supply (CES) preferences yield two Dixit-Stiglitz aggregators.

The first level of aggregation describes “sector-level” goods10

𝐶ℎ𝑖𝑡 =

[︂∫︁
𝐽𝑖

𝜇𝑟−1
𝑖 𝐶𝑟

ℎ𝑗𝑡𝑑𝑗

]︂ 1
𝑟

(1)

where the associated within-sector elasticity of substitution is 𝜂 = 1
1−𝑟 . As usual, assume that

goods are gross substitutes so that 𝜂 ∈ [1,∞) and so 𝑟 ∈ [0, 1). The sector-level goods are then

further aggregated into a “consumption good”

𝐶ℎ𝑡 =

[︃
𝐼∑︁
𝑖=1

𝜇1−𝑝
𝑖 𝐶𝑝

ℎ𝑖𝑡

]︃ 1
𝑝

(2)

where the associated between-sector elasticity of substitution is 𝜌 = 1
1−𝑝 . Again assuming that

goods are gross substitutes yields 𝜌 ∈ [1,∞) and 𝑝 ∈ [0, 1). 𝜂 and 𝜌 are not constrained otherwise

- for example they are not necessarily the same. Using this same basic setup, Angeletos and La’O

(2010) describe the within-sector elasticity as the degree of market power of intermediate goods

and the between-sector elasticity as a measure of trade linkages and strategic complementarities.

From this it is clear that the sizes of the sectors 𝜇𝑖 are defined entirely by consumers’ relative

demand weights. However, as in Woodford (2003) section 3.2.5, these weights can be reinterpreted

as the product of a structural sector size parameter together with a relative demand weight.

Then given these aggregates, the households’ optimization problems can be written

max
{𝐶ℎ𝑡}𝑡≥0{𝑛ℎ𝑗𝑡}𝑗∈𝐽,𝑡≥0

= 𝐸0

∞∑︁
𝑡=0

𝛽𝑡
[︂
𝑢(𝐶ℎ𝑡) −

∫︁
𝐽

𝑣(𝑛ℎ𝑗𝑡)𝑑𝑗

]︂

where 𝑢 is the instantaneous utility of consumption defined in terms of the consumption good

and 𝑣(𝑛ℎ𝑗𝑡) is the instantaneous disutility of labor. These are assumed to have the usual constant

10Notice that in the integral there appear both the indices 𝑖 and 𝑗. Thus the 𝑖 refers to the unique sector such that
𝑗 ∈ 𝐽𝑖.
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relative risk aversion forms

𝑢(𝐶) =
𝐶1−𝜎

1 − 𝜎
and 𝑣(𝑛) =

𝑛1+𝜀

1 + 𝜀
. (3)

Each period, the households’ choices must satisfy the budget constraint

𝑃𝑡𝐶ℎ𝑡 +𝐵ℎ𝑡+1 ≤
∫︁
𝐽

𝜃ℎ𝑗𝜋𝑗𝑡𝑑𝑗 +

∫︁
𝐽

𝑊𝑗𝑡𝑛ℎ𝑗𝑡𝑑𝑗 +𝑅𝑡𝐵ℎ𝑡 (4)

where 𝐶ℎ𝑡 is the consumption good, 𝑃𝑡 is a price index corresponding to the cost-minimizing way

to purchase one unit of the consumption good, 𝐵𝑡+1 is a risk-free bond purchased in period 𝑡 that

yields income in period 𝑡 + 1 subject to the gross nominal risk free rate of return 𝑅𝑡+1, 𝜃ℎ𝑗 is the

share of firm 𝑗 owned by the household, 𝜋𝑗𝑡 denotes profits from firm 𝑗, 𝑊𝑗𝑡 is the wage paid by

firm 𝑗, and 𝑛ℎ𝑗𝑡 is the labor provided by household ℎ to firm 𝑗.

4.2 Firms

All intermediate goods firms produce differentiated output using a constant returns to scale tech-

nology with labor (denoted 𝑛𝑗𝑡) as the sole input and a sector-specific productivity shock11

𝑌𝑗𝑡 = 𝜙𝑖𝑡𝑛𝑗𝑡 (5)

For the moment we will remain agnostic about the variables present in the firms’ information sets

at time 𝑡. The nature of the shocks is discussed below. Assuming competitive factor markets, a

firm’s period profit is

𝜋𝑗𝑡 = 𝑃𝑗𝑡𝑌𝑗𝑡 −𝑊𝑗𝑡𝑛𝑗𝑡 (6)

11The model be expanded to allow a composite productivity shock, with firm-specific, sector-specific, and aggre-
gate components, relative demand shocks, and intermediate inputs. A model with these extensions is introduced in
Extension: relative demand shocks and intermediate inputs.
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Firms have a degree of market power controlled by the within-sector elasticity 𝜂, and face inverse

demand curves derived from households’ optimizing behavior. Thus they choose prices so as to

maximize the value of their profits to the owning households whose marginal utility of wealth is

𝑢′(𝐶𝑡); the intertemporal problem at time 𝑡 for firm 𝑗 is

max
{𝑃𝑗𝑡+𝑠}∞𝑠=0

𝐸𝑗𝑡

∞∑︁
𝑠=0

{︃
𝑢′(𝐶𝑡)

[︃
𝑠∏︁
𝑙=1

1

𝑅𝑡+𝑙−1

]︃(︂
𝑃𝑗𝑡+𝑠 −

𝑊𝑗𝑡+𝑠

𝜙𝑖𝑡+𝑠

)︂
𝑌𝑗𝑡+𝑠

}︃
.

Since this model forgoes sticky prices in favor of informational frictions, firms re-optimize each

period and need only solve the following static problem in each period separately

max
𝑃𝑗𝑡

𝐸𝑗𝑡

[︂
𝑢′(𝐶𝑡)

(︂
𝑃𝑗𝑡 −

𝑊𝑗𝑡

𝜙𝑖𝑡

)︂
𝑌𝑗𝑡

]︂
(7)

4.3 Government

Following the literature on imperfect information (Lucas, 1972, Woodford (2001), Mankiw and

Reis (2002), Mankiw and Reis (2002)) we appeal to a quantity theory of money to specify a

exogenous stochastic process for aggregate demand, assumed to be the result of monetary policy

implemented by some policy instrument. This process will be the only aggregate shock to the

economy.

𝑄𝑡 = 𝑃𝑡𝑌𝑡

As formulated above, fiscal policy is excluded from the model to maintain focus on the firms’

attention allocation problem, although in a very similar model Angeletos and La’O (2010) find

that government intervention is only useful insofar is it can mitigate the distortionary effects of

market power to improve efficiency, a topic not under central consideration here.
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4.4 Stochastic processes

There are two exogenous stochastic processes to be specified, that for nominal aggregate demand

{𝑄𝑡}∞𝑡=0 and that for idiosyncratic productivity shocks
{︀

[𝜙𝑙𝑡]
𝐼
𝑙=1

}︀∞
𝑡=0

. Here we assume the simple

case that all processes are distributed log-normal in such a way that their logs are Gaussian white

noise. All processes are assumed to be mutually independent. Formally the shocks are described

𝑞𝑡 ≡ log𝑄𝑡 𝑞𝑡
𝑖𝑖𝑑∼ 𝑁(0, 𝜎2

𝑞 ) (8)

𝜑𝑖𝑡 ≡ log𝜙𝑖𝑡 𝜑𝑖𝑡
𝑖𝑖𝑑∼ 𝑁(0, 𝜎2

𝜑𝑖
) 𝑙 = 1, . . . , 𝐼

Insofar as it would be difficult to argue that independent Gaussian white noise shocks represent

the true stochastic nature of the economy, this specification is only a precursor to a more complete

analysis attempting to match actual macroeconomic dynamics. Unfortunately models with more

realistic stochastic processes do not admit analytic results and the Gaussian white noise case pro-

vides an illuminating special case in which to consider the attention allocation trade-offs faced by

firms.

One could easily accomodate non-zero mean processes by redefining the above variables as be

deviations from the mean. Processes with a deterministic trend could be similarly incorporated.

For notational convenience, collect the stochastic processes into an ordered tuple

Ω = {{𝑞𝑡}, {𝜑1𝑡}, · · · , {𝜑𝐼𝑡}} (9)

indexed by 𝜔.
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4.5 Imperfect Information

The expectations operator in the above formulation of an intermediate good firm’s problem sug-

gests that at least some contemporaneous economic variables - in this case aggregate consumption,

firm-specific nominal wages, the sector-specific aggregate shock, and aggregate output - are un-

known to the firm at the time they must set the price of their differentiated good. This raises two

questions: (1) why would a firm be unaware of these (or any) contemporaneous conditions, and

(2) which contemporaneous variables are unknown to the firm. Both of these questions have been

of considerable interest in the literature on imperfect information, as described above.

Here we take the position that insofar as agents must process any information they wish to use

and have a limited ability to assimilate even widely available information, all variables are a priori

unknown. Agents only observe variables at all to the extent that they specifically allocate attention

to do so. This is formalized in terms of the rational inattention framework of Sims (2003) with

the assumption that agents have a finite information processing capacity 𝜅. The imperfections are

thus inherent to the agents and not the information itself; in fact, this approach requires that all the

relevant information exists and is freely available.12

4.6 Signals

The device through which agents will receive (incompletely processed) information takes the form

of signals 𝑠(𝜔)𝑗𝑡 where 𝑗 is the firm receiving the signal and 𝜔 indicates one of the stochastic pro-

cesses described above. While in principle the space of possible processes among which agents

may select signals is unrestricted with respect to distribution, in practice the structure of this prob-

lem - in particular the Gaussian white noise exogenous processes and a log-quadratic approxima-

tion to the profit function taken below - implies that optimal signals will be Gaussian.13 For this

12See Sims (2005) for a discussion of this and related topics regarding the assumptions implicit to rational attention
models.

13See Sims (2003) or Maćkowiak and Wiederholt (2009) for a proof of this result.
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reason, we follow MW section IV in hereafter restricting the space of possible signals to those that

are of the form “true state plus white noise”14

𝑠
(𝑞)
𝑗𝑡 = 𝑞𝑡 + 𝜓

(𝑞)
𝑗𝑡 𝑠

(𝑞)
𝑗𝑡 ∼ 𝑁(𝑞𝑡, 𝜎

2
𝑞 + 𝜎2

𝜓
(𝑞)
𝑗

) (10)

𝑠
(𝑙)
𝑗𝑡 = 𝜑𝑙𝑡 + 𝜓

(𝑙)
𝑗𝑡 𝑠

(𝑙)
𝑗𝑡 ∼ 𝑁(𝜑𝑙𝑡, 𝜎

2
𝜑𝑙

+ 𝜎2

𝜓
(𝑙)
𝑗

) 𝑙 = 1, . . . , 𝐼

The signals are written in terms of the deviation-from-mean forms to maintain the possibility of

non-zero-mean processes even though here, for example, 𝑞𝑡 = 𝑞𝑡 − 𝐸𝑞𝑡 = 𝑞𝑡. Although a formal

connection will be derived below, a firm’s attention problem can be informally described as the

optimal reduction (or more properly selection) of the noise in signals subject to a constraint on the

maximum amount of noise reduction across all signals.15

5 Equilibrium

An equilibrium is a collection of processes for consumption, labor, wages, prices, and signals

{𝐶ℎ𝑗𝑡, 𝑛ℎ𝑗𝑡,𝑊ℎ𝑗𝑡, 𝑃𝑗𝑡, 𝑠
(𝜔)
𝑗𝑡 }ℎ,𝑗,𝜔,𝑡

such that markets clear, households maximize utility, and firms (1) set optimal prices given avail-

able information, and (2) direct their attention such that the signals they receive about unknown

quantities of interest are optimal. Notice that due to constant elasticity of substitution preferences,

household optimization will uniquely define the processes for the aggregate price level {𝑃𝑡} and

real aggregate demand {𝑌𝑡}, see (12) and (11) respectively. The full conditions governing optimal

behavior are derived below.

14The use of the index 𝑙 indicates that each firm 𝑗 receives a separate signal for the shock to each industry.
15This model falls under the special Gaussian-linear-quadratic case. Sims (2010) section 3.2 presents this and

related intuition for these types of models.
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5.1 Market Clearing

The three markets in this model - goods, assets, and labor - yield three market clearing conditions.

Since we have assumed constant elasticity of substitution preferences, we need only specify mar-

ket clearing in terms of the consumption good, 𝐶𝑡 = 𝑌𝑡. If this holds, then in equilibrium (in

particular given optimal household behavior) the demand functions for intermediate and sector-

level goods, detailed below, guarantee market clearing at those levels. Since this model admits a

representative household, no bonds will be purchased or sold in equilibrium so that the asset mar-

ket clearing condition is 𝐵𝑡 = 0 for all periods 𝑡. Finally, the labor market equilibrium requires

𝑛𝑗𝑡 =
∫︀
𝐻
𝑛ℎ𝑗𝑡𝑑ℎ.

5.2 Optimal Household Behavior

Standard results for constant elasticity of substitution preferences give demand functions for disag-

gregated goods in terms of aggregated quantities.16 Since all households are identical their optimal

behavior will be identical and can be analyzed as derived from a optimizing representative house-

hold. For this reason, in all of what follows we drop the household subscript.

𝐶𝑗𝑡 =
1

𝜇𝑖

(︂
𝑃𝑗𝑡
𝑃𝑖𝑡

)︂ 1
𝑟−1

𝐶𝑖𝑡 𝐶𝑖𝑡 = 𝜇𝑖

(︂
𝑃𝑖𝑡
𝑃𝑡

)︂ 1
𝑝−1

𝐶𝑡 (11)

Corresponding to these demand functions are price indices prescribing the (minimal) cost of ob-

taining one unit of an aggregated quantity

𝑃𝑡 =

[︃
𝐼∑︁
𝑖=1

𝜇𝑖𝑃
𝑝
𝑝−1

𝑖𝑡

]︃ 𝑝−1
𝑝

𝑃𝑖𝑡 =

[︂∫︁
𝐽𝑖

1

𝜇𝑖
𝑃

𝑟
𝑟−1

𝑗𝑡 𝑑𝑗

]︂ 𝑟−1
𝑟

(12)

Given these demand functions, the household’s intertemporal problem can be analyzed in terms

only of the consumption good. As usual, the solution is described by an Euler equation and a static

16See A-1: Constant Elasticity of Substitution Preferences for details.
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first-order condition17

𝑢′(𝐶𝑡) = 𝛽𝐸𝑡

[︂
𝑅𝑡+1

𝑃𝑡
𝑃𝑡+1

𝑢′(𝐶𝑡+1)

]︂
(13)

𝑣′(𝑛𝑗𝑡) =
𝑊𝑗𝑡

𝑃𝑡
𝑢′(𝐶𝑡) (14)

5.3 Optimal Price Setting

Optimal behavior on the part of the firm will be considered in two stages. First, no matter the

signals they actually receive about the state of the economy, firms must optimally set their deci-

sion variable given that information. In the case of perfect information this is the standard profit

maximization problem faced by a monopolist. In the case of imperfect information a log-quadratic

approximation to the profit function yields the certainty equivalence result that the optimal imper-

fect information price is simply the expectation of the optimal perfect information price.

Second, firms must select the signals they receive. Here they achieve this by allocating their

attention such that they minimize the expected loss in profits from setting a non-optimal price

subject to a constraint on the maximum attention they can spread across all variables.

Perfect Information

As a baseline, consider firms with perfect information. In this case there is no attention allocation

so that the firms’ entire problem reduces to the standard profit maximizing problem faced by a

monopolist

max
𝑃𝑗𝑡

𝑢′(𝐶𝑡)

(︂
𝑃𝑗𝑡 −

𝑊𝑗𝑡

𝜙𝑖𝑡

)︂
𝑌𝑗𝑡

17See B-1: Optimal Household Behavior for details.
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This yields the standard result that monopolists set price as a markup over nominal marginal costs

𝑃 ◇
𝑗𝑡 =

1

𝑟

𝑊𝑗𝑡

𝜙𝑖𝑡

which can be rewritten in terms of model fundamentals and in the form of proportional (log)

deviation from the point at which all prices are the same as18

𝑝◇𝑗𝑡 = −𝛾𝜑𝑖𝑡 + 𝜁𝑞𝑡 + (1 − 𝜁)𝑝𝑡 (15)

where 𝑞𝑡 represents nominal aggregate demand, 𝜁 ≡ 𝛼(𝜎+𝜀) relates to strategic complementarities

between firms’ pricing decisions, 𝛾 ≡ 𝛼(1 + 𝜀), and 𝛼 ≡ (1 + 𝜌𝜀)−1.19 Integrating across all firms

and applying a log-linear approximation yields the perfect-information equilibrium aggregate price

𝑝◇𝑡 = 𝑞𝑡 −
𝛾

𝜁

𝐼∑︁
𝑙=1

𝜇𝑙𝜑𝑙𝑡 (16)

Strategic complementarities

The firm’s pricing rule (15) exposes (1 − 𝜁) as a parameter governing strategic complementarities

in the model. If it is positive (so 𝜁 < 1), firms’ responses to changes in the aggregate price

level will be complementary, whereas if it is negative, the aggregate price will act as a strategic

substitute. This parameter appears in and has been important to both models with price stickiness

and models with informational frictions. Typical calibrations put the value of 𝜁 between 0.12 and

0.4, which implies that prices are strategic complements, and the parameter governing strategic

complementarities, (1 − 𝜁), is between 0.6 and 0.88.20 This parameter will be important not only

in the firms’ pricing decision given available information, but also in the firms’ attention allocation

problem, described below.

