FISCAL POLICY AND DEBT MANAGEMENT WITH INCOMPLETE MARKETS

Anmol Bhandari David Evans Mikhail Golosov Thomas Sargent Minnesota Oregon Princeton NYU

INTRODUCTION

• Government debt increased significantly in OECD countries in the aftermath of the 2008 crisis

• Economists and policymakers are concerned that these debt levels are "too high", debate what to do about it

• What is the "right" level of debt?

- Develop a theory of optimal public debt management
- Our focus:
 - what is the optimal/target debt level?
 - how quickly should gov't repay/accumulate its debt if it is above/below the target?
 - how much variability in gov't debt is optimal?
- Same questions for tax rates and tax revenues
 - follows from the budget constraint

- Ramsey planner with distortionary taxation and incomplete markets
- Key insight: optimal debt level maximizes hedging possibilities offered by incomplete markets
- Derive explicit formulas ("sufficient statistics") for
 - target debt level
 - \cdot speed of reversion to the target
 - variance of debt in ergodic distribution

• Main formulas:

target debt = $-\frac{\text{cov (returns, deficit)}}{\text{var (returns)}}$ speed of convergence = $\frac{1}{1 + \beta^2 \text{var (returns)}}$

- Calibration to the US:
 - target debt level is negative but close to zero
 - · speed of convergence slow (half life \approx 500 years)
 - large variance of debt values in the invariant distribution
 - · dynamics of debt and taxes in the data similar to the optimum

RELATED LITERATURE

- 1. Complete markets: Lucas-Stokey (1983), ...
 - any debt level is optimal
- 2. Incomplete markets: Barro (1979), ...
 - any debt level is optimal (debt is random walk)
- 3. With sufficiently many assets can replicate complete markets: Angeletos (2004), Buera-Nicolini (2004)
 - see #1
- 4. Accumulate enough assets to never use taxes: Aiyagari et al (2002), Farhi (2010)
 - a knife-edge case
- 5. Nominal debt, possibilities of default
 - \cdot have not studied, but our insights should apply there too

ENVIRONMENT

Continuum of identical agents with preferences

$$\mathbb{E}_{0}\sum_{t=0}^{\infty}\beta^{t}\left[c_{t}-\frac{1}{1+\gamma}l_{t}^{1+\gamma}\right]$$

• No capital + exogenous gov't expenditures

$$c_t + g_t = l_t$$

• Gov't can use proportional tax τ_t and trade with agents one-period lived security at price q_t with stochastic payoff p_t

$$g_t + p_t \mathbf{B}_{t-1} = \tau_t l_t + q_t \mathbf{B}_t$$

- i.i.d. shocks for (g_t, p_t) , B_t is in a compact set
- Let $B_t \equiv q_t \mathbf{B}_t$, $R_t \equiv p_t/q_{t-1}$

Lemma

 $\{c_t, l_t, R_t, B_t, \tau_t\}_{t=0}^\infty$ is a competitive equilibrium if and only if $\{l_t, B_t\}_{t=0}^\infty$ satisfies

$$\underbrace{l_t - l_t^{1+\gamma}}_{=\tau_t l_t} + B_t = R_t B_{t-1} + g_t$$

• Easier to express hours as a function of tax revenues Z

$$Z \equiv l(Z) - l(Z)^{1+\gamma}$$
$$\Psi(Z) \equiv \frac{1}{1+\gamma}l(Z)^{1+\gamma}$$

• Consumption is a residual

$$c_t = (1 + \gamma) \Psi (Z_t) + R_t B_{t-1} - B_t$$

• Bellman equation (state s = (g, p)):

$$V(B_{-}) = \max_{\{Z(s),B(s)\}} \mathbb{E} \left[RB_{-} - B + \gamma \Psi(Z) + \beta V(B)\right]$$

subject to

$$Z(s) + B(s) = \underbrace{R(s)B_{-} + g(s)}_{\equiv E(B_{-},s)} \text{ for all } s$$

