
Computing Challenge 2014
Preliminary Results

UO Economics Macro Group
April 25, 2014

Computing Challenge 1/18

Computing Challenge 2014

Goal: Provide some evidence on which technical computing languages
are fastest for some of the types of computations that economists use.

Languages considered (so far):

• Gauss 14.0.7 (Aptech)

• Matlab R2014a (MathWorks)

• Python 2.7.6

• Julia 0.2

Computing Challenge 2/18

Econometric Model

The laboratory will be estimation of an econometric model
based on:

Owyang, Piger and Wall (2012), “Forecasting National
Recessions Using State Level Data”

A probit model with covariate uncertainty.

Primary elements of estimation are large(ish) data samples,
loops, random number generation, and lots of matrix algebra.

Computing Challenge 3/18

Econometric Model

• St ∈ {0, 1} is a binary random variable.

• Our objective is to forecast St using predictors available to
a forecaster at the end of month t − h, collected in the
vector Xt−h.

• We consider the possibility that only a subset of the
predictors in Xt−h is used.

• Define γ as a predictor selection vector that indicates
which predictors are used. Collect these predictors in the
vector Xγ,t−h.

Computing Challenge 4/18

Forecasting Model

We use a probit model to link Xγ,t−h to St :

yt = α + X ′γ,t−hβγ + ut ; ut ∼ i.i.d.N (0, 1)

St = 1 if yt ≥ 0.

It follows that:

Pr[St = 1|ργ, γ] = Φ
(
α + X ′γ,t−hβγ

)

Computing Challenge 5/18

Model Uncertainty

• There is uncertainty about which predictors should be
used in the forecasting model. This is uncertainty about
the true value of γ.

• Estimate γ along with model parameters.

• A Bayesian approach to estimation, implemented using a
Gibbs Sampler.

Computing Challenge 6/18

Posterior Simulation via Gibbs Sampler

• Define y = (y1, y2, · · ·, yT) and S = (S1, S2, · · ·, ST)

• The Gibbs Sampler is then implemented in two blocks:

1 Draw from π (y|ργ, γ,S)

• Involves looping and drawing from truncated normal
distributions.

2 Draw from π (ργ, γ|y,S) = π (ργ, γ|y)

• Metropolis-Hastings step as in Holmes and Held (2006).

• This step involves computing a multivariate pdf for a
613× 1 vector of random variables.

• Draws converge to draws from π (ργ, γ|S)

Computing Challenge 7/18

Data

Data set is monthly measured from June 1960 to June 2011
(613 data points).

56 potential predictors.

All estimations performed on MacBook Pro with:

• 2.7 GHZ Intel Core i7 Processor

• 16 GB Memory

Computing Challenge 8/18

Computation Time

Baseline Results:

Based on “global best practices” for an economist who needs to code.

400 total Gibbs Simulations (200 burn in)

Timing based on average of 10 runs.

Julia Matlab Python Gauss
Seconds 13.4 16.6 27.0 30.1

Relative 1.0 1.2 2.0 2.2

Computing Challenge 9/18

Computation Time

The log marginal likelihood is a key input into computation time

−log(|V̄ |)− y ′(V̄)−1y

Total Computation Time for Calculation of Marginal Likelihood

Julia Matlab Python Gauss
Seconds 4.8 12.9 19.7 27.2

Percent of Total 36% 78% 73% 90%

Computing Challenge 10/18

Improving on Built in Matrix Algebra Routines

A key to improving performance is to improve on built in
routines used to calculate the log multivariate normal pdf.

The two key calculations are:

• y ′(V̄)−1y

• |V̄ |

Computing Challenge 11/18

Improving on Built in Matrix Algebra Routines

Nathan Kubota’s Approach:

L = chol(V̄)

y ′(V̄)−1y = y ′(L′L)−1y

y ′(V̄)−1y = (L−1y)′L−1y

y ′(V̄)−1y = B ′B

where:

B = L−1y

LB = y

Efficient routines exist to solve this system of linear equations (that is
solve for B) without inverting L. These are especially fast since L is lower
triangular.

Matlab: linsolve(); Gauss: qrtsol(); Python: dtrtrs(); Julia: \

Computing Challenge 12/18

Improving on Built in Inverse Routines

Once we have computed L = chol(V̄) we can also quickly
compute |V̄ | as the squared product of the diagonal elements
of L.

Additional gains can be found by saving L and reusing where
possible.

Computing Challenge 13/18

Computation Time

Results with Tricks to Speed Calculation of Marginal Likelihood

Gauss Matlab Julia Python
Seconds 3.1 3.6 4.0 6.4

Improvement 90% 78% 70% 76%

Computing Challenge 14/18

Computation Time

What about Compiling?

Gauss Matlab Python-Compiled Julia Python
Seconds 3.1 3.6 3.7 4.0 6.4

Relative 1.0 1.2 1.2 1.3 2.1

Computing Challenge 15/18

Computation Time

What about a Longer Run?

40,000 total Gibbs Simulations (20,000 burn in)

Minutes Relative
Gauss - Baseline 71.9 13.5
Gauss 5.3 1.0
Python-Compiled 5.3 1.0
Julia 6.2 1.2
Matlab 8.6 1.6
Python 10.3 1.9

Computing Challenge 16/18

Conclusion

Preliminary Conclusions

• Don’t trust built in functions. They may be very inefficient
for your problem (or any problem.)

• Don’t invert that matrix!

• You took a linear algebra class. Use it!

• For this problem, Gauss, Python (with compiling), and
Julia seem to be the fastest for large runs.

Computing Challenge 17/18

http://www.johndcook.com/blog/2010/01/19/dont-invert-that-matrix/

Open Questions

Open Questions

• Gains from using graphical processor? (Nathan)

• Gains from parallelizing?

• Why does Matlab bog down on long runs? I suspect
something with draws from truncated normal. More
concerning if this is something more systematic. (Rich)

Computing Challenge 18/18