18See E-1: Perfect Information
19See B-2: Optimal Price Setting
20See Mankiw and Reis (2010)
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Imperfect Information

Defining the expected value of period profits as

Π𝑗𝑡(𝑃𝑗𝑡, 𝑃𝑖𝑡, 𝑃𝑡, 𝑌𝑡, 𝜙𝑡) ≡ 𝐸𝑗𝑡

[︂
𝑢′(𝑌𝑡)

(︂
𝑃𝑗𝑡 −

𝑊𝑗𝑡

𝜙𝑖𝑡

)︂
𝑌𝑗𝑡

]︂

firm 𝑗 faces the problem max𝑃𝑗𝑡 Π𝑗𝑡. Taking a log-quadratic approximation to Π𝑗𝑡 around the

perfect information non-stochastic equilibrium yields the following formula for firm profits

Π̃𝑗𝑡 =Π̂1𝑝𝑗𝑡 + Π̂11𝑝
2
𝑗𝑡 + Π̂12𝑝𝑗𝑡𝐸𝑗𝑡𝑝𝑖𝑡 + Π̂13𝑝𝑗𝑡𝐸𝑗𝑡𝑝𝑡 + Π̂14𝑝𝑗𝑡𝐸𝑗𝑡𝑦𝑡 + Π̂15𝑝𝑗𝑡𝐸𝑗𝑡𝜑𝑖𝑡

+ other terms

where Π̂1 is a constant times the partial derivative of profit with respect to the first argument and

the Π̂1* coefficients are constants times the second partial derivatives, all evaluated at the point at

which all prices are the same; “other terms” collects all terms of the second-order approximation

that do not depend on 𝑝𝑗𝑡 (irrelevent for our purposes since they do not affect the firm’s pricing

decision).21 The associated first-order condition yields the following imperfect-information pricing

rule

𝑝*𝑗𝑡 = −𝛾𝐸𝑗𝑡𝜑𝑖𝑡 + 𝜁𝐸𝑗𝑡𝑞𝑡 + (1 − 𝜁)𝐸𝑗𝑡𝑝𝑡 (17)

= 𝐸𝑗𝑡𝑝
◇
𝑗𝑡

To find the imperfect information equilibrium aggregate price we follow a guess and verify ap-

proach. Given the form of the perfect-information aggregate price, we guess that under imperfect

21See B-2: Optimal Price Setting and C-2: Log-quadratic approximation to an intermediate good firm’s profit
function for details.
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information it is described by

𝑝𝑡 = 𝑎𝑞𝑡 −
𝛾

𝜁

𝐼∑︁
𝑙=1

𝑏𝑙𝜇𝑙𝜑𝑙𝑡 (18)

This guess will be verified in the next section in conjunction with the solution to the attention

allocation problem. In the meantime, substituting this guess in to the imperfect information pricing

rule yields

𝑝*𝑗𝑡 = [(1 − 𝜁)𝑎+ 𝜁]𝐸𝑗𝑡𝑞𝑡 − (1 − 𝜁)
𝛾

𝜁

𝐼∑︁
𝑙=1

𝑏𝑙𝜇𝑙𝐸𝑗𝑡𝜑𝑙𝑡 − 𝛾𝐸𝑗𝑡𝜑𝑖𝑡 (19)

and noticing that since firms only observe Gaussian signals the expected values can be solved using

typical signal extraction results:

𝑝*𝑗𝑡 = [(1 − 𝜁)𝑎+ 𝜁]

⎛⎝ 𝜎2
𝑞

𝜎2
𝑞 + 𝜎2

𝜓
(𝑞)
𝑗

⎞⎠ 𝑠𝑞𝑗𝑡 − (1 − 𝜁)
𝛾

𝜁

𝐼∑︁
𝑙=1

𝑏𝑙𝜇𝑗

⎛⎝ 𝜎2
𝑙

𝜎2
𝑙 + 𝜎2

𝜓
(𝑙)
𝑗

⎞⎠ 𝑠
(𝑙)
𝑗𝑡 − 𝛾

⎛⎝ 𝜎2
𝑖

𝜎2
𝑖 + 𝜎2

𝜓
(𝑖)
𝑗

⎞⎠ 𝑠
(𝑖)
𝑗𝑡

The firm’s attention allocation problem is to select optimal signals 𝑠(𝜔)𝑗𝑡 . Since the variance of the

fundamentals is given, in practice this means that firms will optimally select the variances of the

signals’ noise.

5.4 Optimal Attention Allocation

Having solved for optimal firm behavior given available information, we now derive the optimal

information structure by considering the attention allocation problem.22 The firm is concerned with

the difference between the price it actually sets and the price it would set under full information

22See Appendix D: Information Theory and E-2: Rational Inattention under Gaussian White Noise for all details
related to this section.
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only to the extent that it results in a loss in profits. This expected loss in profits is

𝐸𝑗𝑡

[︁
Π̃𝑗𝑡

(︀
𝑝◇𝑗𝑡, ·

)︀
− Π̃𝑗𝑡

(︀
𝑝*𝑗𝑡, ·

)︀]︁
=

(︃
Π̂11

2

)︃
𝐸𝑗𝑡

[︁(︀
𝑝◇𝑗𝑡 − 𝑝*𝑗𝑡

)︀2]︁

The firm’s attention problem then is to optimally select signals to minimize a quadratic loss

min
{𝑠(𝜔)𝑗𝑡 }𝜔∈Ω

𝐸𝑗𝑡

[︁(︀
𝑝◇𝑗𝑡 − 𝑝*𝑗𝑡

)︀2]︁

subject to the constraint that the total information content of the signals does not exceed some

value 𝜅. This constraint can be put formally in terms of mutual information

ℐ
(︁{︁
𝑞𝑡, 𝜑1𝑡, · · · , 𝜑𝐼𝑡

}︁
;
{︁
𝑠
(𝑞)
𝑗𝑡 , 𝑠

(1)
𝑗𝑡 , · · · , 𝑠

(𝐼)
𝑗𝑡

}︁)︁
≤ 𝜅

Then given the independence assumptions and defining for notational convenience 𝜅
(𝜔)
𝑗 ≡

ℐ
(︁
{𝜔𝑡}; {𝑠(𝜔)𝑗𝑡 }

)︁
, it can be reformulated as

∑︀
𝜔∈Ω 𝜅

(𝜔)
𝑗 ≤ 𝜅.23 Since the signals are Gaussian,

it can be shown that the mutual information is a function only of the ratio of the variances of the

fundamental and the noise

𝜅
(𝜔)
𝑗 =

1

2
log2

⎛⎝ 𝜎2
𝜔

𝜎2

𝜓
(𝜔)
𝑗

+ 1

⎞⎠ 𝜔 ∈ Ω

After some algebra, the firm’s attention problem can be finally written

min
{𝜅(𝜔)𝑗 }𝜔∈Ω

∑︁
𝜔∈Ω

(︁
�̄�
(𝜔)
𝑗

)︁2
2−2𝜅

(𝜔)
𝑗 ; �̄�

(𝜔)
𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
[(1 − 𝜁)𝑎+ 𝜁]𝜎𝑞 𝜔 = 𝑞

(1 − 𝜁)𝛾𝜁−1𝑏𝑙𝜇𝑙𝜎𝜑𝑙 𝜔 = 𝑙 ̸= 𝑖

[(1 − 𝜁)𝛾𝜁−1𝑏𝑖𝜇𝑖 + 𝛾]𝜎𝜑𝑖 𝜔 = 𝑖

(20)

23Recall that 𝜔 indexes the set of all stochastic processes Ω - see Signals for the definition.
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subject to
∑︀

𝜔∈Ω 𝜅
(𝜔)
𝑗 ≤ 𝜅 and 𝜅(𝜔)𝑗 ≥ 0 for 𝜔 ∈ Ω. The terms �̄�(𝜔)𝑗 can be thought of as importance-

weighted volatilities; their origin is in the firm’s optimal imperfect-information pricing rule (19).

This can be solved using standard techniques to yield the following interior solution for the optimal

allocation of attention to each fundamental

𝜅
(𝜔)
𝑗

*
= log2 2�̄� + log2 �̄�

(𝜔)
𝑗 − log2 �̄�𝑗 𝜔 ∈ Ω (21)

where �̄� = 𝜅
|Ω| (recall that |Ω| is the number of stochastic processes) and �̄�𝑗 =

[︁∏︀
𝜔′∈Ω �̄�

(𝜔′)
𝑗

]︁ 1
|Ω|

.

This equation is intuitive: the first term gives an equal allocation of attention across all stochastic

processes, and the second term adds (subtracts) attention if the importance-weighted volatility of

the stochastic process in question is above (below) the (harmonic) mean of importance-weighted

volatility across all stochastic processes.

The above is an interior solution; we abuse notation to set

𝜅
(𝜔)
𝑗

*
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝜅 𝜅

(𝜔)
𝑗

*
> 𝜅

𝜅
(𝜔)
𝑗

*
𝜅
(𝜔)
𝑗

*
∈ [0, 𝜅]

0 𝜅
(𝜔)
𝑗

*
< 0

To fully incorporate corner solutions with more than two options we need to specify a solution

process in the case that 𝜅(𝜔)𝑗 < 0, which corresponds to a “negative” attention allocation to some

stochastic process. This is not allowed. When this occurs, the problem can be solved by replacing

the negative value with zero and then rescaling the remaining allocations such that they sum to 𝜅.

Using these optimal attention allocations in the firms’ imperfect-information pricing rules and
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integrating across all firms yields the imperfect-information equilibrium aggregate price

𝑝*𝑡 =

[︃
𝐼∑︁
𝑖=1

𝜇𝑙[(1 − 𝜁)𝑎+ 𝜁]
(︁

1 − 2−2𝜅
(𝑞)
𝑖

*)︁]︃
⏟  ⏞  

𝑎

𝑞𝑡 −
𝛾

𝜁

𝐼∑︁
𝑙=1

[︃
𝐼∑︁
𝑖=1

𝑤𝑙𝑖

(︁
1 − 2−2𝜅

(𝑙)
𝑖

*)︁]︃
⏟  ⏞  

𝑏𝑙

𝜇𝑙𝜑𝑙𝑡 (22)

where 𝑤𝑙𝑖 =
[︀
(1 − 𝜁)𝑏𝑙𝜇𝑖 + 𝜁1(𝑙 = 𝑖)

]︀
and 1(𝑙 = 𝑖) is the indicator function that takes the value

1 if 𝑙 = 𝑖 and is 0 otherwise. We have applied symmetry across within-industry firms to write

𝜅
(𝜔)
𝑗

*
= 𝜅

(𝜔)
𝑖

*
𝑗 ∈ 𝐽𝑖, 𝑖 = 1, . . . , 𝐼 . This verifies our guess.

Notice that through the term �̄�𝑗 , the optimal attention allocation for each fundamental depends on

all of the coefficients 𝑎, {𝑏𝑙}𝐼𝑙=1. For this reason, in general there are not analytic solutions to these

coefficients, although computational techniques can be used to solve the fixed point problem.

6 Results

6.1 Interpretation

First we will consider the terms �̄�(𝜔)𝑗 from the attention allocation objective function. They can be

written as

�̄�
(𝜔)
𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(1 − 𝜁)𝑎𝜎𝑞 + 𝜁𝜎𝑞 𝜔 = 𝑞

(1 − 𝜁)𝛾
𝜁
𝑏𝑙𝜇𝑙𝜎𝜑𝑙 𝜔 = 𝑙 ̸= 𝑖

(1 − 𝜁)𝛾
𝜁
𝑏𝑖𝜇𝑖𝜎𝜑𝑖 + 𝛾𝜎𝜑𝑖 𝜔 = 𝑖

(23)

They are the products of structural parameters related to the importance of the process to the firm’s

pricing decision along with the parameter governing the volatility of the shock, and so may be

considered as terms describing “importance-weighted volatility”. In that light, the firm’s objective

is to minimize the overall importance-weighted volatility that they face.
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It can be seen, moreover, that the importance of the process is derived from two distinct mech-

anisms related to the firm’s pricing problem. First, there are direct effects: nominal aggregate

demand has a direct effect on the demand curve for the firm’s differentiated product and the firm’s

sector-specific shock has a direct effect on marginal costs. These direct effects appear as the terms

that do not include the strategic complementarity (1−𝜁) and do not depend on the coefficients that

determine the aggregate price level 𝑎, {𝑏𝑙}𝐼𝑙=1.

The second type of effect is due to strategic complementarities that arise insofar as firms are con-

cerned with their relative price. If (1 − 𝜁) > 0, so that there are strategic complementarities,

firms will want to raise their price in response to a general increase in prices. Larger coefficients

𝑎, {𝑏𝑙}𝐼𝑙=1 amplify the effect of strategic complementarities through a larger response of the aggre-

gate price level to firms’ responses to the direct effects described above.

Finally, notice that the problem is complicated by the circularity of definitions: the firms’ objective

depends on the coefficients determining the aggregate price, which in turn depend on the solution

to the firms’ objective problem. Thus the coefficients and optimal attention levels are determined

by the solution to a fixed point problem.

The optimal allocation of attention to a stochastic process can be written

𝜅
(𝜔)
𝑗 =

𝜅

|Ω|
+ log2

⎛⎜⎝ �̄�
(𝜔)
𝑗[︁∏︀

𝜔′∈Ω �̄�
(𝜔′)
𝑗

]︁ 1
|Ω|

⎞⎟⎠ (24)

where 𝜅 denotes the total information processing capacity available to the agent, |Ω| is the total

number of stochastic processes and the �̄�(𝜔)𝑗 terms are as just described. The first observation is

that if all importance-weighted volatility terms were equal, the second term would be zero and

the optimal attention allocation would be to evenly divide capacity across all shocks. The sec-

ond observation is that the denominator of the second term can be interpreted as an “average”

importance-weighted volatility across all shocks. Then the optimal allocation gives more attention

to those processes whose importance-weighted volatility exceeds the “average” and less attention
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to those that fall below the “average”. Finally, notice that through the first term of the optimal

allocation, as total capacity becomes infinitely large, the level of attention devoted to each shock

also becomes infinitely large.

Returning to the coefficients induced by the firms’ optimal allocations, notice that they can be

rewritten to emphasize the strategic complementarities parameter

𝑎 = (1 − 𝜁)𝑎
𝐼∑︁
𝑖=1

𝜇𝑖

(︁
1 − 2−2𝜅

(𝑞)
𝑖

*)︁
+ 𝜁

𝐼∑︁
𝑖=1

𝜇𝑖

(︁
1 − 2−2𝜅

(𝑞)
𝑖

*)︁
𝑏𝑙 = (1 − 𝜁)𝑏𝑙

𝐼∑︁
𝑖=1

𝜇𝑖

(︁
1 − 2−2𝜅

(𝑙)
𝑖

*)︁
+ 𝜁

(︁
1 − 2−2𝜅

(𝑙)
𝑙

*)︁

As noted above, this exposes the constitution of these coefficients as combinations - weighted by

the strategic complementarities parameter - of the average direct effect of shocks to firms, weighted

by sector size, and the effect arising through the influence of the aggregate price level on firms’

relative prices. One interesting implication is that as strategic complementarities become strong,

so that (1 − 𝜁) → 1, the coefficient 𝑎 governing the influence of monetary policy on the aggregate

price level is decoupled from real aggregate demand, since that term disappears from firms’ pricing

rules.

Note that as total capacity tends to infinity, so that the model tends to perfectly informed agents,

we have

𝑎→ (1 − 𝜁)𝑎+ 𝜁 =⇒ 𝑎→ 1

𝑏𝑙 → (1 − 𝜁)𝑏𝑙 + 𝜁 =⇒ 𝑏𝑙 → 1

Thus the aggregate price under imperfect information tends to the aggregate price under perfect

information as total information processing capacity becomes arbitrarily large.
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6.2 A one-sector model

In the special case of a one-sector model, we have 𝐼 = 1, 𝑏𝑙 ≡ 0, and 𝜇1 = 1. The imperfect

information equilibrium aggregate price level is then

𝑝*𝑡 = [(1 − 𝜁)𝑎+ 𝜁]
(︁

1 − 2−2𝜅
(𝑞)
1

*)︁
⏟  ⏞  

𝑎

𝑞𝑡

and in this case, the coefficient 𝑎 can be solved for explicitly

𝑎 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(22𝜅−1)𝜁
1+(22𝜅−1)𝜁

𝜅
(𝑞)
1

*
> 𝜅

1 − 2−𝜅
(︁
𝛾
𝜁

)︁(︁
𝜎𝜑1
𝜎𝑞

)︁
𝜅
(𝑞)
1

*
∈ [0, 𝜅]

0 𝜅
(𝑞)
1

*
< 0

This is identical to the result in MW section IV, and although it appears in a slightly different form,

the interpretation has the same implications as the more general discussion above.

Notice that here there is no transmission mechanism for idiosyncratic shocks to affect the aggregate

price level. Although this is a one-sector model, so that the firm literally has only two signals to

observe (their own productivity shock and monetary policy), the multisector extension in MWW

does not depart too far from this approach in that firms still receive two signals, one regarding

aggregate conditions and one regarding idiosyncratic conditions. The above discussion of the

current paper’s results demonstrates that there are important subtleties that arise from idiosyncratic

and aggregate components of each shock, re-emphasizing the previous arguments in favor of the

current paper’s approach, which models each firm’s attention allocation problem between each

stochastic shock separately.
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6.3 Calibrating volatilities

The basic point of the rational inattention approach is that firms may not immediately react to

monetary policy (or other aggregate shocks) if they are not paying attention to them. Maćkowiak

and Wiederholt (2009) formalized this concept and show that when the volatility of aggregate

shocks is low relative to the volatility of a sector-specific shock, firms will optimally devote more

of their attention to sector-specific conditions. If the volatility differential is great enough, the

lack of attention paid to aggregate shocks will imply slow adjustment, meaning that prices will

appear to be sticky in response to aggregate shocks. In their model, to achieve the appropriate

degree of stickiness, they suggest that the differential in standard deviations needs to be an order

of magnitude.

In particular, they calibrate idiosyncratic volatilities to match the size of average absolute price

changes; this is performed under perfect information. Thus the term calibrated is the absolute

expected value of 𝑝◇𝑗𝑡. When all disturbances are Gaussian, the absolute value is distributed half-

normal with expected value 𝐸[|𝑝◇𝑗𝑡|] = 𝜎𝑝𝑗

√︁
2
𝜋

. Equilibrium in the one-sector and multi-sector

models, along with independence assumptions, implies

𝜎2
𝑝𝑗

= 𝜎2
𝑞 + 𝛾2𝜎2

𝜑𝑖
One-sector

𝜎2
𝑝𝑗

= 𝜎2
𝑞 + 𝛾2𝜎2

𝜑𝑖
+

(︂
1 − 𝜁

𝜁

)︂2

𝛾2
𝐼∑︁
𝑙=1

𝜇2
𝑙 𝜎

2
𝜑𝑙

Multi-sector

In the baseline model calibrated in MW, 𝛾 is normalized to one since changes to it have the same

practical effect on the model as changes to 𝜎2
𝜑𝑖

. The calibration exercise fixes the value of 𝜎2
𝑞

according to the observed volatility of detrended nominal GNP, and fixes the value of 𝜎2
𝑝𝑗

accord-

ing to the size of average absolute price changes, as described above. Thus the volatility of the

idiosyncratic shocks is fixed by their difference. The resultant calibration then has 𝜎𝑧 = 11.8𝜎𝑞.