• Policy functions $\tilde{B}(B_{-},s)$, $\tilde{Z}(B_{-},s)$, $\tilde{\tau}(B_{-},s)$ induce optimum $\{\tilde{B}_{t}, \tilde{Z}_{t}, \tilde{\tau}_{t}\}_{t}$

Monotonicity: $\tilde{B}, \tilde{Z}, \tilde{\tau}$ are increasing in E

Distortion smoothing:
$$V'(\tilde{B}_t) = \mathbb{E}V'(\tilde{B}_{t+1}) + \beta \operatorname{cov}(R_{t+1}, V'(\tilde{B}_{t+1}))$$

Uniqueness: \tilde{B}_t converges to a unique invariant distribution

• Our goal: characterize properties of the invariant distribution

• Amount of risk depends on debt level:

$$E(B_{-},s) = R(s)B_{-} + g(s)$$

• Let B^* be the debt level that minimizes var $(E(B, \cdot))$:

$$B^* = -\frac{\operatorname{cov}\left(R,g\right)}{\operatorname{var}\left(R\right)}$$

• Special case: possibility of perfect hedging, i.e. $R \in \mathcal{R}^*$ where

 $\mathcal{R}^* \equiv \{R : \text{there exists } B \text{ s.t. } E(B, \cdot) \text{ is constant}\}$

• Monotonicity of policy rules:

$$B < B^* \Longrightarrow \operatorname{cov} (R(\cdot), V'(\tilde{B}(B, \cdot))) > 0$$

$$B = B^* \Longrightarrow \operatorname{cov} (R(\cdot), V'(\tilde{B}(B, \cdot))) = 0$$

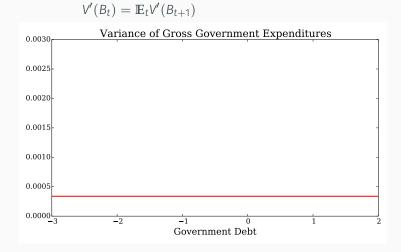
$$B > B^* \Longrightarrow \operatorname{cov} (R(\cdot), V'(\tilde{B}(B, \cdot))) < 0$$

• Unique invariant distribution (follows from MCT)

$$egin{array}{ccc} & ilde{B}_t & o & B^* \ & ext{var}\left(ilde{Z}_t
ight) & o & 0 \ & ext{var}\left(ilde{ au}_t
ight) & o & 0 \end{array}$$

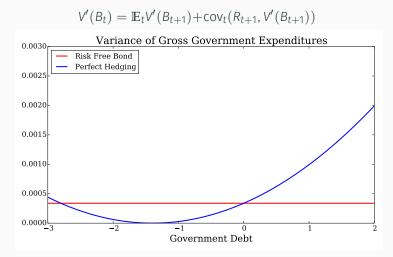
INTUITION

Risk Free Bond:



INTUITION

Perfect Hedging:



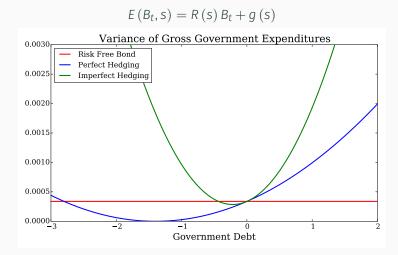
IMPERFECT HEDGING

• When $R \notin \mathcal{R}^*$ a sequence of shocks can take debt away from hedging-maximizing level

- Our approach:
 - let $\check{B}(B, \cdot)$ be quadratic approximation of $\tilde{B}(B, \cdot)$ around B
 - study invariant distribution induced by B

INTUITION

Imperfect Hedging:



• The mean of the invariant distribution

$$\mathbb{E}\check{B}_t = B^*$$

 \cdot Speed of mean reversion

$$\mathbb{E}_{0}\left(\check{B}_{t}-B^{*}\right)=\left(\frac{1}{1+\beta^{2}var\left(R\right)}\right)^{t}\left(\check{B}_{0}-B^{*}\right)$$

• Variance of the invariant distribution

$$\operatorname{var}\left(\check{B}_{t}\right) = \frac{\operatorname{var}\left(E\left(B^{*}\right)\right)}{\operatorname{var}\left(R\right)}\left(1 + \beta^{2}\operatorname{var}\left(R\right)\right)$$

