Computing Challenge 2014 Preliminary Results

> UO Economics Macro Group April 25, 2014

> > SQC

Goal: Provide some evidence on which technical computing languages are **fastest** for some of the types of computations that economists use.

Languages considered (so far):

- Gauss 14.0.7 (Aptech)
- Matlab R2014a (MathWorks)
- Python 2.7.6
- Julia 0.2

The laboratory will be estimation of an econometric model based on:

Owyang, Piger and Wall (2012), "Forecasting National Recessions Using State Level Data"

A probit model with covariate uncertainty.

Primary elements of estimation are large(ish) data samples, loops, random number generation, and lots of matrix algebra.

- $S_t \in \{0,1\}$ is a binary random variable.
- Our objective is to forecast S_t using predictors available to a forecaster at the end of month t h, collected in the vector X_{t-h} .
- We consider the possibility that only a subset of the predictors in X_{t-h} is used.
- Define γ as a predictor selection vector that indicates which predictors are used. Collect these predictors in the vector $X_{\gamma,t-h}$.

We use a probit model to link $X_{\gamma,t-h}$ to S_t :

$$egin{aligned} y_t &= lpha + X'_{\gamma,t-h}eta_\gamma + u_t; & u_t \sim ext{i.i.d.} N\left(0,1
ight) \ S_t &= 1 & ext{if} & y_t \geq 0. \end{aligned}$$

It follows that:

$$\Pr[S_t = 1 | \rho_{\gamma}, \gamma] = \Phi\left(\alpha + X'_{\gamma, t-h} \beta_{\gamma}\right)$$

996

Model Uncertainty

- There is uncertainty about which predictors should be used in the forecasting model. This is uncertainty about the true value of γ .
- Estimate γ along with model parameters.
- A Bayesian approach to estimation, implemented using a Gibbs Sampler.

Posterior Simulation via Gibbs Sampler

- Define $\mathbf{y} = (y_1, y_2, \cdots, y_T)$ and $\mathbf{S} = (S_1, S_2, \cdots, S_T)$
- The Gibbs Sampler is then implemented in two blocks:
 - ¹ Draw from $\pi\left(\mathbf{y}|\rho_{\gamma},\gamma,\mathbf{S}\right)$
 - Involves looping and drawing from truncated normal distributions.
 - ² Draw from $\pi\left(
 ho_{\gamma},\gamma|\mathbf{y},\mathbf{S}
 ight)=\pi\left(
 ho_{\gamma},\gamma|\mathbf{y}
 ight)$
 - Metropolis-Hastings step as in Holmes and Held (2006).
 - This step involves computing a multivariate pdf for a 613×1 vector of random variables.
- Draws converge to draws from $\pi\left(
 ho_{\gamma},\gamma|\mathbf{S}
 ight)$

Data set is monthly measured from June 1960 to June 2011 (613 data points).

56 potential predictors.

All estimations performed on MacBook Pro with:

- 2.7 GHZ Intel Core i7 Processor
- 16 GB Memory

Baseline Results:

Based on "global best practices" for an economist who needs to code.

400 total Gibbs Simulations (200 burn in)

Timing based on average of 10 runs.

	Julia	Matlab	Python	Gauss
Seconds	13.4	16.6	27.0	30.1
Relative	1.0	1.2	2.0	2.2

The log marginal likelihood is a key input into computation time

$$-\log(|ar{V}|) - y'(ar{V})^{-1}y$$

Total Computation Time for Calculation of Marginal Likelihood

	Julia	Matlab	Python	Gauss
Seconds	4.8	12.9	19.7	27.2
Percent of Total	36%	78%	73%	90%

A key to improving performance is to improve on built in routines used to calculate the log multivariate normal pdf.

The two key calculations are:

- $y'(\bar{V})^{-1}y$
- $|\bar{V}|$

Improving on Built in Matrix Algebra Routines

Nathan Kubota's Approach:

$$L = chol(\bar{V}) y'(\bar{V})^{-1}y = y'(L'L)^{-1}y y'(\bar{V})^{-1}y = (L^{-1}y)'L^{-1}y y'(\bar{V})^{-1}y = B'B$$

where:

$$B = L^{-1}y$$
$$LB = y$$

Efficient routines exist to solve this system of linear equations (that is solve for B) without inverting L. These are especially fast since L is lower triangular.

Matlab: linsolve(); Gauss: qrtsol(); Python: dtrtrs(); Julia: \

Once we have computed $L = chol(\bar{V})$ we can also quickly compute $|\bar{V}|$ as the squared product of the diagonal elements of L.

Additional gains can be found by saving L and reusing where possible.

Results with Tricks to Speed Calculation of Marginal Likelihood

	Gauss	Matlab	Julia	Python
Seconds	3.1	3.6	4.0	6.4
Improvement	90%	78%	70%	76%

What about Compiling?

	Gauss	Matlab	Python-Compiled	Julia	Python
Seconds	3.1	3.6	3.7	4.0	6.4
Relative	1.0	1.2	1.2	1.3	2.1

What about a Longer Run?

40,000 total Gibbs Simulations (20,000 burn in)

	Minutes	Relative
Gauss - Baseline	71.9	13.5
Gauss	5.3	1.0
Python-Compiled	5.3	1.0
Julia	6.2	1.2
Matlab	8.6	1.6
Python	10.3	1.9

Preliminary Conclusions

- Don't trust built in functions. They may be very inefficient for your problem (or any problem.)
- Don't invert that matrix!
- You took a linear algebra class. Use it!
- For this problem, Gauss, Python (with compiling), and Julia seem to be the fastest for large runs.

Open Questions

- Gains from using graphical processor? (Nathan)
- Gains from parallelizing?
- Why does Matlab bog down on long runs? I suspect something with draws from truncated normal. More concerning if this is something more systematic. (Rich)