However, empirical work suggests that while the aggregate component is less volatile than the
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Fig. 1: Impulse response functions in the one-sector model. Panel (a) shows the impulse responses when
𝜎𝑧 = 11.8𝜎𝑞 (as in Maćkowiak and Wiederholt, 2009) and Panel (b) shows the impulse responses when
𝜎𝑧 = 3.03𝜎𝑞 (as suggested by results from Boivin et al., 2009)

idiosyncratic component, it is not an order of magnitude less volatile; for example, the decompo-

sition in Boivin et al. (2009) find that for the average firm, the standard deviation of the common

component (𝜎𝑞, above) is 0.33 while the standard deviation of the aggregate component (𝜎𝑧, above)

is 1.09. For the median it is even closer, at 0.27 and 0.71 respectively. Even with the average val-

ues, this suggests that 𝜎𝑧 = 3.03𝜎𝑞. The effect of this change on the model is illustrated in Fig.

1.24

Furthermore, as they point out, their calibration is conservative in a number of ways. First, they

exclude sales, which lowers the reported average absolute price change from 11.5% to 9.5%, and

second they calibrate against the perfect information equilibrium rather than the rational inattention

equilibrium. Changing either of these decisions would force their calibration to yield even more

idiosyncratic volatility.

Finally, as developed in this paper, it is not merely the volatility of shocks that matters, it is also

the weight in the pricing solution. This insight is important for calibrations. Here, MW normalize

𝛾 = 1, so what they calibrate as 𝜎𝑧 is actually 𝛾𝜎𝑧. Now, if 𝛾𝜎𝑧 = 11.8𝜎𝑞, then 𝜎𝑧 = 11.8
𝛾
𝜎𝑞.

Recalling that 𝛾 = (1 + 𝜀)/(1 + 𝜌𝜀) and using calibrations as in Mankiw and Reis, 2010, we

calculate 𝛾 ≈ 1/5, so that 1
𝛾
≈ 5 (alternative reasonable calibrations make 𝛾 even smaller). Thus

their conservative calibration actually requires 𝜎𝑧 = 59𝜎𝑞. This is far removed from the results of

Boivin et al. (2009).

24These figures were created using the MATLAB programs accompanying Maćkowiak and Wiederholt (2009) by
varying the volatility calibration.
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What this analysis points out is not that the approach of Maćkowiak and Wiederholt (2009) is

fundamentally flawed, but rather that a more complex model is required in order to achieve realistic

calibrations. Their insight that aggregate demand (i.e. monetary) shocks play a relatively small role

in firms’ pricing decisions merely requires that, in the language introduced above, the importance

weighted volatility of aggregate demand shocks be small relative to that of other shocks.

Now the intuition for why a multisector approach is appealing is easy to see. To achieve aggre-

gate price stickiness, all that is required is that firms pay little attention to aggregate conditions.

Whereas in the one-sector case there were only two types of conditions to pay attention to (so

that a decrease in attention to one meant an increase in attention to the other), here firms also pay

attention to each other. This creates two channels by which an increase in idiosyncratic volatil-

ity reduces attention paid to aggregate conditions. First, firms are still concerned about their own

productivity shock, which influences their marginal costs directly, and second they are concerned

about the productivity shocks to all other firms because of the general equilibrium effect on aggre-

gate demand and the aggregate price level.

In essence, the multisector model gives firms more reasons to pay attention to idiosyncratic com-

ponents, which leaves less attention available for the aggregate component. The the multisector

model increases the importance of idiosyncratic shocks, even when volatilities are constant. Since

the firm’s attention allocation decision depends on importance-weighted volatilities, this model

reduces the required volatility differential by increasing the importance differential.25

7 Extension: relative demand shocks and intermediate

inputs

In this section, we consider augmenting household and firm behavior to include relative demand

shocks, composite productivity shocks, and intermediate inputs. These variations not only intro-

25For details of the importance-weighted volatilities, see section Interpretation.
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duce desirable model characteristics but also provide additional motivation the implicit claim in the

baseline model that firms pay attention to each other. Here, firms must pay attention to each other

because their production process requires intermediate inputs.26 To introduce demand shocks, we

replace the demand weight 𝜇𝑖 with 𝐷𝑖𝑡𝜇𝑖 so that the nested CES Dixit-Stiglitz aggregators can be

written

𝐶ℎ𝑖𝑡 =

[︂∫︁
𝐽𝑖

(𝐷𝑖𝑡𝜇𝑖)
𝑟−1𝐶𝑟

ℎ𝑗𝑡𝑑𝑗

]︂ 1
𝑟

𝐶ℎ𝑡 =

[︃
𝐼∑︁
𝑖=1

(𝐷𝑖𝑡𝜇𝑖)
1−𝑝𝐶𝑝

ℎ𝑖𝑡

]︃ 1
𝑝

and where every period we require
∑︀

𝑖𝐷𝑖𝑡𝜇𝑖 = 1.27 All other changes result from modifications to

firms’ production functions. In particular, we write:

𝑌𝑗𝑡 = Φ𝑗𝑡𝑛
𝛼
𝑗𝑡𝑋

1−𝛼
𝑗𝑡

where Φ𝑖𝑗𝑡 = 𝜙𝑡𝜙𝑖𝑡𝜙𝑗𝑡 is the composite productivity shock, and 𝑋𝑗𝑡 is a composite intermediate

input constructed from the output of other firms. In particular, we suppose that, like the demand

composite, it exhibits constant elasticity of substitution, so that

𝑋𝑗𝑡 =

[︃
𝐼∑︁

𝑘=1

(𝐷𝑘𝑡𝜇𝑘)
1−𝑝𝑋𝑝

𝑖𝑗𝑘𝑡

]︃1/𝑝
𝑋𝑖𝑗𝑘𝑡 =

[︂∫︁
𝐽𝑘

(𝐷𝑘𝑡𝜇𝑘)
𝑟−1𝑋𝑟

𝑖𝑗𝑘𝑙𝑡𝑑𝑙

]︂1/𝑟

where 𝑋𝑖𝑗𝑘𝑙𝑡 is the quantity of the good produced by firm 𝑙 (in sector 𝑘) used by firm 𝑗 (in sector

𝑖). Similarly, 𝑋𝑖𝑗𝑘𝑡 is a composite of all the goods produced by firms in sector 𝑘 used by firm 𝑗 (in

sector 𝑖). Finally, 𝑋𝑗𝑡 is a composite of the goods produced by all firms used by firm 𝑗.

Along the same lines as the baseline model, it is not too hard to show that this results in the

26See Basu (1995), Bouakez et al. (2009), and Carvalho and Lee (2011) for examples of similar models with
Calvo-type pricing.

27Notice that this specification nests the baseline model when 𝐷𝑖𝑡 ≡ 1, 𝑖 = 1, . . . , 𝐼 .
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following log-linear pricing equation28

𝑝◇𝑗𝑡 = 𝜓𝑑𝑖𝑡 − 𝜐𝜑𝑗𝑡 − 𝛾(𝜑𝑡 + 𝜑𝑖𝑡) + 𝜁𝑞𝑡 + (1 − 𝜁)𝑝𝑡

where aggregate prices evolve according to

𝑝𝑡 = 𝑞𝑡 −
𝛾

𝜁

𝐼∑︁
𝑖=1

𝜇𝑖𝜑𝑖𝑡 −
𝛾

𝜁
𝜑𝑡

These equations differ from those in the baseline model through more complex parameters and the

introduction of new shocks (𝑑𝑖𝑡 ≡ log𝐷𝑖𝑡 is the demand shock, and 𝜑𝑗𝑡, 𝜑𝑡 are the new produc-

tivity shock components). Qualitatively, however, it tells much the same story. Under reasonable

calibrations, all of the parameters above are positive, indicating that the price set by firm 𝑗 rises

with relative and aggregate demand, falls with increased productivity (either firm-level, sectoral,

or aggregate), and, as long as there are strategic complementarities, increases with the aggregate

price level.

Similarly, the rational inattention solution is qualitatively the same. More attention will be paid

to those shocks which are relatively more important (the coefficient in the above pricing equation

is higher) or more volatile. The log-linear rational inattention price-setting problem reduces to

a sum of weighted shocks, which can be solved in the white noise case as described above, and

again the unknown coefficients can be found as the solution to a fixed-point problem. Finally, it

preserves the calibration result introduced above, that through the effect of multiple targets for a

firm’s attention prices can adjust slowly with respect to monetary policy shocks while responding

quickly to idiosyncratic shocks, without requiring unrealistic volatility differentials.

28For example see the equation for marginal costs in Carvalho and Lee (2011).
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8 Conclusion

In this paper we extend the rational inattention model of price-setting to account for multiple sec-

tors in which firms care about their own idiosyncratic shocks, idiosyncratic shocks to other firms,

and aggregate shocks. In addition to the baseline model, we consider an extension including rel-

ative demand shocks and intermediate inputs. We derive optimal attention allocations and the

implied optimal price-setting behavior, allowing us to consider the effect of various parameteriza-

tions on the responsiveness of prices. The functional forms derived herein inform new directions

for continued empirical research into price-setting behavior.

Our results provide several novel contributions. First, we allow firms to exhibit heterogenous

behavior that depends not only on their own idiosyncratic shocks but also on firm characteristics

and their relationship to other firms. Second, we show that not only can the model generate slow

responses to aggregate shocks along with quick responses to idiosyncratic shocks, it can do so

with less extreme parameter calibrations than in related work. Finally, we emphasize the role of

importance-weighted volatility in generating optimal attention allocations, rather than volatility

only.

Finally, the basic model considered here provides a baseline for future research. It would be

interesting, for example, to further extend the multi-sector model to account for additional firm

characteristics in order to derive testable cross-sectional implications for price-stickiness; another

interesting direction is to introduce network effects as in Acemoglu et al. (2012).
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Appendix A: Model

8.1 A-1: Constant Elasticity of Substitution Preferences

A-1.1: Definition: Consumption good

The composite consumption good is defined as a monotonic transformation of the generalized

mean 𝐶ℎ𝑡 as follows:

𝐶ℎ𝑡 =

[︃∑︀𝐼
𝑖=1 𝜇

1−𝑝
𝑖 𝐶𝑝

ℎ𝑖𝑡∑︀𝐼
𝑖=1 𝜇

1−𝑝
𝑖

]︃ 1
𝑝

𝐶ℎ𝑡 =

[︃
𝐼∑︁
𝑖=1

𝜇1−𝑝
𝑖 𝐶𝑝

ℎ𝑖𝑡

]︃ 1
𝑝

=

[︃
𝐼∑︁
𝑖=1

𝜇1−𝑝
𝑖

]︃ 1
𝑝

𝐶ℎ𝑡

The exponent on the weight term is a normalization so that the resulting price index has the property

that if every industry-level good has the same price, that price also is the index price. Furthermore,

if all prices are the same then the derived demand for each industry-level good is just the fraction of

the demand for the composite good weighted by the industry’s size. Mathematically 𝐶𝑑
ℎ𝑖𝑡 = 𝜇𝑖𝐶ℎ𝑡,

and since we normalized the total measure of goods to one, 𝜇𝑖 ∈ [0, 1] for each industry 𝑖. This

approach is the same as in Woodford (2003).

A-1.2: Definition: Industry-level good

The composite industry-level good is defined as a monotonic transformation of the generalized

mean 𝐶ℎ𝑖𝑡 as follows:

𝐶ℎ𝑖𝑡 =

[︃∫︀
𝐽𝑖
𝐶𝑟
ℎ𝑗𝑡𝑑𝑗∫︀

𝐽𝑖
1𝑑𝑗

]︃ 1
𝑟

=

[︂∫︁
𝐽𝑖

𝜇−1
𝑖 𝐶𝑟

ℎ𝑗𝑡𝑑𝑗

]︂ 1
𝑟

𝐶ℎ𝑖𝑡 =

[︂∫︁
𝐽𝑖

𝜇𝑟−1
𝑖 𝐶𝑟

ℎ𝑗𝑡

]︂ 1
𝑟

=

[︂
𝜇𝑟𝑖

∫︁
𝐽𝑖

𝜇−1
𝑖 𝐶𝑟

ℎ𝑗𝑡

]︂ 1
𝑟

= 𝜇𝑖𝐶ℎ𝑖𝑡
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The exponent on the weight term is for the same normalizing purpose as above.

A-1.3: Demand: Constant Elasticity of Substitution Preferences

As in Dixit and Stiglitz (1977), we can use a multi-stage budgeting procedure to first solve for

the demand for industry-level and intermediate goods’ demand in terms of the consumers’ total

demand for the consumption good, and then solve their inter-temporal problem in terms only of

the consumption good.

The first stage is itself split into two steps: (1) solve for industry-level demand in terms of total

demand, and (2) solve for intermediate good demand in terms of industry-level demand.

Step 1: Industry-level demand

The interpretation of the definition of the consumption good is as a utility specification. Thus

solving for demand is the standard microeconomic constrained optimization problem

max
{𝐶ℎ𝑖𝑡}𝐼𝑖=1

𝑢
(︀
{𝐶𝑖}𝐼𝑖=1

)︀
subject to

∑︀𝐼
𝑖=1𝐶ℎ𝑖𝑡𝑃𝑖 = 𝑊 , where 𝑃𝑖𝑡 is the price of industry-level good 𝑖 at time 𝑡 and 𝑊 is

total wealth, and where the utility specification is the generalized mean, above:

𝑢
(︀
{𝐶𝑖}𝐼𝑖=1

)︀
= 𝐶ℎ𝑡 =

[︃∑︀𝐼
𝑖=1 𝜇

1−𝑝
𝑖 𝐶𝑝

ℎ𝑖𝑡∑︀𝐼
𝑖=1 𝜇

1−𝑝
𝑖

]︃ 1
𝑝

The model used in the paper is a monotonic transformation of this specification, and it will yield

equivalent demand specifications due the ordinal nature of utility functions.

This constrained optimization problem can be solved by forming a Lagrangian and taking first-
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order conditions. To ease notation, define 𝑤𝑖 ≡ 𝜇1−𝑝𝑖∑︀𝐼
𝑖=1 𝜇

1−𝑝
𝑖

.

ℒ =

[︃
𝐼∑︁
𝑖=1

𝑤𝑖𝐶
𝑝
ℎ𝑖𝑡

]︃ 1
𝑝

− 𝜆

[︃
𝐼∑︁
𝑖=1

𝐶ℎ𝑖𝑡𝑃𝑖𝑡 −𝑊

]︃

Assuming an interior solution, the 𝐼 first-order conditions are

𝜕ℒ
𝜕𝐶ℎ𝑖𝑡

= 0 =
1

𝑝

[︃
𝐼∑︁
𝑖=1

𝑤𝑖𝐶
𝑝
ℎ𝑖𝑡

]︃ 1
𝑝
−1

𝑤𝑖𝑝𝐶
𝑝−1
ℎ𝑖𝑡 − 𝜆𝑃𝑖𝑡 = 𝑤𝑖𝑢

(︀
{𝐶𝑖}𝐼𝑖=1

)︀1−𝑝
𝐶𝑝−1
ℎ𝑖𝑡 − 𝜆𝑃𝑖𝑡

𝐶ℎ𝑖𝑡 =

(︂
𝜆𝑃𝑖𝑡
𝑤𝑖

)︂ 1
𝑝−1

𝐶ℎ𝑡

This yields the demand for the industry-level good. The Lagrangian multiplier 𝜆 is the marginal

value of relaxing the constraint, or the marginal value of wealth.

𝐶ℎ𝑡 =

[︃
𝐼∑︁
𝑖=1

𝑤𝑖𝐶
𝑝
ℎ𝑖𝑡

]︃ 1
𝑝

=

[︃
𝐼∑︁
𝑖=1

𝑤𝑖

(︃(︂
𝜆𝑃𝑖𝑡
𝑤𝑖

)︂ 1
𝑝−1

𝐶ℎ𝑡

)︃𝑝]︃ 1
𝑝

= 𝐶ℎ𝑡𝜆
1
𝑝−1

[︃
𝐼∑︁
𝑖=1

𝑤
1

1−𝑝
𝑖 𝑃

𝑝
𝑝−1

𝑖𝑡

]︃ 1
𝑝

1

𝜆
=

[︃
𝐼∑︁
𝑖=1

𝑤
1

1−𝑝
𝑖 𝑃

𝑝
𝑝−1

𝑖𝑡

]︃ 𝑝−1
𝑝

The price index is the price of the composite good𝐶ℎ𝑡, which is equivalently the price of increasing

utility. This quantity is the inverse of the marginal value of wealth, so that

𝑃𝑡 ≡
1

𝜆
=

[︃
𝐼∑︁
𝑖=1

𝑤
1

1−𝑝
𝑖 𝑃

𝑝
𝑝−1

𝑖𝑡

]︃ 𝑝−1
𝑝
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Notice that if all industry-level prices are the same, so that 𝑃𝑖𝑡 = 𝑃𝑖′𝑡 = 𝑃𝑡, then:

𝑃𝑡 =

[︃
𝐼∑︁
𝑖=1

𝑤
1

1−𝑝
𝑖 𝑃

𝑝
𝑝−1

𝑡

]︃ 𝑝−1
𝑝

= 𝑃𝑡

[︃
𝐼∑︁
𝑖=1

𝑤
1

1−𝑝
𝑖

]︃ 𝑝−1
𝑝

Thus if we want to have the property that in this case 𝑃𝑡 = 𝑃𝑡, then we must have[︂∑︀𝐼
𝑖=1𝑤

1
1−𝑝
𝑖

]︂ 𝑝−1
𝑝

= 1. This does not hold for 𝐶ℎ𝑡, but it does hold for the transformation 𝐶ℎ𝑡

since in that case 𝑤𝑖 ≡ 𝜇1−𝑝
𝑖 and then

[︃
𝐼∑︁
𝑖=1

𝑤
1

1−𝑝
𝑖

]︃ 𝑝−1
𝑝

=

[︃
𝐼∑︁
𝑖=1

𝜇
1−𝑝
1−𝑝
𝑖

]︃ 𝑝−1
𝑝

= 1
𝑝−1
𝑝 = 1

Finally we can rewrite industry-level demand

𝐶ℎ𝑖𝑡 = 𝑤
1

1−𝑝
𝑖

(︂
𝑃𝑖𝑡
𝑃𝑡

)︂ 1
𝑝−1

𝐶ℎ𝑡

If we use the transformed 𝐶ℎ𝑡, then this reduces to:

𝐶ℎ𝑖𝑡 = 𝜇
1−𝑝
1−𝑝
𝑖

(︂
𝑃𝑖𝑡
𝑃𝑡

)︂ 1
𝑝−1

𝐶ℎ𝑡

Collecting the final demand function and price index for the transformed 𝐶ℎ𝑡, we have

𝐶ℎ𝑖𝑡 = 𝜇𝑖

(︂
𝑃𝑖𝑡
𝑃𝑡

)︂ 1
𝑝−1

𝐶ℎ𝑡

𝑃𝑡 =

[︃
𝐼∑︁
𝑖=1

𝜇𝑖𝑃
𝑝
𝑝−1

𝑖𝑡

]︃ 𝑝−1
𝑝
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Step 2: Intermediate good demand

Following similar steps as above, the final demand function and price index are given by

𝐶ℎ𝑗𝑡 =
1

𝜇𝑖

(︂
𝑃𝑗𝑡
𝑃𝑖𝑡

)︂ 1
𝑟−1

𝐶ℎ𝑖𝑡

𝑃𝑖𝑡 =

[︂∫︁
𝐽𝑖

1

𝜇𝑖
𝑃

𝑟
𝑟−1

𝑗𝑡 𝑑𝑗

]︂ 𝑟−1
𝑟

And the CES demand function for intermediate goods in terms of the consumption good is

𝐶ℎ𝑗𝑡 =
1

𝜇𝑖

(︂
𝑃𝑗𝑡
𝑃𝑖𝑡

)︂ 1
𝑟−1

𝜇𝑖

(︂
𝑃𝑖𝑡
𝑃𝑡

)︂ 1
𝑝−1

𝐶ℎ𝑡

= 𝑃
1
𝑟−1

𝑗𝑡 𝑃
1

1−𝑟+
1
𝑝−1

𝑖𝑡 𝑃
1

1−𝑝
𝑡 𝐶ℎ𝑡

8.2 A-2: Budget Contraints

In each period, households purchase (1) consumption goods, and (2) invest in risk-free bonds. They

receive income from (1) wages, (2) a share of intermediate goods firm profits, and (3) investment

income from bonds purchased in the previous period.