• The mean of the invariant distribution

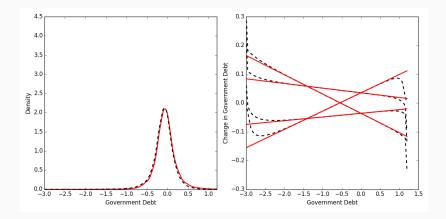
$$\mathbb{E}\check{Z}_t \equiv Z^* = \mathbb{E}g + \frac{1-\beta}{\beta}B^*$$

 \cdot Speed of mean reversion

$$\mathbb{E}_0\left(\check{Z}_t - Z^*\right) = \left(\frac{1}{1 + \beta^2 \operatorname{var}(R)}\right)^t \left(\check{Z}_{t-1} - Z^*\right)$$

• Variance of the invariant distribution

$$\operatorname{var}\left(\check{Z}_{t}\right)=\left(rac{1-eta}{eta}
ight)^{2}\operatorname{var}\left(\check{B}_{t}
ight)$$



- Target debt level: maximizes hedging
 - target level is positive if cov(R,g) < 0
 - target level is negative (accumulate assets) if cov(R,g) > 0
- Speed of mean reversion is determined by var(R)
 - var(R) = 0 implies debt is random walk as in Barro (1979)
- The less hedging B^* offers, the bigger the variance of the invariant distribution
- For β close to one, $var(\check{Z}_t)$ and $var(\check{\tau}_t)$ is close to $0 \Longrightarrow$ all adjustment to shock is done via debt

• Equivalent expressions with iid shocks/quasi-linear preferences

$$B^{*} = -\frac{cov(R,g)}{var(R)} = -\frac{cov(R_{t}, \mathbb{E}_{t}\sum_{s}^{\infty}\beta^{s}g_{t+s})}{var(R_{t})}$$
$$= -\frac{cov(R_{t}, \mathbb{E}_{t}\sum_{s}^{\infty}\beta^{s}[g-Z^{*}])}{var(R_{t})}$$

• More generally, the last formula applies

EXTENSIONS

EXTENSIONS

Persistent shocks

• Longer maturities

Arbitrary market structure

- Redistribution
- Risk aversion

EXTENSIONS

- Persistent shocks: same results
 - Hedge innovations in present value of government expediture

- Longer maturities: same results
 - Returns given by $R_t = \frac{p_t + q_t}{q_{t-1}}$, q_t is price of asset.

ARBITRARY MARKET STRUCTURE

- Suppose there are K assets with arbitrary payoffs
- If portfolio weights are fixed: problem isomorphic to 1 security case
- If portfolio weights are chosen optimally each *t*: provide expressions for both the level and portfolio weights
 - the target portfolio is still the one that minimizes risk (i.e. var(E))
- Additional insights
 - assets payoffs satisfy full spanning condition: replicate complete markets
 - otherwise: target portfolio maximizes hedging, but speed of convergence to it is slower than with 1 asset

- Simplest model of redistribution: a group of households with no income and hand-to-mouth
 - utility is U(c), U is strictly concave, satisfies Inada conditions

• Gov't can use lump sum transfers T_t (the same for both groups)

+ Gov't has Pareto weight $\omega >$ 0 on the poor

S

Bellman Equation

$$V(B_{-}) = \max \mathbb{E}[RB_{-} - B + \gamma \Psi(Z) + \beta V(B)]$$

ubject to
$$Z(s) + B(s) = R(s)B_{-} + q(s) \text{ for all } s$$

Bellman Equation

$$V(B_{-}) = \max \mathbb{E}[RB_{-} - B + \gamma \Psi(Z) + \omega U(T) + \beta V(B)]$$

subject to

$$Z(s) - T(s) + B(s) = R(s)B_{-} + g(s)$$
 for all s

Bellman Equation

$$V(B_{-}) = \max \mathbb{E}[RB_{-} - B + \underbrace{\gamma \Psi(Z) + \omega U(T)}_{\text{Cost of } Z - T} + \beta V(B)]$$

subject to

$$Z(s) - T(s) + B(s) = R(s)B_{-} + g(s)$$
 for all s

- Main insights
 - properties of \check{B}_t are as before
 - $\cdot\,$ extends results to \check{T}_t
- Fluctuations both in deadweight losses and in inequality are costly:
 - minimize variability in both Z and T