Assume that all households are endowed with equal ownership shares in each of the intermediate

goods firms. Then each household’s share of the profits can be denoted 𝜋𝑗𝑡.

Bonds are indexed by time period in which they mature so that 𝐵𝑡 refers to bonds purchased in

time 𝑡 − 1 that yield income in period 𝑡. The gross nominal rate of return on a bond purchased in

period 𝑡− 1 is denoted 𝑅𝑡. The bonds are riskless, so that 𝑅𝑡 is known in period 𝑡− 1.
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The nominal flow budget constraint is

∫︁
𝐽

𝑃𝑗𝑡𝐶ℎ𝑗𝑡𝑑𝑗 +𝐵ℎ𝑡+1 ≤
∫︁
𝐽

𝜃ℎ𝑗𝜋𝑗𝑡𝑑𝑗 +

∫︁
𝐽

𝑊𝑗𝑡𝑛ℎ𝑗𝑡𝑑𝑗 +𝑅𝑡𝐵ℎ𝑡

Plugging the CES demand functions derived above into the consumption spending portion of the

budgent constraint yiels

∫︁
𝐽

𝑃𝑗𝑡𝑃
1
𝑟−1

𝑗𝑡 𝑃
1

1−𝑟+
1
𝑝−1

𝑖𝑡 𝑃
1

1−𝑝
𝑡 𝐶ℎ𝑡𝑑𝑗 = 𝑃

1
1−𝑝
𝑡 𝐶ℎ𝑡

∫︁
𝐽

𝑃
𝑟
𝑟−1

𝑗𝑡 𝑃
1

1−𝑟+
1
𝑝−1

𝑖𝑡 𝑑𝑗

= 𝑃
1

1−𝑝
𝑡 𝐶ℎ𝑡

𝐼∑︁
𝑖=1

𝜇𝑖𝑃
𝑟
𝑟−1

𝑖𝑡 𝑃
1

1−𝑟
𝑖𝑡

= 𝑃
1

1−𝑝
𝑡 𝐶ℎ𝑡

𝐼∑︁
𝑖=1

𝜇𝑖𝑃
𝑝
𝑝−1

𝑖𝑡

= 𝑃
1

1−𝑝
𝑡 𝐶ℎ𝑡𝑃

𝑝
𝑝−1

𝑡

= 𝑃𝑡𝐶ℎ𝑡

Using this, the nominal flow budget constraint can be rewritten

𝑃𝑡𝐶ℎ𝑡 +𝐵ℎ𝑡+1 ≤
∫︁
𝐽

𝜃ℎ𝑗𝜋𝑗𝑡𝑑𝑗 +

∫︁
𝐽

𝑊𝑗𝑡𝑛ℎ𝑗𝑡𝑑𝑗 +𝑅𝑡𝐵ℎ𝑡
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Appendix B: Optimal Behavior

8.3 B-1: Optimal Household Behavior

B-1.1: Sequential Problem

The representative household’s problem is

max
{𝐶𝑡}𝑡≥0{𝑛𝑗𝑡}𝑗∈𝐽,𝑡≥0

= 𝐸0

∞∑︁
𝑡=0

𝛽𝑡
[︂
𝑢(𝐶𝑡) −

∫︁
𝐽

𝑣(𝑛𝑗𝑡)𝑑𝑗

]︂

subject to the nominal budget constraint

𝑃𝑡𝐶𝑡 +𝐵𝑡+1 ≤
∫︁
𝐽

𝜋𝑗𝑡𝑑𝑗 +

∫︁
𝐽

𝑊𝑗𝑡𝑛𝑗𝑡𝑑𝑗 +𝑅𝑡𝐵𝑡

Define wealth at time 𝑡 as

𝐴𝑡 =

∫︁
𝐽

𝜋𝑗𝑡𝑑𝑗 +

∫︁
𝐽

𝑊𝑗𝑡𝑛𝑗𝑡𝑑𝑗 +𝑅𝑡𝐵𝑡

Notice that given wealth and the household’s consumption choice, bond holdings are determined

by 𝐵𝑡+1 = 𝐴𝑡 − 𝑃𝑡𝐶𝑡.

B-1.2: Bellman system

The solution to the sequential problem is equivalent to the solution to the following functional

equation

𝑉 (𝐴) = max
𝐶,{𝑛𝑗}𝑗∈𝐽

{︂
𝑢(𝐶) −

∫︁
𝐽

𝑣(𝑛𝑗)𝑑𝑗 + 𝛽𝐸 [𝑉 (𝐴′)]

}︂
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subject to

𝐴′ =

∫︁
𝐽

𝜋′
𝑗𝑑𝑗 +

∫︁
𝐽

𝑊 ′
𝑗𝑛

′
𝑗𝑑𝑗 +𝑅′𝐵′

=

∫︁
𝐽

𝜋′
𝑗𝑑𝑗 +

∫︁
𝐽

𝑊 ′
𝑗𝑛

′
𝑗𝑑𝑗 +𝑅′(𝐴− 𝑃𝐶)

First-order Conditions

0 =
𝜕𝑉 (𝐴)

𝜕𝐶
= 𝑢′(𝐶) + 𝛽𝐸 [𝑉 ′(𝐴′)] (−𝑃 )𝑅′

0 =
𝜕𝑉 (𝐴)

𝜕𝑛𝑗
= −𝑣′(𝑛𝑗) + 𝛽𝑉 ′(𝐴′)𝑊𝑗𝑅

′

Envelope Condition

𝑉 ′(𝐴) = 𝛽𝑉 ′(𝐴′)𝑅′

Euler Equation

Combining the first-order condition for consumption and the envelope condition yields

𝑉 ′(𝐴) =
𝑢′(𝐶)

𝑃
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which can then be forwarded and plugged back into the first-order condition for consumption to

give the household’s Euler equation governing intertemporal consumption tradeoffs

𝑢′(𝐶𝑡) = 𝛽𝐸𝑡

[︂
𝑅𝑡+1

𝑃𝑡
𝑃𝑡+1

𝑢′(𝐶𝑡+1)

]︂

Static First-order Condition

Then from the first-order condition for labor we get

𝑣′(𝑛𝑗𝑡) =
𝑊𝑗𝑡

𝑃𝑡
𝑢′(𝐶𝑡)

8.4 B-2: Optimal Price Setting

B-2.1: Perfect Information

Firms face the problem

max
𝑃𝑗𝑡

𝑢′(𝐶𝑡)

(︂
𝑃𝑗𝑡 −

𝑊𝑗𝑡

𝜙𝑖𝑡

)︂
𝑌𝑗𝑡

which can be rewritten using the CES demand function as

max
𝑃𝑗𝑡

𝑢′(𝐶𝑡)

(︂
𝑃𝑗𝑡 −

𝑊𝑗𝑡

𝜙𝑖𝑡

)︂
𝑃

1
𝑟−1

𝑗𝑡 𝑃
1

1−𝑟+
1
𝑝−1

𝑖𝑡 𝑃
1

1−𝑝
𝑡 𝐶𝑡
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Their first-order condition is:

0 = 𝑢′(𝐶𝑡)

[︂(︂
1 +

1

𝑟 − 1

)︂
𝑃

1
𝑟−1

𝑗𝑡 −
(︂

1

𝑟 − 1

𝑊𝑗𝑡

𝜙𝑖𝑡

)︂
𝑃

1
𝑟−1

−1

𝑗𝑡

]︂
𝑃

1
1−𝑟+

1
𝑝−1

𝑖𝑡 𝑃
1

1−𝑝
𝑡 𝐶𝑡

𝑟𝑃
1
𝑟−1

𝑗𝑡 =
𝑊𝑗𝑡

𝜙𝑖𝑡
𝑃

1
𝑟−1

−1

𝑗𝑡

𝑃𝑗𝑡 =
1

𝑟

𝑊𝑗𝑡

𝜙𝑖𝑡

This is the standard result that monopolists set price as a markup over marginal costs.

Proceed by substituting out wages using the household’s static first-order condition and using (1)

the goods market clearing condition, (2) the production function, and (3) the demand function for

the intermediate good

𝑃𝑗𝑡 =
1

𝑟

1

𝜙𝑖𝑡

[︂
𝑃𝑡

𝑛𝜀

𝐶−𝜎
𝑡

]︂
=

1

𝑟

1

𝜙𝑖𝑡

[︂
𝑃𝑡𝑌

𝜎
𝑡

(︂
𝑌𝑗𝑡
𝜙𝑖𝑡

)︂𝜀]︂
=

1

𝑟

(︂
1

𝜙𝑖𝑡

)︂1+𝜀 [︂
𝑃𝑡𝑌

𝜎
𝑡

(︂
𝑃

1
𝑟−1

𝑗𝑡 𝑃
1

1−𝑟+
1
𝑝−1

𝑖𝑡 𝑃
1

1−𝑝
𝑡 𝑌𝑡

)︂𝜀]︂

Since productivity shocks are industry-level and they represent the only difference between firms,

we can now apply symmetry between all firms within a given industry to note that 𝑃𝑗𝑡 = 𝑃𝑖𝑡.

𝑃𝑗𝑡 =
1

𝑟

(︂
1

𝜙𝑖𝑡

)︂1+𝜀 [︂
𝑃

𝜀
𝑝−1

𝑗𝑡 𝑃
1−𝑝+𝜀
1−𝑝

𝑡 𝑌 𝜎+𝜀
𝑡

]︂
𝑃

1−𝑝+𝜀
1−𝑝

𝑗𝑡 =

[︃
1

𝑟

(︂
1

𝜙𝑖𝑡

)︂1+𝜀

𝑌 𝜎+𝜀
𝑡

]︃
𝑃

1−𝑝+𝜀
1−𝑝

𝑡

𝑃𝑗𝑡 =

[︃
1

𝑟

(︂
1

𝜙𝑖𝑡

)︂1+𝜀

𝑌 𝜎+𝜀
𝑡

]︃ 1−𝑝
1−𝑝+𝜀

𝑃
1−𝑝+𝜀
1−𝑝+𝜀
𝑡

49



Defining 𝛼 ≡ 1−𝑝
1−𝑝+𝜀 = 1

1+𝜌𝜀
we arrive at the final perfect information pricing equation

𝑃 ◇
𝑗𝑡 =

[︃
1

𝑟

(︂
1

𝜙𝑖𝑡

)︂1+𝜀

𝑌 𝜎+𝜀
𝑡

]︃𝛼
𝑃𝑡

It will also be convenient to have this expression with variables in log-form, where lowercase

variables denote logs of uppercase variables

𝑝◇𝑗𝑡 = 𝛼 log
1

𝑟
− 𝛼(1 + 𝜀)𝜑𝑖𝑡 + 𝛼(𝜎 + 𝜀)𝑦𝑡 + 𝑝𝑡

To expose strategic complementarities define 𝜁 = 𝛼(𝜎 + 𝜀), and for notational convenience define

𝛾 = 𝛼(1 + 𝜀). Recall also that 𝑞𝑡 = 𝑝𝑡 + 𝑦𝑡. Then the firms’ perfect information pricing rule is

𝑝◇𝑗𝑡 = 𝛼 log
1

𝑟
− 𝛾𝜑𝑖𝑡 + 𝜁𝑞𝑡 + (1 − 𝜁)𝑝𝑡

To aid interpretation of the imperfect information pricing rule we express the pricing-rule in pro-

portional deviation from common price form below by defining �̃�𝑡 ≡ (𝑋𝑡−�̄�)

�̄�
≈ log

(︀
𝑋𝑡
�̄�

)︀
= 𝑥𝑡− �̄�

𝑝◇𝑗𝑡 − 𝑝𝑗𝑡 =

(︂
𝛼 log

1

𝑟
− 𝛾𝜑𝑖𝑡 + 𝜁𝑞𝑡 + (1 − 𝜁)𝑝𝑡

)︂
−
(︂
𝛼 log

1

𝑟
− 𝛾𝜑𝑖𝑡 + 𝜁𝑞𝑡 + (1 − 𝜁)𝑝

)︂

which reduces to

𝑝◇𝑗𝑡 = −𝛾𝜑𝑖𝑡 + 𝜁𝑞𝑡 + (1 − 𝜁)𝑝𝑡

B-2.2: Imperfect Information

This section describes optimal firm behavior under imperfect information using results based on

log approximations; it is just a summary of the approximations derived in detail in Appendix C:
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Log Approximations.

The generic problem facing an intermediate goods firm is given above in (8.4). In equilibrium, the

objective can be written as a function only of prices, shocks, and aggregate output (this is because

wages can be substituted out as a function of these variables, using the households’ static first-order

condition)

Π𝑗𝑡(𝑃𝑗𝑡, 𝑃𝑖𝑡, 𝑃𝑡, 𝑌𝑡, 𝜙𝑡)

Given this, the firm’s problem can be expressed as

max
𝑃𝑗𝑡

Π𝑗𝑡

We proceed by taking a log-quadratic approximation to Π𝑗𝑡 around the perfect-information equi-

librium,

Π̃𝑗𝑡 =Π1𝑃𝑝𝑗𝑡 +
Π11

2!
𝑃 2𝑝2𝑗𝑡 + Π12𝑃

2𝑝𝑗𝑡𝐸𝑗𝑡𝑝𝑖𝑡 + Π13𝑃
2𝑝𝑗𝑡𝐸𝑗𝑡𝑝𝑡 + Π14𝑃�̄�𝑝𝑗𝑡𝐸𝑗𝑡𝑦𝑡 + Π15𝑃𝜙𝑖𝑡𝑝𝑗𝑡𝐸𝑗𝑡𝜑𝑖𝑡

+ other terms

where Π1 is the partial derivative of profit with respect to the first argument (𝑃𝑗𝑡) and the Π1·

coefficients are the partial derivatives of Π1, all evaluated at the perfect-information equilibrium

values, and 𝑃 is the perfect-information equilibrium price. The “other terms” are all other terms

in the second-order approximation that do not depend on 𝑝𝑗𝑡, which are irrelevent here since they

will not affect the firm’s pricing decision.

The problem faced by firm 𝑗 can now be written

max
𝑃𝑗𝑡

Π̃𝑗𝑡
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And the solution is characterized by the first-order condition

𝜕Π̃

𝜕𝑝𝑗𝑡
= 0 =Π1𝑃 + Π11𝑃

2𝑝𝑗𝑡 + Π12𝑃
2𝐸𝑗𝑡𝑝𝑖𝑡 + Π13𝑃

2𝐸𝑗𝑡𝑝𝑡 + Π14𝑃�̄�𝐸𝑗𝑡�̃�𝑡 + Π15𝑃𝜙𝑖𝑡�̃�𝑗𝑡𝜑𝑖𝑡

which reduces to

𝑝*𝑗𝑡 = −𝛾𝐸𝑗𝑡𝜑𝑖𝑡 + 𝜁𝐸𝑗𝑡𝑞𝑡 + (1 − 𝜁)𝐸𝑗𝑡𝑝𝑡

= 𝐸𝑗𝑡𝑝
◇
𝑗𝑡

Appendix C: Log Approximations

8.5 C-1: Log-linear approximation to the aggregate price index

For results that follow, we will require a log-linear approximation to the price index 𝑃𝑡. Recall

from A-1: Constant Elasticity of Substitution Preferences that 𝑃𝑡 is derived as the (minimum) cost

of purchasing one unit of the consumption good and is defined to be

𝑃𝑡 =

[︃
𝐼∑︁
𝑖=1

𝜇𝑖𝑃
𝑝
𝑝−1

𝑖𝑡

]︃ 𝑝−1
𝑝

We take the log-linear approximation around the where all prices are the same 𝑃𝑗𝑡 = 𝑃𝑖𝑡 = 𝑃𝑡 ≡ 𝑃 .

Define 𝑝𝑡 ≡ (𝑃𝑡−𝑃 )

𝑃
≈ log

(︀
𝑃𝑡
𝑃

)︀
= 𝑝𝑡 − 𝑝 so that 𝑝𝑡 is the aggregate price in proportional deviation-
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from-steady-state form.

𝑃 + (1)(𝑃𝑡 − 𝑃 ) = 𝑃 +
𝐼∑︁
𝑖=1

𝑝− 1

𝑝
𝑃

1
1−𝑝
𝑡 𝜇𝑖𝑃

1
𝑝−1

𝑖𝑡

𝑝

𝑝− 1
(𝑃𝑖𝑡 − 𝑃 )

(𝑃𝑡 − 𝑃 ) =
𝐼∑︁
𝑖=1

𝜇𝑖(𝑃𝑖𝑡 − 𝑃 )

𝑃𝑝𝑡 =
𝐼∑︁
𝑖=1

𝜇𝑖𝑃𝑖𝑝𝑖𝑡

Thus the log-approximation aggregate price is described by

𝑝𝑡 =
𝐼∑︁
𝑖=1

𝜇𝑖𝑝𝑖𝑡

8.6 C-2: Log-quadratic approximation to an intermediate good firm’s

profit function

Recall from B-2: Optimal Price Setting that the problem faced by firm 𝑗 can be written

max
𝑃𝑗𝑡

Π𝑗𝑡(𝑃𝑗𝑡, 𝑃𝑖𝑡, 𝑃𝑡, 𝑌𝑡, 𝜙𝑖𝑡)

A second-order approximation to this objective function around the perfect information non-

stochastic equilibrium is given by

Π̄ + (1)(Π𝑗𝑡 − Π̄) =Π̄ + Π1(𝑃𝑗𝑡 − 𝑃 ) +
Π11

2!
(𝑃𝑗𝑡 − 𝑃 )2 + Π12(𝑃𝑗𝑡 − 𝑃 )(𝑃𝑖𝑡 − 𝑃 )

+ Π13(𝑃𝑗𝑡 − 𝑃 )𝐸𝑗𝑡(𝑃𝑡 − 𝑃 ) + Π14(𝑃𝑗𝑡 − 𝑃 )𝐸𝑗𝑡(𝑌𝑡 − 𝑌 ) + Π15(𝑃𝑗𝑡 − 𝑃 )𝐸𝑗𝑡(𝜙𝑖𝑡 − 𝜙𝑡)

+ other terms
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where 𝑃 denotes the price at which 𝑃𝑗𝑡 = 𝑃𝑖𝑡 = 𝑃𝑡 ≡ 𝑃 and �̄�𝑡 and 𝜙𝑡 denote the means of

the processes. Π1 is the partial derivative of profit with respect to the first argument Π1* represent

second partial derivatives, all evaluated at the point at which all prices are the same. The term

“other terms” collects all terms that do not depend on 𝑝𝑗𝑡 (irrelevent for our purposes since they do

not affect the firm’s pricing decision). The forms of these partial derivatives are derived below.

In log-deviation form the objective function is

Π̃(𝑝𝑗𝑡, 𝑝𝑖𝑡, 𝑝𝑡, 𝑦𝑡, 𝜑𝑖𝑡) =Π1𝑃𝑝𝑗𝑡 +
Π11

2!
𝑃 2𝑝2𝑗𝑡 + Π12𝑃

2𝑝𝑗𝑡𝑝𝑖𝑡 + Π13𝑃
2𝑝𝑗𝑡𝐸𝑗𝑡𝑝𝑡 + Π14𝑃𝑌 𝑝𝑗𝑡𝐸𝑗𝑡𝑦𝑡 + Π15𝑃𝜙𝑡𝑝𝑗𝑡𝐸𝑗𝑡𝜑𝑖𝑡

+ other terms

C-2.2: Derivatives

Below we calculate the first and second partial derivatives used in the log-quadratic approximation,

above. The second partial derivatives are all first with respect to 𝑃𝑗𝑡 and then second with respect to

the given variable. Evaluation of derivatives will be around the perfect information non-stochastic

equilibrium (see E-1: Perfect Information) in which all prices are the same (we will use that the

means of the shocks have been defined to be identical, see Stochastic processes, to guarantee the

last condition).

Before calculating the derivatives, simplify the objective function by applying market clearing and
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household optimization so that it can be written

Π𝑗𝑡 = 𝐸𝑗𝑡

[︂
𝑈 ′(𝑌𝑡)

(︂
𝑃𝑗𝑡 −

𝑊𝑗𝑡

𝜙𝑖𝑡

)︂
𝑌𝑗𝑡

]︂
= 𝐸𝑗𝑡

[︃
𝑌 −𝜎
𝑡

(︂
𝑃𝑗𝑡 −

𝑊𝑗𝑡

𝜙𝑖𝑡

)︂(︂
1

𝜇𝑖

)︂(︂
𝑃𝑗𝑡
𝑃𝑖𝑡

)︂ 1
𝑟−1

𝜇𝑖

(︂
𝑃𝑖𝑡
𝑃𝑡

)︂ 1
𝑝−1

𝑌𝑡

]︃

= 𝐸𝑗𝑡

[︂(︂
𝑃𝑗𝑡 −

𝑊𝑗𝑡

𝜙𝑖𝑡

)︂
𝑃

1
𝑟−1

𝑗𝑡 𝑃
𝑟−𝑝

(𝑝−1)(𝑟−1)

𝑖𝑡 𝑃
1

1−𝑝
𝑡 𝑌 1−𝜎

𝑡

]︂
= 𝐸𝑗𝑡

[︂
𝑃

𝑟−𝑝
(𝑝−1)(𝑟−1)

𝑖𝑡 𝑃
1

1−𝑝
𝑡 𝑌 1−𝜎

𝑡

(︂
𝑃

1+ 1
𝑟−1

𝑗𝑡 − 𝑃
1
𝑟−1

𝑗𝑡

𝑊𝑗𝑡

𝜙𝑖𝑡

)︂]︂

Since factor markets are perfectly competitive, so that firms are wage-takers, the wage cannot yet

be substituted out.

First derivative, with respect to 𝑃𝑗𝑡

𝜕Π𝑗𝑡

𝜕𝑃𝑗𝑡
= 𝐸𝑗𝑡

[︂(︂
1

𝑟 − 1

)︂
𝑃

1
𝑟−1

𝑗𝑡 𝑃
𝑟−𝑝

(𝑝−1)(𝑟−1)

𝑖𝑡 𝑃
1

1−𝑝
𝑡 𝑌 1−𝜎

𝑡 −
(︂

1 +
1

𝑟 − 1

)︂
𝑃

1
𝑟−1

−1

𝑗𝑡 𝑃
𝑟−𝑝

(𝑝−1)(𝑟−1)

𝑖𝑡 𝑃
1

1−𝑝
𝑡 𝑌 1−𝜎

𝑡

𝑊𝑗𝑡

𝜙𝑖𝑡

]︂

After taking the derivative, wages can be substituted out using the firm’s static first-order condition

𝜕Π𝑗𝑡

𝜕𝑃𝑗𝑡
= 𝐸𝑗𝑡

(︂
𝑟

𝑟 − 1

)︂
𝑃

1
𝑟−1

𝑗𝑡 𝑃
𝑟−𝑝

(𝑝−1)(𝑟−1)

𝑖𝑡 𝑃
1

1−𝑝
𝑡 𝑌 1−𝜎

𝑡 − 𝐸𝑗𝑡

(︂
1

𝑟 − 1

)︂
1

𝜙𝑖𝑡
𝑃

1
𝑟−1

−1

𝑗𝑡 𝑃
𝑟−𝑝

(𝑝−1)(𝑟−1)

𝑖𝑡 𝑃
1

1−𝑝
𝑡 𝑌 1−𝜎

𝑡

(︂
𝑃𝑡

𝑛𝜀𝑗𝑡
𝑌 −𝜎
𝑡

)︂
= 𝐸𝑗𝑡

(︂
𝑟

𝑟 − 1

)︂
𝑃

1
𝑟−1

𝑗𝑡 𝑃
𝑟−𝑝

(𝑝−1)(𝑟−1)

𝑖𝑡 𝑃
1

1−𝑝
𝑡 𝑌 1−𝜎

𝑡 − 𝐸𝑗𝑡

(︂
1

𝑟 − 1

)︂
1

𝜙1+𝜀
𝑖𝑡

𝑃
1
𝑟−1

−1

𝑗𝑡 𝑃
𝑟−𝑝

(𝑝−1)(𝑟−1)

𝑖𝑡 𝑃
2−𝑝
1−𝑝
𝑡 𝑌𝑡 [𝑌𝑗𝑡]

𝜀

= 𝐸𝑗𝑡

(︂
𝑟

𝑟 − 1

)︂
𝑃

1
𝑟−1

𝑗𝑡 𝑃
𝑟−𝑝

(𝑝−1)(𝑟−1)

𝑖𝑡 𝑃
1

1−𝑝
𝑡 𝑌 1−𝜎

𝑡 − 𝐸𝑗𝑡

(︂
1

𝑟 − 1

)︂
1

𝜙1+𝜀
𝑖𝑡

𝑃
1
𝑟−1

−1

𝑗𝑡 𝑃
𝑟−𝑝

(𝑝−1)(𝑟−1)

𝑖𝑡 𝑃
2−𝑝
1−𝑝
𝑡 𝑌𝑡

[︃(︂
1

𝜇𝑖

)︂(︂
𝑃𝑗𝑡
𝑃𝑖𝑡

)︂ 1
𝑟−1

𝜇𝑖

(︂
𝑃𝑖𝑡
𝑃𝑡

)︂ 1
𝑝−1

𝑌𝑡

]︃𝜀

This finally yields the first derivative of the log-quadratic approximation to the profit function with

respect to price

𝜕Π𝑗𝑡

𝜕𝑃𝑗𝑡
= 𝐸𝑗𝑡

(︂
𝑟

𝑟 − 1

)︂
𝑃

1
𝑟−1

𝑗𝑡 𝑃
𝑟−𝑝

(𝑝−1)(𝑟−1)

𝑖𝑡 𝑃
1

1−𝑝
𝑡 𝑌 1−𝜎

𝑡 − 𝐸𝑗𝑡

(︂
1

𝑟 − 1

)︂
1

𝜙1+𝜀
𝑖𝑡

𝑃
1+𝜀
𝑟−1

−1

𝑗𝑡 𝑃
(1+𝜀) 𝑟−𝑝

(𝑝−1)(𝑟−1)

𝑖𝑡 𝑃
2−𝑝+𝜀
1−𝑝

𝑡 𝑌 1+𝜀
𝑡
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Evaluation at the point where all prices are the same implies 𝑃𝑗𝑡 = 𝑃𝑖𝑡 = 𝑃𝑡 ≡ 𝑃 . At this point we

also have 𝜙𝑖𝑡 ≡ 𝜙𝑡 for 𝑖 = 1, . . . , 𝐼 . Then the exponent on the price on the left hand side is

1

𝑟 − 1
+

𝑟 − 𝑝

(𝑝− 1)(𝑟 − 1)
− 1

𝑝− 1
=

(𝑝− 1) + (𝑟 − 𝑝) − (𝑟 − 1)

(𝑝− 1)(𝑟 − 1)

= 0

and the exponent on price on the right hand side is:

1 + 𝜀

𝑟 − 1
− 1 + (1 + 𝜀)

𝑟 − 𝑝

(𝑝− 1)(𝑟 − 1)
− 1 + 𝜀

𝑝− 1
+ 1 = (1 + 𝜀)

(𝑝− 1) + (𝑟 − 𝑝) − (𝑟 − 1)

(𝑝− 1)(𝑟 − 1)
− 1 + 1

= 0

this leads to

Π1 ≡
𝜕Π𝑗𝑡

𝜕𝑃𝑗𝑡

⃒⃒⃒⃒
𝑃 ,𝑌 ,𝜙𝑡

=

(︂
𝑟

𝑟 − 1

)︂
𝑌 1−𝜎 −

(︂
1

𝑟 − 1

)︂(︂
1

𝜙𝑡

)︂1+𝜀

𝑌 1+𝜀

Recall that 𝑌 = 𝑌 𝑛
𝑡 = 𝑟

𝛼
𝜁

(︁
1
𝜙𝑡

)︁− 𝛾
𝜁

when shocks have a common mean (see E-1: Perfect Informa-

tion). Then

Π1 ≡
𝜕Π𝑗𝑡

𝜕𝑃𝑗𝑡

⃒⃒⃒⃒
𝑃 ,𝑌 ,𝜙𝑡

=

(︂
𝑟

𝑟 − 1

)︂
𝑟

1−𝜎
𝜎+𝜀

(︂
1

𝜙𝑡

)︂−(1−𝜎) 1+𝜀
𝜎+𝜀

−
(︂

1

𝑟 − 1

)︂(︂
1

𝜙𝑡

)︂1+𝜀(︂
1

𝜙𝑡

)︂−(1+𝜀) 1+𝜀
𝜎+𝜀

𝑟
1+𝜀
𝜎+𝜀

=

(︂
1

𝑟 − 1

)︂
𝑟

1−𝜎
𝜎+𝜀

+1

(︂
1

𝜙𝑡

)︂−(1−𝜎) 1+𝜀
𝜎+𝜀

−
(︂

1

𝑟 − 1

)︂(︂
1

𝜙𝑡

)︂1+𝜀−(1+𝜀) 1+𝜀
𝜎+𝜀

𝑟
1+𝜀
𝜎+𝜀

=

(︂
1

𝑟 − 1

)︂
𝑟

1+𝜀
𝜎+𝜀

(︂
1

𝜙𝑡

)︂−(1−𝜎) 1+𝜀
𝜎+𝜀

−
(︂

1

𝑟 − 1

)︂(︂
1

𝜙𝑡

)︂1+𝜀−(1+𝜀)𝑟
1+𝜀
𝜎+𝜀 1+𝜀

𝜎+𝜀

= 0

where the last equality can be found by noting that the right-hand side exponent on 1/𝜙 is the same
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as the left-hand side exponent:

(1 + 𝜀) − (1 + 𝜀)
1 + 𝜀

𝜎 + 𝜀
= (1 + 𝜀)

[︂
1 − 1 + 𝜀

𝜎 + 𝜀

]︂
= (1 + 𝜀)

[︂
𝜎 + 𝜀− 1 − 𝜀

𝜎 + 𝜀

]︂
= (1 + 𝜀)

[︂
𝜎 − 1

𝜎 + 𝜀

]︂
= −(1 + 𝜀)

[︂
1 − 𝜎

𝜎 + 𝜀

]︂
= −(1 − 𝜎)

[︂
1 + 𝜀

𝜎 + 𝜀

]︂

Second derivatives

Note that

�̄� =
1

𝜙𝜀𝑡
𝑃𝑌 𝜎

[︃(︂
1

𝜇𝑖

)︂(︂
𝑃

𝑃

)︂ 1
𝑟−1

𝜇𝑖

(︂
𝑃

𝑃

)︂ 1
𝑝−1

𝑌

]︃𝜀
=

1

𝜙𝜀𝑡
𝑃𝑌 𝜎+𝜀

= 𝑟𝜙𝑡𝑃

Second derivative, with respect to 𝑃𝑗𝑡

𝜕2Π𝑗𝑡

𝜕𝑃 2
𝑗𝑡

=
𝜕

𝜕𝑃𝑗𝑡
𝐸𝑗𝑡

(︂
𝑟

𝑟 − 1

)︂
𝑃

1
𝑟−1

𝑗𝑡 𝑃
𝑟−𝑝

(𝑝−1)(𝑟−1)

𝑖𝑡 𝑃
1

1−𝑝
𝑡 𝑌 1−𝜎

𝑡 −
(︂

1

𝑟 − 1

)︂
𝑃

1
𝑟−1

−1

𝑗𝑡 𝑃
𝑟−𝑝

(𝑝−1)(𝑟−1)

𝑖𝑡 𝑃
1

1−𝑝
𝑡 𝑌 1+𝜀

𝑡

1

𝜙1+𝜀
𝑖𝑡

𝑃𝑡

[︃(︂
𝑃𝑗𝑡
𝑃𝑖𝑡

)︂ 1
𝑟−1
(︂
𝑃𝑖𝑡
𝑃𝑡

)︂ 1
𝑝−1

]︃𝜀
= 𝐸𝑗𝑡

(︂
𝑟

𝑟 − 1

)︂(︂
1

𝑟 − 1

)︂
𝑃

1+𝜀
𝑟−1

−1

𝑗𝑡 𝑃
𝑟−𝑝

(𝑝−1)(𝑟−1)

𝑖𝑡 𝑃
1

1−𝑝
𝑡 𝑌 1−𝜎

𝑡 −
(︂

1

𝑟 − 1

)︂(︂
1

𝑟 − 1
− 1

)︂
𝑃

1
𝑟−1

−2

𝑗𝑡 𝑃
𝑟−𝑝

(𝑝−1)(𝑟−1)

𝑖𝑡 𝑃
1

1−𝑝
𝑡 𝑌 1−𝜎

𝑡

𝑊𝑗𝑡

𝜙𝑖𝑡
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Π11 ≡
𝜕2Π𝑗𝑡

𝜕𝑃 2
𝑗𝑡

⃒⃒⃒⃒
𝑃 ,𝑌 ,𝜙𝑡

=

(︂
𝑟

𝑟 − 1

)︂(︂
1

𝑟 − 1

)︂
𝑃−1𝑌 1−𝜎 −

(︂
1

𝑟 − 1

)︂(︂
2 − 𝑟 + 𝜀

𝑟 − 1

)︂
𝑃−2𝑌 1−𝜎 1

𝜙𝑡
�̄�

=

(︂
1

𝑟 − 1

)︂2

𝑃−1𝑌 1−𝜎
[︂
𝑟 − (2 − 𝑟 + 𝜀)

1

𝜙1+𝜀
𝑡

𝑌 𝜎+𝜀

]︂
=

(︂
1

𝑟 − 1

)︂2

𝑃−1𝑌 1−𝜎𝑟 [1 − (2 − 𝑟 + 𝜀)]

=

(︂
1

𝑟 − 1

)︂2

𝑃−1𝑌 1−𝜎𝑟 [𝑟 − 1 − 𝜀]

Notice that since 𝑟 ∈ [0, 1), then this term is strictly negative.