- Main insights
 - \cdot properties of \check{B}_t are as before
 - \cdot extends results to \check{T}_t
- Fluctuations both in deadweight losses and in inequality are costly:
 - minimize variability in both Z and T
- Stark contrast with AMSS, Farhi, Battaglini-Coate
 - they consider representative agent economy with $T_t \ge 0$
 - their prescription: accumulate a lot of assets, set $\tilde{\tau}=$ 0, use fluctuations in transfers to smooth agg shock
 - their result survives only if marginal utility of the poor does not depend on *T*

· Same environment as before except utility function is

$$\frac{c^{1-\sigma}}{1-\sigma} - \frac{l^{1+\gamma}}{1+\gamma}$$

• Major complication: asset returns depend on policy

• New implementability constraint

$$U_{c,t}B_{t} + U_{c,t}c_{t} + U_{l,t}l_{t} = \frac{p_{t}U_{c,t}}{\beta \mathbb{E}_{t-1}p_{t}U_{c,t}}U_{c,t-1}B_{t-1}$$

EFFECTIVE DEBT AND RETURN

- Define
 - effective debt: $X_t = U_{c,t} \mathbf{B}_t$
 - effective return: $\mathbf{R}_t = \frac{p_t U_{c,t}}{\beta \mathbb{E}_{t-1} p_t U_{c,t}}$
 - effective primary deficit: $\Phi_t = U_{c,t}[g_t \tau_t l_t] = -U_{c,t}c_t U_{l,t}l_t$

• All can be written as functions of c_t

• Bellman equation:

$$V(X_{-}) = \max_{\{c(s), X(s)\}} \mathbb{E}\left[U(c, c+g) + \beta V(X)\right]$$

subject to

$$X(s) = \mathbf{R}(c,s)X_{-} + \Phi(c,s)$$
 for all s

• Distortion smoothing:

$$V'\left(\tilde{X}_{t}\right) = \mathbb{E}_{t}V'\left(\tilde{X}_{t+1}\right) + \beta cov_{t}\left(\mathsf{R}_{t+1}, V'\left(\tilde{X}_{t+1}\right)\right)$$

TARGET EFFECTIVE DEBT LEVEL

+ For a given au define ${\sf R}_{ au}, \Phi_{ au}$ and

$$X_{\tau} = \frac{\beta}{1-\beta} \mathbb{E} \Phi_{\tau}$$

+ au^* that maximizes hedging satisfies

$$\tau^* = \arg\min_{\tau} \operatorname{var} \left(R_{\tau} X_{\tau} + \Phi_{\tau} \right)$$

Note

 $X^* = X_{\tau^*}$ that maximizes hedging satisfies

$$X^* = -\frac{\operatorname{cov}\left(\mathsf{R}_{\tau^*}, \Phi_{\tau^*}\right)}{\operatorname{var}\left(\mathsf{R}_{\tau^*}\right)}.$$

• Cost of raising revenues is proportional to $U_c \Longrightarrow$ convert variables to effective units

• Perfect hedging: X^* , τ^* are constant, but debt fluctuates to offset fluctuations in U_c

- Risk-free debt: $\operatorname{cov}(p, \Phi) = 0$ implies $\operatorname{cov}(\mathbf{R}, \Phi) > 0$
 - \cdot with state uncontingent payoffs the target debt level is negative

- Apply our analysis to model calibrated to U.S. economy with:
 - risk aversion
 - persistent TFP shocks

- Evaluate accuracy of hedging predictions for:
 - ergodic mean
 - speed of convergence
 - ergodic variation