Second derivative, with respect to 𝑃𝑖𝑡

𝜕2Π𝑗𝑡

𝜕𝑃𝑗𝑡𝜕𝑃𝑖𝑡
=

𝜕

𝜕𝑃𝑖𝑡
𝐸𝑗𝑡

(︂
𝑟

𝑟 − 1

)︂
𝑃

1
𝑟−1

𝑗𝑡 𝑃
𝑟−𝑝

(𝑝−1)(𝑟−1)

𝑖𝑡 𝑃
1

1−𝑝
𝑡 𝑌 1−𝜎

𝑡 −
(︂

1

𝑟 − 1

)︂
𝑃

1
𝑟−1

−1

𝑗𝑡 𝑃
𝑟−𝑝

(𝑝−1)(𝑟−1)

𝑖𝑡 𝑃
1

1−𝑝
𝑡 𝑌 1+𝜀

𝑡

1

𝜙1+𝜀
𝑖𝑡

𝑃𝑡

[︃(︂
𝑃𝑗𝑡
𝑃𝑖𝑡

)︂ 1
𝑟−1
(︂
𝑃𝑖𝑡
𝑃𝑡

)︂ 1
𝑝−1

]︃𝜀
= 𝐸𝑗𝑡

(︂
𝑟

𝑟 − 1

)︂(︂
𝑟 − 𝑝

(𝑝− 1)(𝑟 − 1)

)︂
𝑃

1
𝑟−1

𝑗𝑡 𝑃
𝑟−𝑝

(𝑝−1)(𝑟−1)
−1

𝑖𝑡 𝑃
1

1−𝑝
𝑡 𝑌 1−𝜎

𝑡 −
(︂

1

𝑟 − 1

)︂(︂
(1 + 𝜀)(𝑟 − 𝑝)

(𝑝− 1)(𝑟 − 1)

)︂
𝑃

1
𝑟−1

−1

𝑗𝑡 𝑃
𝑟−𝑝

(𝑝−1)(𝑟−1)
−1

𝑖𝑡 𝑃
1

1−𝑝
𝑡 𝑌 1−𝜎

𝑡

𝑊𝑗𝑡

𝜙𝑖𝑡

Π12 ≡
𝜕2Π𝑗𝑡

𝜕𝑃𝑗𝑡𝜕𝑃𝑖𝑡

⃒⃒⃒⃒
𝑃 ,𝑌 ,𝜙𝑡

=

(︂
𝑟

𝑟 − 1

)︂(︂
𝑟 − 𝑝

(𝑝− 1)(𝑟 − 1)

)︂
𝑃−1𝑌 1−𝜎 −

(︂
1

𝑟 − 1

)︂(︂
(1 + 𝜀)(𝑟 − 𝑝)

(𝑝− 1)(𝑟 − 1)

)︂
𝑃−2𝑌 1−𝜎 �̄�

𝜙𝑡

=
𝑟 − 𝑝

(𝑝− 1)(𝑟 − 1)2
𝑃−1𝑌 1−𝜎

[︂
𝑟 − (1 + 𝜀)

1

𝜙1+𝜀
𝑡

𝑌 𝜎+𝜀

]︂
=

𝑟 − 𝑝

(𝑝− 1)(𝑟 − 1)2
𝑃−1𝑌 1−𝜎𝑟 [1 − (1 + 𝜀)]

=
𝑟 − 𝑝

(𝑝− 1)(𝑟 − 1)2
𝑃−1𝑌 1−𝜎𝑟 [−𝜀]
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Second derivative, with respect to 𝑃𝑡

𝜕2Π𝑗𝑡

𝜕𝑃𝑗𝑡𝜕𝑃𝑡
=

𝜕

𝜕𝑃𝑡
𝐸𝑗𝑡

(︂
𝑟

𝑟 − 1

)︂
𝑃

1
𝑟−1

𝑗𝑡 𝑃
𝑟−𝑝

(𝑝−1)(𝑟−1)

𝑖𝑡 𝑃
1

1−𝑝
𝑡 𝑌 1−𝜎

𝑡 −
(︂

1

𝑟 − 1

)︂
𝑃

1
𝑟−1

−1

𝑗𝑡 𝑃
𝑟−𝑝

(𝑝−1)(𝑟−1)

𝑖𝑡 𝑃
1

1−𝑝
𝑡 𝑌 1+𝜀

𝑡

1

𝜙1+𝜀
𝑖𝑡

𝑃𝑡

[︃(︂
𝑃𝑗𝑡
𝑃𝑖𝑡

)︂ 1
𝑟−1
(︂
𝑃𝑖𝑡
𝑃𝑡

)︂ 1
𝑝−1

]︃𝜀
= 𝐸𝑗𝑡

(︂
𝑟

𝑟 − 1

)︂(︂
1

1 − 𝑝

)︂
𝑃

1
𝑟−1

𝑗𝑡 𝑃
𝑟−𝑝

(𝑝−1)(𝑟−1)

𝑖𝑡 𝑃
1

1−𝑝−1

𝑡 𝑌 1−𝜎
𝑡 −

(︂
1

𝑟 − 1

)︂(︂
1

1 − 𝑝
+ 1 +

𝜀

1 − 𝑝

)︂
𝑃

1
𝑟−1

−1

𝑗𝑡 𝑃
𝑟−𝑝

(𝑝−1)(𝑟−1)

𝑖𝑡 𝑃
1

1−𝑝
𝑡 𝑌 1+𝜀

𝑡

𝑊𝑗𝑡

𝑃𝑡𝜙𝑖𝑡

Π13 ≡
𝜕2Π𝑗𝑡

𝜕𝑃𝑗𝑡𝜕𝑃𝑡

⃒⃒⃒⃒
𝑃 ,𝑌 ,𝜙𝑡

=

(︂
𝑟

𝑟 − 1

)︂(︂
1

1 − 𝑝

)︂
𝑃−1𝑌 1−𝜎 −

(︂
1

𝑟 − 1

)︂(︂
2 − 𝑝+ 𝜀

1 − 𝑝

)︂
𝑃−1𝑌 1+𝜀 �̄�

𝑃𝜙𝑡

=
1

(1 − 𝑝)(𝑟 − 1)
𝑃−1𝑌 1−𝜎

[︂
𝑟 − (2 − 𝑝+ 𝜀)

1

𝜙1+𝜀
𝑡

𝑌 𝜎+𝜀

]︂
= − 1

(𝑝− 1)(𝑟 − 1)
𝑃−1𝑌 1−𝜎𝑟 [−1 + 𝑝− 𝜀]

= (−1)𝛼−1 1

𝑟 − 1
𝑃−1𝑌 1−𝜎𝑟

Second derivative, with respect to 𝑌𝑡

𝜕2Π𝑗𝑡

𝜕𝑃𝑗𝑡𝜕𝑌𝑡
=

𝜕

𝜕𝑌𝑡
𝐸𝑗𝑡

(︂
𝑟

𝑟 − 1

)︂
𝑃

1
𝑟−1

𝑗𝑡 𝑃
𝑟−𝑝

(𝑝−1)(𝑟−1)

𝑖𝑡 𝑃
1

1−𝑝
𝑡 𝑌 1−𝜎

𝑡 −
(︂

1

𝑟 − 1

)︂
𝑃

1
𝑟−1

−1

𝑗𝑡 𝑃
𝑟−𝑝

(𝑝−1)(𝑟−1)

𝑖𝑡 𝑃
1

1−𝑝
𝑡 𝑌 1+𝜀

𝑡

1

𝜙1+𝜀
𝑖𝑡

𝑃𝑡

[︃(︂
𝑃𝑗𝑡
𝑃𝑖𝑡

)︂ 1
𝑟−1
(︂
𝑃𝑖𝑡
𝑃𝑡

)︂ 1
𝑝−1

]︃𝜀

= 𝐸𝑗𝑡

(︂
𝑟

𝑟 − 1

)︂
(1 − 𝜎)𝑃

1
𝑟−1

𝑗𝑡 𝑃
𝑟−𝑝

(𝑝−1)(𝑟−1)

𝑖𝑡 𝑃
1

1−𝑝
𝑡 𝑌 −𝜎

𝑡 −
(︂

1

𝑟 − 1

)︂
(1 + 𝜀)𝑃

1
𝑟−1

−1

𝑗𝑡 𝑃
𝑟−𝑝

(𝑝−1)(𝑟−1)

𝑖𝑡 𝑃
1

1−𝑝
𝑡 𝑌 𝜀

𝑡

1

𝜙1+𝜀
𝑖𝑡

𝑃𝑡

[︃(︂
𝑃𝑗𝑡
𝑃𝑖𝑡

)︂ 1
𝑟−1
(︂
𝑃𝑖𝑡
𝑃𝑡

)︂ 1
𝑝−1

]︃𝜀

59



Π14 ≡
𝜕2Π𝑗𝑡

𝜕𝑃𝑗𝑡𝜕𝑌𝑡

⃒⃒⃒⃒
𝑃 ,𝑌 ,𝜙𝑡

=

(︂
𝑟

𝑟 − 1

)︂
(1 − 𝜎)𝑌 −𝜎 −

(︂
1

𝑟 − 1

)︂
(1 + 𝜀)𝑃−1𝑌 𝜀 1

𝜙1+𝜀
𝑡

=
1

𝑟 − 1
𝑌 −𝜎

[︂
(1 − 𝜎)𝑟 − (1 + 𝜀)

1

𝜙1+𝜀
𝑡

𝑌 𝜎+𝜀

]︂
=

1

𝑟 − 1
𝑌 −𝜎𝑟 [(1 − 𝜎) − (1 + 𝜀)]

= (−1)
1

𝑟 − 1
𝑌 −𝜎𝑟 [𝜀+ 𝜎]

Second derivative, with respect to 𝜙𝑡

𝜕2Π𝑗𝑡

𝜕𝑃𝑗𝑡𝜕𝜙𝑡
=

𝜕

𝜕𝜙𝑖𝑡
𝐸𝑗𝑡

(︂
𝑟

𝑟 − 1

)︂
𝑃

1
𝑟−1

𝑗𝑡 𝑃
𝑟−𝑝

(𝑝−1)(𝑟−1)

𝑖𝑡 𝑃
1

1−𝑝
𝑡 𝑌 1−𝜎

𝑡 −
(︂

1

𝑟 − 1

)︂
𝑃

1
𝑟−1

−1

𝑗𝑡 𝑃
𝑟−𝑝

(𝑝−1)(𝑟−1)

𝑖𝑡 𝑃
1

1−𝑝
𝑡 𝑌 1+𝜀

𝑡

1

𝜙1+𝜀
𝑖𝑡

𝑃𝑡

[︃(︂
𝑃𝑗𝑡
𝑃𝑖𝑡

)︂ 1
𝑟−1
(︂
𝑃𝑖𝑡
𝑃𝑡

)︂ 1
𝑝−1

]︃𝜀

=

(︂
1

𝑟 − 1

)︂
(1 + 𝜀)𝑃

1
𝑟−1

𝑗𝑡 𝑃
𝑟−𝑝

(𝑝−1)(𝑟−1)

𝑖𝑡 𝑃
1

1−𝑝
𝑡 𝑌 1+𝜀

𝑡

1

𝜙2+𝜀

[︃(︂
𝑃𝑗𝑡
𝑃𝑖𝑡

)︂ 1
𝑟−1
(︂
𝑃𝑖𝑡
𝑃𝑡

)︂ 1
𝑝−1

]︃𝜀

Π15 ≡
𝜕2Π𝑗𝑡

𝜕𝑃𝑗𝑡𝜕𝜙𝑡

⃒⃒⃒⃒
𝑃 ,𝑌 ,𝜙𝑡

=

(︂
1

𝑟 − 1

)︂
(1 + 𝜀)𝑌 1+𝜀+𝜎−𝜎 1

𝜙2+𝜀
𝑡

=

(︂
1 + 𝜀

𝑟 − 1

)︂
𝑟𝑌 1−𝜎 1

𝜙𝑡
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8.7 C-3: Log-linear approximation to an intermediate good firm’s

pricing decision

Taking first-order conditions with respect to the firm’s objective function (8.6) yields

𝜕Π̃

𝜕𝑝𝑗𝑡
= 0 =Π1𝑃 + Π11𝑃

2𝑝𝑗𝑡 + Π12𝑃
2𝑝𝑖𝑡 + Π13𝑃

2𝐸𝑗𝑡𝑝𝑡 + Π14𝑃𝑌 𝐸𝑗𝑡𝑦𝑡 + Π15𝑃𝜙𝑡�̃�𝑗𝑡𝜑𝑖𝑡

=0

+ Π11𝑃
2𝑝𝑗𝑡

+ Π12𝑃
2𝑝𝑖𝑡

+ Π13𝑃
2𝐸𝑗𝑡𝑝𝑡

+ Π14𝑃𝑌 𝐸𝑗𝑡𝑦𝑡

+ Π15𝑃𝜙𝑡𝐸𝑗𝑡𝜑𝑖𝑡

=0

+

(︂
1

𝑟 − 1

)︂2

𝑃−1𝑌 1−𝜎𝑟 [𝑟 − 1 − 𝜀]𝑃 2𝑝𝑗𝑡

+
𝑟 − 𝑝

(𝑝− 1)(𝑟 − 1)2
𝑃−1𝑌 1−𝜎𝑟 [−𝜀]𝑃 2𝑝𝑖𝑡

+ (−1)𝛼−1 1

𝑟 − 1
𝑃−1𝑌 1−𝜎𝑟𝑃 2𝐸𝑗𝑡𝑝𝑡

+ (−1)
1

𝑟 − 1
𝑌 −𝜎𝑟 [𝜀+ 𝜎]𝑃𝑌 𝐸𝑗𝑡𝑦𝑡

+

(︂
1 + 𝜀

𝑟 − 1

)︂
𝑟𝑌 1−𝜎 1

𝜙𝑡
𝑃𝜙𝑡𝐸𝑗𝑡𝜑𝑖𝑡

= +

(︂
1

𝑟 − 1

)︂2

[𝑟 − 1 − 𝜀] 𝑝𝑗𝑡

+
𝑟 − 𝑝

(𝑝− 1)(𝑟 − 1)2
[−𝜀] 𝑝𝑖𝑡

+ (−1)𝛼−1 1

𝑟 − 1
𝐸𝑗𝑡𝑝𝑡

+ (−1)
1

𝑟 − 1
[𝜀+ 𝜎]𝐸𝑗𝑡𝑦𝑡

+

(︂
1 + 𝜀

𝑟 − 1

)︂
𝐸𝑗𝑡𝜑𝑖𝑡
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Notice that 𝑃𝑖𝑡 = 𝑃𝑗𝑡 since all firms within an industry face the same problem, and also that:

(𝑝− 1)(𝑟 − 1 − 𝜀) + (𝑟 − 𝑝)(−𝜀) = 𝑝𝑟 − 𝑝− 𝑝𝜀− 𝑟 + 1 + 𝜀− 𝑟𝜀+ 𝑝𝜀

= 𝑟(𝑝− 1 − 𝜀) − (𝑝− 1 − 𝜀)

= (𝑟 − 1)(𝑝− 1 − 𝜀)

and 𝑝−1−𝜀
𝑝−1

= 1−𝑝+𝜀
1−𝑝 ≡ 𝛼−1. Then we have

0 =
1

(𝑝− 1)(𝑟 − 1)2
[(𝑝− 1)(𝑟 − 1 − 𝜀) + (𝑟 − 𝑝)(−𝜀)] 𝑝𝑗𝑡

+ (−1)𝛼−1 1

𝑟 − 1
𝐸𝑗𝑡𝑝𝑡

+ (−1)
1

𝑟 − 1
[𝜀+ 𝜎]𝐸𝑗𝑡𝑦𝑡

+

(︂
1 + 𝜀

𝑟 − 1

)︂
𝐸𝑗𝑡𝜑𝑖𝑡

=𝛼−1𝑝𝑗𝑡

+ (−1)𝛼−1𝐸𝑗𝑡𝑝𝑡

+ (−1)(𝜀+ 𝜎)𝐸𝑗𝑡𝑦𝑡

+ (1 + 𝜀)𝐸𝑗𝑡𝜑𝑖𝑡

and finally this reduces to the firms’ imperfect-information pricing rule

𝑝*𝑗𝑡 = −𝛾𝐸𝑗𝑡𝜑𝑖𝑡 + 𝜁𝐸𝑗𝑡𝑦𝑡 + 𝐸𝑗𝑡𝑝𝑡

= −𝛾𝐸𝑗𝑡𝜑𝑖𝑡 + 𝜁𝐸𝑗𝑡𝑞𝑡 + (1 − 𝜁)𝐸𝑗𝑡𝑝𝑡

= 𝐸𝑗𝑡𝑝
◇
𝑗𝑡
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8.8 C-4: Log-quadatic approximation to profit loss due to imperfect

information

We cconsider the loss in profit from a firm setting a non-profit-maximizing price 𝑝*𝑗𝑡 = 𝐸𝑗𝑡𝑝
◇
𝑗𝑡. The

log-quadratic approximation to the profit function is

Π̃(𝑝𝑗𝑡, 𝑝𝑖𝑡, 𝑝𝑡, 𝑦𝑡, 𝜑𝑖𝑡) =Π1𝑃𝑝𝑗𝑡 +
Π11

2!
𝑃 2𝑝2𝑗𝑡 + Π12𝑃

2𝑝𝑗𝑡𝑝𝑖𝑡 + Π13𝑃
2𝑝𝑗𝑡𝐸𝑗𝑡𝑝𝑡 + Π14𝑃𝑌 𝑝𝑗𝑡𝐸𝑗𝑡𝑦𝑡 + Π15𝑃𝜙𝑡𝑝𝑗𝑡𝐸𝑗𝑡𝜑𝑖𝑡

+ other terms

and recall that the “other terms” do not depend on the firm’s price decision. The loss in profits is

then

Π̃(𝑝◇𝑗𝑡, ·) − Π̃(𝑝*𝑗𝑡, ·) =Π1𝑃 (𝑝◇𝑗𝑡 − 𝑝*𝑗𝑡)

+

(︂
Π11

2

)︂
𝑃 2
(︁
𝑝◇

2

𝑗𝑡 − 𝑝*
2

𝑗𝑡

)︁
+ (Π12𝑃

2𝑝𝑖𝑡 + Π13𝑃
2𝑝𝑡 + Π14𝑃𝑌 𝑌𝑡 + Π15𝑃𝜙𝑡𝜑𝑖𝑡)(𝑝

◇
𝑗𝑡 − 𝑝*𝑗𝑡)

Note first that Π1 = 0, and second, from the first-order condition above in the perfect-information

case, that Π12𝑃
2𝑝𝑖𝑡 + Π13𝑃

2𝑝𝑡 + Π14𝑃𝑌 𝑌𝑡 + Π15𝑃𝜙𝑡𝜑𝑡 = −Π11𝑃
2𝑝◇𝑗𝑡. Then we can rewrite the

loss in profits as

Π̃(𝑝◇𝑗𝑡, ·) − Π̃(𝑝*𝑗𝑡, ·) = 𝑃 2

(︂
Π11

2

)︂(︁
𝑝◇

2

𝑗𝑡 − 𝑝*
2

𝑗𝑡

)︁
− 𝑃 2Π11𝑝

◇
𝑗𝑡(𝑝

◇
𝑗𝑡 − 𝑝*𝑗𝑡)

= −𝑃 2

(︂
Π11

2

)︂(︁
𝑝◇

2

𝑗𝑡 + 𝑝*
2

𝑗𝑡

)︁
+ 𝑃 2Π11𝑝

◇
𝑗𝑡𝑝

*
𝑗𝑡

=

(︂
−Π11

2
𝑃 2

)︂(︀
𝑝◇𝑗𝑡 − 𝑝*𝑗𝑡

)︀2
Finally recall, from above, that Π11 < 0 so that the above is positive overall, indicating setting 𝑝*𝑗𝑡

yields less profits than setting 𝑝◇𝑗𝑡. The expected loss in profits due to imperfect information can be
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written

𝐸𝑗𝑡

[︁
Π̃(𝑝◇𝑗𝑡, ·) − Π̃(𝑝*𝑗𝑡, ·)

]︁
= −Π̂11

(︀
𝑝◇𝑗𝑡 − 𝑝*𝑗𝑡

)︀2
where Π̂11 =

(︀
Π11

2
𝑃 2
)︀
< 0.

Appendix D: Information Theory

This appendix collects information theoretic results.

8.9 D1: Mutual Information of Random Vectors

In the case that the variables are independent so that is no reduction in uncertainty, then 𝐼(𝑋;𝑆) =

𝐻(𝑋) − 𝐻(𝑋) = 0. Supposing that X and S are finite 𝑛-dimensional independent vectors such

that 𝑋𝑖 and 𝑆𝑗 are independent if 𝑖 ̸= 𝑗, then

𝐼(X;S) = 𝐻(𝑋1, · · · , 𝑋𝑛) −𝐻(𝑋1, · · · , 𝑋𝑛|𝑆1, · · · , 𝑆𝑛)

=
𝑛∑︁
𝑖=1

𝐻(𝑋𝑖) +
𝑛∑︁
𝑖=1

𝐻(𝑋𝑖) −𝐻(𝑋1, · · · , 𝑋𝑛, 𝑆1, · · · , 𝑆𝑛)

=
𝑛∑︁
𝑖=1

𝐻(𝑋𝑖) +
𝑛∑︁
𝑖=1

𝐻(𝑋𝑖) −
𝑛∑︁
𝑖=1

𝐻(𝑋𝑖, 𝑆𝑖)

=
𝑛∑︁
𝑖=1

𝐼(𝑋𝑖;𝑆𝑖)

where the third equality follows from an iterative application of the chain rule.
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8.10 D2: Gaussian Mutual Information

Suppose, as we do above, that we have two mutually Gaussian random variables, 𝜔 and 𝑠𝜔 such

that

𝑠(𝜔) = 𝜔 + 𝜓

where 𝜓 is Gaussian white noise. A well-known result (see for example Cover and Thomas, 2006)

for Gaussian random processes is that mutual information can be simply expressed.

ℐ(𝜔, 𝑠(𝜔)) =
1

2
log2

(︂
1

1 − 𝜌2
𝜔𝑠(𝜔)

)︂

where 𝜌2
𝜔𝑠(𝜔)

is the correlation coefficent between the two processes. Now, notice that the correla-

tion coefficient can be rewritten in terms of the processes variances

𝜌2𝜔𝑠(𝜔) =

[︂
𝐶𝑜𝑣(𝜔, 𝑠(𝜔))

𝜎𝜔𝜎𝑠(𝜔)

]︂2
=

[︂
𝜎2
𝜔

𝜎𝜔𝜎𝑠(𝜔)

]︂2
=

𝜎2
𝜔

𝜎2
𝑠(𝜔)

=
𝜎2
𝜔

𝜎2
𝜔 + 𝜎2

𝜓

and 1−𝜌2
𝜔𝑠(𝜔)

=
𝜎𝜓

𝜎2
𝜔+𝜎

2
𝜓

. Then the mutual information can be rewritten also in terms of the processes

variances

ℐ(𝜔, 𝑠(𝜔)) =
1

2
log2

(︃
𝜎2
𝜔 + 𝜎2

𝜓

𝜎2
𝜓

)︃

=
1

2
log2

(︃
𝜎2
𝜔

𝜎2
𝜓

+ 1

)︃

8.11 D3: Expressions for Mutual Information

Define the mutual information as 𝜅(𝜔)𝑗 ≡ ℐ(𝜔, 𝑠
(𝜔)
𝑗 ). Assume the processes are defined as above.
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1. Using this, we can find an expression for the ratio of the variances in terms as a function of

a level of mutual information:

22𝜅
(𝜔)
𝑗 − 1 =

𝜎2
𝜔

𝜎2
𝜓

2. Immediately we also have an expression for the variance of the signal in terms of a level of

mutual information and the variance of the fundamental

𝜎2
𝜓 =

(︁
22𝜅

(𝜔)
𝑗 − 1

)︁−1

𝜎2
𝜔

3. The ratio of the variance of the fundamental to the variance of the signal, a key term in

typical signal extraction results, can be derived from (2)

22𝜅
(𝜔)
𝑗 𝜎2

𝜓 = 𝜎2
𝜔 + 𝜎2

𝜓

2−2𝜅
(𝜔)
𝑗 =

𝜎2
𝜓

𝜎2
𝜔 + 𝜎2

𝜓

1 − 2−2𝜅
(𝜔)
𝑗 =

𝜎2
𝜔

𝜎2
𝜔 + 𝜎2

𝜓

4. Finally, from (1) - (3) follows a result that will useful in expanding the expected loss of

profits from setting a price with imperfect information
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(︁
1 − 2−2𝜅

(𝜔)
𝑗

)︁2
=

(︃
22𝜅

(𝜔)
𝑗 − 1

22𝜅
(𝜔)
𝑗

)︃2

(︁
1 − 2−2𝜅

(𝜔)
𝑗

)︁2
𝜎2
𝜓 =

(︃
22𝜅

(𝜔)
𝑗 − 1

22𝜅
(𝜔)
𝑗

)︃2 (︁
22𝜅

(𝜔)
𝑗 − 1

)︁−1

𝜎2
𝜔

(︁
1 − 2−2𝜅

(𝜔)
𝑗

)︁2
𝜎2
𝜓 =

(︃
22𝜅

(𝜔)
𝑗 − 1

24𝜅
(𝜔)
𝑗

)︃
𝜎2
𝜔

Appendix E: Equilibrium

8.12 E-1: Perfect Information

In the perfect information case, firms set prices according to (see B-2: Optimal Price Setting):

𝑝◇𝑗𝑡 = 𝛼 log
1

𝑟
− 𝛾𝜑𝑖𝑡 + 𝜁𝑞𝑡 + (1 − 𝜁)𝑝𝑡

Applying symmetry across firms within each industry, integrating across all firms, and using the

log-linear approximation to the aggregate price index around the point where all prices are the

same (see C-1: Log-linear approximation to the aggregate price index) yields

∫︁
𝐽

𝑝𝑗𝑡𝑑𝑗 =

∫︁
𝐽

𝛼 log
1

𝑟
𝑑𝑗 −

∫︁
𝐽

𝛾𝜑𝑖𝑡𝑑𝑗 +

∫︁
𝐽

𝜁𝑦𝑡𝑑𝑗 +

∫︁
𝐽

𝑝𝑡𝑑𝑗

𝐼∑︁
𝑙=1

𝜇𝑙𝑝𝑙𝑡 = 𝛼 log
1

𝑟
− 𝛾

𝐼∑︁
𝑙=1

𝜇𝑙𝜑𝑙𝑡 + 𝜁𝑦𝑡 + 𝑝𝑡

𝑝𝑡 = 𝛼 log
1

𝑟
− 𝛾

𝐼∑︁
𝑙=1

𝜇𝑙𝜑𝑙𝑡 + 𝜁𝑦𝑡 + 𝑝𝑡
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The perfect information equilibrium level of (real) output is then

𝑦◇𝑡 = −𝛼
𝜁

log
1

𝑟
+
𝛾

𝜁

𝐼∑︁
𝑙=1

𝜇𝑙𝜑𝑙𝑡

If nominal output is assumed to be an exogenous process 𝑄𝑡 = 𝑃𝑡𝑌𝑡 then the perfect information

equilibrium aggregate price level is

𝑝◇𝑡 = 𝑞𝑡 − 𝑦𝑛𝑡

= 𝑞𝑡 +
𝛼

𝜁
log

1

𝑟
− 𝛾

𝜁

𝐼∑︁
𝑙=1

𝜇𝑙𝜑𝑙𝑡

In deviation from steady-state form, these are written

𝑦◇𝑡 =
𝛾

𝜁

𝐼∑︁
𝑙=1

𝜇𝑙𝜑𝑙𝑡

𝑝◇𝑡 = 𝑞𝑡 −
𝛾

𝜁

𝐼∑︁
𝑙=1

𝜇𝑙𝜑𝑙𝑡

And plugging this into the firms’ pricing decision yields

𝑝◇𝑗𝑡 = −𝛾𝜑𝑖𝑡 + 𝜁𝑞𝑡 + (1 − 𝜁)𝑝◇𝑡
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Non-stochastic equilibrium

In the non-stochastic case where shocks are set to their means, we have

𝑦𝑛𝑡 = −𝛼
𝜁

log
1

𝑟
+
𝛾

𝜁

𝐼∑︁
𝑙=1

𝜇𝑙𝜑𝑙𝑡

𝑝𝑛𝑡 = 𝑞𝑡 +
𝛼

𝜁
log

1

𝑟
− 𝛾

𝜁

𝐼∑︁
𝑙=1

𝜇𝑙𝜑𝑙𝑡

Plug in the aggregate price level to the firm’s pricing rule

𝑝𝑛𝑗𝑡 = 𝛼 log
1

𝑟
− 𝛾𝜑𝑖𝑡 + 𝜁𝑞𝑡 + (1 − 𝜁)

[︃
𝑞𝑡 +

𝛼

𝜁
log

1

𝑟
− 𝛾

𝜁

𝐼∑︁
𝑙=1

𝜇𝑙𝜑𝑙𝑡

]︃

=

(︂
1 +

1 − 𝜁

𝜁

)︂
𝛼 log

1

𝑟
− 𝛾𝜑𝑖𝑡 + (𝜁 + 1 − 𝜁)𝑞𝑡 + (1 − 𝜁)

𝛾

𝜁

𝐼∑︁
𝑙=1

𝜇𝑙𝜑𝑙𝑡

= 𝑞𝑡 +
𝛼

𝜁
log

1

𝑟
− (1 − 𝜁)

𝛾

𝜁

𝐼∑︁
𝑙=1

𝜇𝑙𝜑𝑙𝑡 − 𝛾𝜑𝑖𝑡

which yields the non-stochastic equilibrium price rule

𝑝𝑛𝑗𝑡 = 𝑝𝑛𝑡 + 𝛾

[︃
𝐼∑︁
𝑙=1

𝜇𝑙𝜑𝑙𝑡 − 𝜑𝑖𝑡

]︃

To confirm that this is an equilibrium, integrate this pricing rule over all firms and use the log-linear

approximation to the aggregate price index.

Notice that if all shocks are eliminated so that 𝜑𝑖𝑡 = 0 for 𝑖 = 1, . . . , 𝐼 or if the shock is purely

aggregate so that 𝜑𝑖𝑡 = 𝜑𝑖′𝑡 for 𝑖, 𝑖′ = 1, . . . , 𝐼 then the perfect information equilibrium corresponds

to point where all prices are the same and are equal to the aggregate price index (this last point is

by construction, see A-2: Budget Contraints).
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8.13 E-2: Rational Inattention under Gaussian White Noise

Here we follow a guess and verify approach. Given the form of the perfect information equilibrium,

we guess that the equilibrium aggregate price level is given by

𝑝*𝑡 = 𝑎𝑞𝑡 −
𝛾

𝜁

𝐼∑︁
𝑙=1

𝑏𝑙𝜇𝑙𝜑𝑙𝑡

where 𝑎 and {𝑏𝑙}𝐼𝑙=1 are coefficients governing the extent of adjustment of the price level due to

shocks.

E-2.1: Imperfect Information Pricing Rule

With this guess, firms’ imperfect-information optimal price rule is

𝑝*𝑗𝑡 = 𝐸𝑗𝑡𝑝
◇
𝑗𝑡

= −𝛾𝐸𝑗𝑡𝜑𝑖𝑡 + 𝜁𝐸𝑗𝑡𝑞𝑡 + (1 − 𝜁)𝐸𝑗𝑡𝑝𝑡

= −𝛾𝐸𝑗𝑡𝜑𝑖𝑡 + 𝜁𝐸𝑗𝑡𝑞𝑡 + (1 − 𝜁)

[︃
𝑎𝐸𝑗𝑡𝑞𝑡 −

𝛾

𝜁

𝐼∑︁
𝑙=1

𝑏𝑙𝜇𝑙𝐸𝑗𝑡𝜑𝑙𝑡

]︃

= [(1 − 𝜁)𝑎+ 𝜁]𝐸𝑗𝑡𝑞𝑡 − (1 − 𝜁)
𝛾

𝜁

𝐼∑︁
𝑙=1

𝑏𝑙𝜇𝑙𝜑𝑙𝑡 − 𝛾𝐸𝑗𝑡𝜑𝑖𝑡

To ease notation in the following optimization problem in which the constant term simply be

carried around, define �̄� ≡ [(1 − 𝜁)𝑎+ 𝜁] and �̄�𝑙 ≡ (1 − 𝜁)𝛾
𝜁
𝑏𝑙; they will be unpacked again at the

end to aid interpretation. Then the optimal price rule is

𝑝*𝑗𝑡 = �̄�𝐸𝑗𝑡𝑞𝑡 −
𝐼∑︁
𝑙=1

�̄�𝑙𝜇𝑙𝜑𝑙𝑡 − 𝛾𝐸𝑗𝑡𝜑𝑖𝑡
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E-2.2: Price-Setting Mean Squared Error

Given the signals the firm receives, we can solve the expectations using typical signal extraction

results

𝑝*𝑗𝑡 = �̄�

⎛⎝ 𝜎2
𝑞

𝜎2
𝑞 + 𝜎2

𝜓
(𝑞)
𝑗

⎞⎠ 𝑠𝑞𝑗𝑡 −
∑︁
𝑙 ̸=𝑖

�̄�𝑙𝜇𝑙

⎛⎝ 𝜎2
𝑙

𝜎2
𝑙 + 𝜎2

𝜓
(𝑙)
𝑗

⎞⎠ 𝑠
(𝑙)
𝑗𝑡 − (�̄�𝑖𝜇𝑖 + 𝛾)

⎛⎝ 𝜎2
𝑖

𝜎2
𝑖 + 𝜎2

𝜓
(𝑖)
𝑗

⎞⎠ 𝑠
(𝑖)
𝑗𝑡

Using results from D3: Expressions for Mutual Information, we can rewrite this in terms of mutual

information as

𝑝*𝑗𝑡 =�̄�
(︁

1 − 2−2𝜅
(𝑞)
𝑗

)︁(︁
𝑞𝑡 − 𝜓

(𝑞)
𝑗𝑡

)︁
−
∑︁
𝑙 ̸=𝑖

�̄�𝑙𝜇𝑙

(︁
1 − 2−2𝜅

(𝑙)
𝑗

)︁(︁
𝜑𝑙𝑡 − 𝜓

(𝑙)
𝑗𝑡

)︁
− (�̄�𝑖𝜇𝑖 + 𝛾)

(︁
1 − 2−2𝜅

(𝑖)
𝑗

)︁(︁
𝜑𝑖𝑡 − 𝜓

(𝑖)
𝑗𝑡

)︁

The expected loss in profits from setting an imperfect-information price is

𝐸𝑗𝑡

[︁
Π̃𝑗𝑡

(︀
𝑝◇𝑗𝑡, ·

)︀
− Π̃𝑗𝑡

(︀
𝑝*𝑗𝑡, ·

)︀]︁
=

(︃
Π̂11

2

)︃
𝐸𝑗𝑡

[︁(︀
𝑝◇𝑗𝑡 − 𝑝*𝑗𝑡

)︀2]︁
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which is a constant times the mean squared error of the imperfect-information price. The differ-

ence between the perfect- and imperfect-information prices is

𝑝◇𝑗𝑡 − 𝑝*𝑗𝑡 =�̄�
[︁
𝑞𝑡 −

(︁
1 − 2−2𝜅

(𝑞)
𝑗

)︁(︁
𝑞𝑡 + 𝜓

(𝑞)
𝑗𝑡

)︁]︁
−
∑︁
𝑙 ̸=𝑖

�̄�𝑙𝜇𝑙

[︁
𝜑𝑙𝑡 −

(︁
1 − 2−2𝜅

(𝑙)
𝑗

)︁(︁
𝜑𝑙𝑡 + 𝜓

(𝑙)
𝑗𝑡

)︁]︁
− (�̄�𝑖𝜇𝑖 + 𝛾)

[︁
𝜑𝑖𝑡 −

(︁
1 − 2−2𝜅

(𝑖)
𝑗

)︁(︁
𝜑𝑖𝑡 + 𝜓

(𝑖)
𝑗𝑡

)︁]︁
=�̄�
[︁
2−2𝜅

(𝑞)
𝑗 𝑞𝑡 −

(︁
1 − 2−2𝜅

(𝑞)
𝑗

)︁
𝜓

(𝑞)
𝑗𝑡

]︁
−
∑︁
𝑙 ̸=𝑖

�̄�𝑙𝜇𝑙

[︁
2−2𝜅

(𝑙)
𝑗 𝜑𝑙𝑡 −

(︁
1 − 2−2𝜅

(𝑙)
𝑗

)︁
𝜓

(𝑙)
𝑗𝑡

]︁
− (�̄�𝑖𝜇𝑖 + 𝛾)