Preferences

$$\ln c + \frac{1}{1+2}l^{1+2}$$

- 1 asset, return are matched to returns of the U.S. gov't portfolio
- 2 shocks process
 - TFP shocks with error term

$$\varepsilon_t = \rho_\theta \varepsilon_{t-1} + \sigma_\theta \varepsilon_{\theta,t}$$

 \cdot payoff vector

$$p_t = 1 + \chi \epsilon_t + \sigma_p \epsilon_{p,t}$$

CALIBRATION

Target Statistics:

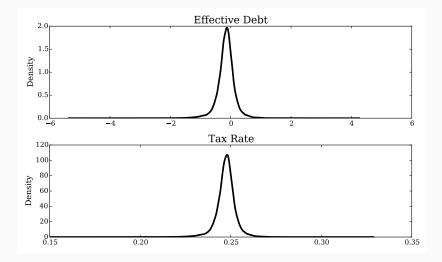
- Dynamics of GDP
- Dynamics of returns to U.S. gov't portfolio

$$R_t = \frac{B_t + \text{primary surplus}_t}{B_{t-1}}$$

Parameter	Value	Moment	Model	Data
		Log Output		
$\sigma_{ heta}$	0.14	Std. Dev.	0.015	0.015
$ ho_{ heta}$	0.7	Auto. Corr.	0.56	0.57
		Returns		
σ_p	0.048	Std. Dev.	0.035	0.035
χ	0.21	Corr. with log(GDP)	-0.08	-0.08
g	0.25	Gov. Spending/GDP	0.25	0.25

37

OPTIMAL POLICY: INVARIANT DISTRIBUTION



OPTIMAL POLICY: MEAN PATH

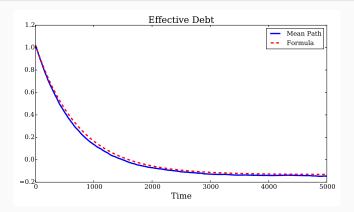
Recall:

$$\mathbb{E}_{0}\left(\check{x}_{t}-x^{*}\right)=\left(\frac{1}{1+\beta^{2}var\left(\mathsf{R}\right)}\right)^{t}\left(\check{x}_{0}-x^{*}\right)$$

OPTIMAL POLICY: MEAN PATH

Recall:

$$\mathbb{E}_{0}\left(\check{x}_{t}-x^{*}\right)=\left(\frac{1}{1+\beta^{2}var\left(\mathsf{R}\right)}\right)^{t}\left(\check{x}_{0}-x^{*}\right)$$



Ergodic Distribution : Effective Debt (x _t)					
		Using Simulation	Using Formula		
	Mean	-0.148	-0.133		
	Half Life	498	512		
	Std. Deviation	0.29	0.33		

- Correlation of returns and output is close to 0:
 - correlation with effective returns is negative
 - accumulate assets
- Variability of effective returns is low and with larger orthogonal component
 - \cdot slow convergence to the mean
 - large variance of debt

CONCLUSION

- Develop hedging theory of debt
 - Simple formulas for mean, variance and speed of convergence to ergodic distribution
- Predictions hold across range of environments
 - Multiple assets
 - Risk Aversion
 - Persistence
- Future Work:
 - Heterogeneous Agents (almost done)
 - Capital?

READING GROUP

- Rules:
 - Submit a paper each week (1 week prior)
 - Prepare a 5 minute presentation (no slides)
 - Fine to ask questions during presentation (encouraged)
 - Faculty can attend but won't talk (much)

- Rules:
 - Submit a paper each week (1 week prior)
 - Prepare a 5 minute presentation (no slides)
 - Fine to ask questions during presentation (encouraged)
 - Faculty can attend but won't talk (much)
- Benefits:
 - Commitment mechanism
 - Exposure to papers
 - Practice for job market

- Rules:
 - Submit a paper each week (1 week prior)
 - Prepare a 5 minute presentation (no slides)
 - Fine to ask questions during presentation (encouraged)
 - Faculty can attend but won't talk (much)
- Benefits:
 - Commitment mechanism
 - Exposure to papers
 - Practice for job market
- Logistics:
 - Tuesday or Thursday 4pm
 - Name and email if you are interested