[︁
2−2𝜅

(𝑖)
𝑗 𝜑𝑖𝑡 −

(︁
1 − 2−2𝜅

(𝑖)
𝑗

)︁
𝜓

(𝑖)
𝑗𝑡

]︁

then noting that independence implies that all cross terms have expected value zero, the mean

squared error can be expressed

𝐸𝑗𝑡

[︁(︀
𝑝◇𝑗𝑡 − 𝑝*𝑗𝑡

)︀2]︁
=�̄�2

[︂
2−4𝜅

(𝑞)
𝑗 𝜎2

𝑞 +
(︁

1 − 2−2𝜅
(𝑞)
𝑗

)︁2
𝜎2

𝜓
(𝑞)
𝑗

]︂
+

𝐼∑︁
𝑙=1

�̄�2𝑙 𝜇
2
𝑙

[︂
2−4𝜅

(𝑙)
𝑗 𝜎2

𝜑𝑙
+
(︁

1 − 2−2𝜅
(𝑙)
𝑗

)︁2
𝜎2

𝜓
(𝑙)
𝑗

]︂
+ (�̄�𝑖𝜇𝑖 + 𝛾)2

[︂
2−4𝜅

(𝑖)
𝑗 𝜎2

𝜑𝑖
+
(︁

1 − 2−2𝜅
(𝑖)
𝑗

)︁2
𝜎2

𝜓
(𝑖)
𝑗

]︂

then using result (4) from D3: Expressions for Mutual Information, it can be finally written

𝐸𝑗𝑡

[︁(︀
𝑝◇𝑗𝑡 − 𝑝*𝑗𝑡

)︀2]︁
= �̄�22−2𝜅

(𝑞)
𝑗 𝜎2

𝑞 +
𝐼∑︁
𝑙=1

�̄�2𝑙 𝜇
2
𝑙 2

−2𝜅
(𝑙)
𝑗 𝜎2

𝜑𝑙
+ (�̄�𝑖𝜇𝑖 + 𝛾)22−2𝜅

(𝑖)
𝑗 𝜎2

𝜑𝑖
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E-2.3: The Attention Problem

The firm’s attention problem can now be fully specified

min
{𝜅(𝜔)𝑗 }𝜔∈Ω

∑︁
𝜔∈Ω

(︁
�̄�
(𝜔)
𝑗

)︁2
2−2𝜅

(𝜔)
𝑗 ; �̄�

(𝜔)
𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
�̄�𝜎𝑞 𝜔 = 𝑞

�̄�𝑙𝜇𝑙𝜎𝜑𝑙 𝜔 = 𝑙 ̸= 𝑖

(�̄�𝑖𝜇𝑖 + 𝛾)𝜎𝜑𝑖 𝜔 = 𝑖

such that
∑︀

𝜔∈Ω 𝜅
(𝜔)
𝑗 ≤ 𝜅 and 𝜅(𝜔)𝑗 ≥ 0. This is a constrained optimization problem and can be

represented as a Lagrangian (where the constraint is assumed to be binding, since in any optimum

firms will use all available attention)

ℒ =
∑︁
𝜔∈Ω

(︁
�̄�
(𝜔)
𝑗

)︁2
2−2𝜅

(𝜔)
𝑗 − 𝜆

[︃∑︁
𝜔∈Ω

𝜅
(𝜔)
𝑗 − 𝜅

]︃

Assuming an interior solution, the |Ω| first-order conditions for an optimum are

𝜕ℒ
𝜕𝜅

(𝜔)
𝑗

= 0 =
(︁
�̄�
(𝜔)
𝑗

)︁2
2−2𝜅

(𝜔)
𝑗 (−2 ln 2) − 𝜆

22𝜅
(𝜔)
𝑗 =

(︁
�̄�
(𝜔)
𝑗

)︁2
(−2 ln 2)

𝜆

𝜅
(𝜔)
𝑗 =

1

2
log2

(︂
−2 ln 2

𝜆

)︂
+

1

2
log2

[︂(︁
�̄�
(𝜔)
𝑗

)︁2]︂

Define �̂�(𝜔)𝑘 = 1
2

log2

[︂(︁
�̄�
(𝜔)
𝑗

)︁2]︂
to ease notation and use the first condition to substitute out the

Lagrange multiplier

1

2
log2

(︂
−2 ln 2

𝜆

)︂
= 𝜅

(𝜔1)
𝑗 − �̂�

(𝜔1)
𝑗
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Then use this in the remaining |Ω| − 1 conditions to get:

𝜅
(𝜔𝑘)
𝑗 = 𝜅

(𝜔1)
𝑗 − �̂�

(𝜔1)
𝑗 + �̂�

(𝜔𝑘)
𝑗

−𝜅(𝜔1)
𝑗 + 𝜅

(𝜔𝑘)
𝑗 = −�̂�(𝜔1)

𝑗 + �̂�
(𝜔𝑘)
𝑗 𝑘 = 2, . . . , |Ω|

Including the constraint
∑︀

𝜔∈Ω 𝜅
(𝜔)
𝑗 = 𝜅 there are |Ω| equations and |Ω| unknowns. This can be

written in the following linear system:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 · · · 0

−1 0 1 · · · 0

... . . . . . . ...

−1 · · · 0 1 0

−1 · · · 0 1

1 1 · · · 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜅
(𝜔1)
𝑗

𝜅
(𝜔2)
𝑗

...

𝜅
(𝜔|Ω|−1)

𝑗

𝜅
(𝜔|Ω|)

𝑗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−�̂�(𝜔1)
𝑗 + �̂�

(𝜔2)
𝑗

−�̂�(𝜔1)
𝑗 + �̂�

(𝜔3)
𝑗

...

−�̂�(𝜔1)
𝑗 + �̂�

(𝜔|Ω|)

𝑗

𝜅

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This can be solved using the following steps:

1. Multiply row 1 by −1

2. For rows 2 through |Ω|, iteratively add the previous row and multiply by −1

3. For rows 𝑙 = 1, . . . , |Ω| − 1, substract 𝑙 times the 𝑙th for from row |Ω|.

4. Divide row |Ω| by |Ω|

5. For rows 𝑙 = |Ω| − 1, . . . , 1, add the 𝑙 + 1th row

6. Simplify

This process yields optimal interior allocations that can be expressed as

𝜅
(𝜔)
𝑗

*
= |Ω|−1

[︃
𝜅−

∑︁
𝜔′ ̸=𝜔

�̂�
(𝜔′)
𝑗 + (|Ω| − 1)�̂�

(𝜔)
𝑗

]︃
𝜔 ∈ Ω
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We can abuse notation to take into account the corner conditions

𝜅
(𝜔)
𝑗

*
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝜅 𝜅

(𝜔)
𝑗

*
> 𝜅

𝜅
(𝜔)
𝑗

*
𝜅
(𝜔)
𝑗

*
∈ [0, 𝜅]

0 𝜅
(𝜔)
𝑗

*
< 0

The allocations can be rewritten

𝜅
(𝜔)
𝑗

*
= |Ω|−1

[︃
𝜅−

∑︁
𝜔′∈Ω

�̂�
(𝜔′)
𝑗 + |Ω|�̂�(𝜔)𝑗

]︃

= |Ω|−1

[︃
1

2
log2

(︀
22𝜅
)︀
−
∑︁
𝜔′∈Ω

1

2
log2

[︂(︁
�̄�
(𝜔′)
𝑗

)︁2]︂
+ |Ω|1

2
log2

[︂(︁
𝜅
(𝜔)
𝑗

)︁2]︂]︃

defining �̄� = 𝜅
|Ω| and �̄�𝑗 =

[︁∏︀
𝜔′∈Ω �̄�

(𝜔′)
𝑗

]︁ 1
|Ω|

, we have the final expression for the optimal allocation

of attention

𝜅
(𝜔)
𝑗

*
= log2 2�̄� + log2 �̄�

(𝜔)
𝑗 − log2 �̄�𝑗 𝜔 ∈ Ω

Note that it is straightforward that

1 − 2−2𝜅
(𝜔)
𝑗

*

= 1 −
(︀
2−2�̄�

)︀ (︁
�̄�
(𝜔)
𝑗

)︁−2

�̄�2𝑗
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E-2.4: Verifying the Guess

Returning to the optimal imperfect-information pricing rule

𝑝*𝑗𝑡 =�̄�
(︁

1 − 2−2𝜅
(𝑞)
𝑗

*)︁(︁
𝑞𝑡 − 𝜓

(𝑞)
𝑗𝑡

)︁
−
∑︁
𝑙 ̸=𝑖

�̄�𝑙𝜇𝑙

(︁
1 − 2−2𝜅

(𝑙)
𝑗

*)︁(︁
𝜑𝑙𝑡 − 𝜓

(𝑙)
𝑗𝑡

)︁
− (�̄�𝑖𝜇𝑖 + 𝛾)

(︁
1 − 2−2𝜅

(𝑖)
𝑗

*)︁(︁
𝜑𝑖𝑡 − 𝜓

(𝑖)
𝑗𝑡

)︁

Integrating over all firms, applying symmetry to within-industry firms’ optimal attention alloca-

tions, and applying the log-linear approximation to the aggregate price yields

𝑝*𝑡 =

∫︁
𝐽

�̄�
(︁

1 − 2−2𝜅
(𝑞)
𝑖

*)︁
𝑞𝑡𝑑𝑗

−
∫︁
𝐽

[︃∑︁
𝑙 ̸=𝑖

�̄�𝑙𝜇𝑙

(︁
1 − 2−2𝜅

(𝑙)
𝑖

*)︁
𝜑𝑙𝑡

]︃
𝑑𝑗

−
∫︁
𝐽

(�̄�𝑖𝜇𝑖 + 𝛾)
(︁

1 − 2−2𝜅
(𝑖)
𝑖

*)︁
𝜑𝑖𝑡𝑑𝑗

notice that the noise variables are mean zero and firm-specific so that the integral with respect to a

continuum of firms is equal to zero. Uhlig (1996)
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Then we have

𝑝*𝑡 =

[︃
𝐼∑︁
𝑖=1

𝜇𝑖�̄�
(︁

1 − 2−2𝜅
(𝑞)
𝑖

*)︁]︃
𝑞𝑡 −

𝐼∑︁
𝑖=1

𝜇𝑖

[︃∑︁
𝑙 ̸=𝑖

�̄�𝑙𝜇𝑙

(︁
1 − 2−2𝜅

(𝑙)
𝑖

*)︁
𝜑𝑙𝑡

]︃

−
𝐼∑︁
𝑖=1

𝜇𝑖(�̄�𝑖𝜇𝑖 + 𝛾)
(︁

1 − 2−2𝜅
(𝑖)
𝑖

*)︁
𝜑𝑖𝑡

=

[︃
𝐼∑︁
𝑖=1

𝜇𝑖�̄�
(︁

1 − 2−2𝜅
(𝑞)
𝑖

*)︁]︃
𝑞𝑡 −

𝛾

𝜁

𝐼∑︁
𝑖=1

𝜇𝑖

[︃
𝐼∑︁
𝑙=1

(1 − 𝜁)𝑏𝑙𝜇𝑙

(︁
1 − 2−2𝜅

(𝑙)
𝑖

*)︁
𝜑𝑙𝑡

]︃

− 𝛾

𝜁

𝐼∑︁
𝑖=1

𝜁𝜇𝑖

(︁
1 − 2−2𝜅

(𝑖)
𝑖

*)︁
𝜑𝑖𝑡

=

[︃
𝐼∑︁
𝑖=1

𝜇𝑖 [(1 − 𝜁)𝑎+ 𝜁]
(︁

1 − 2−2𝜅
(𝑞)
𝑖

*)︁]︃
𝑞𝑡 −

𝛾

𝜁

𝐼∑︁
𝑙=1

[︃
(1 − 𝜁)𝑏𝑙

𝐼∑︁
𝑖=1

𝜇𝑖

(︁
1 − 2−2𝜅

(𝑙)
𝑖

*)︁]︃
𝜇𝑙𝜑𝑙𝑡

− 𝛾

𝜁

𝐼∑︁
𝑙=1

𝜁
(︁

1 − 2−2𝜅
(𝑙)
𝑙

*)︁
𝜇𝑙𝜑𝑙𝑡

=

[︃
𝐼∑︁
𝑖=1

𝜇𝑖 [(1 − 𝜁)𝑎+ 𝜁]
(︁

1 − 2−2𝜅
(𝑞)
𝑖

*)︁]︃
𝑞𝑡 −

𝛾

𝜁

𝐼∑︁
𝑙=1

[︃
𝐼∑︁
𝑖=1

𝑤𝑙𝑖

(︁
1 − 2−2𝜅

(𝑙)
𝑖

*)︁]︃
𝜇𝑙𝜑𝑙𝑡

where 𝑤𝑖𝑙 = (1 − 𝜁)𝑏𝑙𝜇𝑖 + 𝜁1(𝑙 = 𝑖) and 1(𝑙 = 𝑖) is the indicator function that takes the value 1 if

𝑙 = 𝑖 and is 0 otherwise. This verifies the guess with

𝑎 =

[︃
𝐼∑︁
𝑖=1

𝜇𝑖 [(1 − 𝜁)𝑎+ 𝜁]
(︁

1 − 2−2𝜅
(𝑞)
𝑖

*)︁]︃

𝑏𝑙 =

[︃
𝐼∑︁
𝑖=1

[(1 − 𝜁)𝑏𝑙𝜇𝑖 + 𝜁1(𝑙 = 𝑖)]
(︁

1 − 2−2𝜅
(𝑙)
𝑖

*)︁]︃

these can be rewritten to emphasize the effect of the parameter of strategic complementarities

𝑎 = (1 − 𝜁)𝑎
𝐼∑︁
𝑖=1

𝜇𝑖

(︁
1 − 2−2𝜅

(𝑞)
𝑖

*)︁
+ 𝜁

𝐼∑︁
𝑙=1

𝜇𝑙

(︁
1 − 2−2𝜅

(𝑞)
𝑙

*)︁
𝑏𝑙 = (1 − 𝜁)𝑏𝑙

𝐼∑︁
𝑖=1

𝜇𝑖

(︁
1 − 2−2𝜅

(𝑙)
𝑖

*)︁
+ 𝜁

(︁
1 − 2−2𝜅

(𝑙)
𝑙

*)︁

78



Appendix F: Notation

8.14 F-1: Parameters

Indices

• ℎ ∈ 𝐻 index for households

• 𝜇𝐻 measure for households with 𝜇𝐻(𝐻) = 1

• 𝑗 ∈ 𝐽 index for firms

• 𝜇𝐽 measure for households with 𝜇𝐽(𝐽) = 1

• 𝜇𝑖 ≡ 𝜇𝐽(𝐽𝑖) convenience notation

• 𝑖 ∈ {1, . . . , 𝐼} index for sectors

• {𝐽1, . . . , 𝐽𝐼} partition on firms induced by sectors

Households

• 𝜎: coefficient of relative risk aversion; inverse of the elasticity of intertemporal substitution

parameter

• 𝜀: inverse of Frisch elasticity of labor supply “measures the substitution effect of a change

in the wage rate on labor supply.” Comes from the derived Household optimization equation

𝑤𝑡 = 𝑐𝜎𝑡 𝑛
𝜀
𝑡 , so that 𝑛𝑡 = 𝑤

1
𝜀
𝑡 𝑐

𝜎
𝜀
𝑡 .

• 𝑟 ∈ [0, 1): within-industry generalized mean exponent

• 𝑝 ∈ [0, 1): between-industry generalized mean exponent

• 𝜂 = 1
1−𝑟 ∈ [1,∞): within-industry elasticity of substitution; measure of market power
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• 𝜌 = 1
1−𝑝 ∈ [1,∞): between-industry elasticity of substitution; measure of trade linkages

Equilibrium

• 𝛼 = 1
1+𝜌𝜀

parameterizes strategic complementarities specifically arising from heterogeneous

information, see Angeletos and La’O (2010).

• 𝛾 = 𝛼(1 + 𝜀)

• 𝜁 = 𝛼(𝜎+𝜀) is the typical New Keynesian parameter governing strategic complementarities

generally (see Morris and Shin, 2002, Woodford (2003) chapter 3, and Mankiw and Reis

(2010)) and also related to the degree of “real rigidities” (see Ball and Romer, 1990).

8.15 F-2: Stochastic Processes

• Ω = {{𝑞𝑡}, {𝜑1𝑡}, · · · , {𝜑𝐼𝑡}} is an ordered tuple gathering all stochastic processes and

indexed by 𝜔.

• 𝜔𝑙 is the 𝑙th item in Ω; for example 𝜔1 ≡ 𝑞.

Fundamentals

• 𝑞𝑡
𝑖𝑖𝑑∼ 𝑁(0, 𝜎2

𝑞 ): nominal aggregate demand

• 𝜑𝑖𝑡
𝑖𝑖𝑑∼ 𝑁(0, 𝜎2

𝜑𝑖
) idiosyncratic productivity shocks

Signals

• 𝑠(𝑞)𝑗𝑡 = 𝑞𝑡+𝜓
(𝑞)
𝑗𝑡 is the signal to firm 𝑗 related to aggregate conditions. 𝑠(𝑞)𝑗𝑡 ∼ 𝑁(𝑞𝑡, 𝜎

2
𝑞 +𝜎2

𝜓
(𝑞)
𝑗

)

• 𝑠(𝑙)𝑗𝑡 = 𝜑;𝑡 + 𝜓
(𝑙)
𝑗𝑡 is the signal to firm 𝑗 related to the productivity shock to industry 𝑙. 𝑠(𝑙)𝑗𝑡 ∼

𝑁(𝜑𝑙𝑡, 𝜎
2
𝜑𝑙

+ 𝜎2

𝜓
(𝑙)
𝑗

)
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8.16 F-3: Information

• 𝜅 represents the Shannon capacity of a channel, measured in bits. This term is also used for

the specific parameter describing total capacity available to agents.

• 𝜅(𝜔)𝑗 ≡ ℐ(𝜔, 𝑠
(𝜔)
𝑗 ) represents the information capacity allocated by firm 𝑗 to stochastic pro-

cess 𝜔

• 𝜅(𝜔)𝑗

*
represents the optimal allocated capacity by firm 𝑗

• 𝜅(𝜔)𝑖

*
represents the optimal capacity by any firm in sector 𝑖 allocated to stochastic process

𝜔; requires appealing to symmetry
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