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Abstract

Within the standard RBC model, we examine issues of expecta-

tional coordination on the unique rational expectations equilibrium.

Our study �rst provides a comprehensive assessment of the sensitivity

of agents�plans and decisions to their short-run and long-run expecta-

tions. We show this sensitivity is much too great to trigger eductive

coordination in a world of hyper-rational agents, who are endowed with

Common Knowledge and contemplate the possibility of small deviations

from equilibrium: eductive stability never obtains. This impossibility

theorem has a counterpart when adaptive learning is incorporated and

real-time paths are required to satisfy a collective initial view of the

future.
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1 Introduction

The question of expectational coordination has returned to the forefront of

intellectual debate in the context of the economic crisis that began in 2007.

Some people have argued that the over-optimistic view of the world conveyed

by our models arises in particular from the universal adoption of rational

expectations (RE). In fact, the axiomatic use of RE has been under critical

examination for some time: what is at stake in this debate is the robustness of

expectational coordination on RE. This issue, the subject of the present paper,

has been discussed using a variety of approaches. Problems of multiplicity of

rational expectations equilibria (REE) have received considerable attention,

as in the sunspot literature, e.g. Benhabib and Farmer (1994) and Chiappori

and Guesnerie (1991), and in the global games literature, e.g. Morris and

Shin (1998). A second approach has examined the stability of the REE under

adaptive learning. See, for example, Marcet and Sargent (1989), Woodford

(1990), Brock and Hommes (1997) and Evans and Honkapohja (2001). A

central issue in this �bounded rationality�approach is whether agents can learn

to form RE over time if they are modeled as statisticians or econometricians.

The current paper renews attention on a third approach, called the �eductive�

viewpoint. See Evans and Guesnerie (1993, 2005) and Guesnerie (2002) for an

introductory conceptual assessment in dynamic models.1

We focus here on the question of expectational coordination when agents

are long-lived, or more precisely, are long-sighted. Expectational coordination

in models where agents are short-lived has been extensively studied in the

literature both from the multiplicity viewpoint, and from the adaptive and

eductive viewpoints. The logical framework and the central results for educ-

tive learning, as well as the connections with adaptive (or �evolutive�) learning

and the sunspot multiplicity viewpoint, are well understood in many contexts

where agents are short-lived, and in particular within simple models of over-

lapping generations: the assessment of Gauthier and Guesnerie (2004) puts

1Also relevant to this discussion is the concept of �rational beliefs��see Kurz and Mo-
tolese (2001). Under their equilibrium concept agents have heterogeneous beliefs consistent
with the empirical distribution of aggregate observables.
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emphasis on the consistency of the di¤erent approaches to expectational co-

ordination when agents have short planning horizons. With long-lived agents,

as we will show here, the picture changes signi�cantly.

We note that the assumption that agents are long-lived, or long-sighted, is

not economically innocuous. For example, long-lived agents take into account

their permanent income, rather than income over a short horizon, a fact that

of course has a key impact on the understanding and design of macroeconomic

policies. This suggests, unless the RE-hypothesis is accepted axiomatically,

that the question under scrutiny here, i.e. the e¤ect of the presence of long-

lived agents on expectational coordination, should receive careful and parallel

attention. Do they make expectational coordination more or less robust?

To explore this complex question, we consider in this paper the simplest

version of a Real Business Cycle (RBC) model and its standard focal point,

the REE, which is presented in Section 2.1. In Section 2.2, we investigate a

background question that is central for any assessment of the plausibility of

expectational coordination on the REE: how do actions and plans of agents

react to out-of-equilibrium beliefs? The answer, for small changes of beliefs, is

provided by a preparation theorem, which appears to be new to the literature.

The preparation theorem identi�es the changes in consumption and savings

decisions associated with a small change in the whole in�nite trajectory of

beliefs, providing rich and comprehensive information on this question.

In Section 3, we develop the eductive approach to expectational coordi-

nation in the RBC model. To start, we de�ne eductive stability, �rst in the

context of the cobweb model and then in a general setting.2 The essence of

the approach is to assume full rationality of all agents and to take as given

a collection of common knowledge assumptions. This collection includes ra-

tionality of other agents, the full structure of the model, and restrictions on

the beliefs of agents concerning the path of relevant aggregates. The question

2The cobweb model is often developed as an in�nitely repeated game, as in Bray and
Savin (1986). In the cobweb model, hyper-rational agents are able to coordinate on the REE,
under natural parametric restrictions, given appropriate common knowledge assumptions.
There are close and well-understood connections between the eductive learning viewpoint
and the standard dynamic learning viewpoint.
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is whether this common knowledge is su¢ cient to trigger a mental reasoning

process leading to coordination on the REE. We then describe how to adapt

the concept to our speci�c model, and distinguish between �high-tech� and

alternative �low-tech�interpretations.

We �nd that coordination on the REE in the RBC model is di¢ cult. In-

deed, Section 4 establishes results concerning the impossibility of the di¤erent

versions of eductive stability. The �avour of the results is that coordination

of expectations of long-lived agents is necessarily weak. There is no collective

view of the future, no set of paths close but not identical to the self-ful�lling,

equilibrium path, that is able to trigger coordination on this path, along the

eductive lines just described. Taking a real-time perspective, every such collec-

tive view is subject, at some stage, to be invalidated by facts. In other words,

in this simple world, a �crisis,� here an expectational crisis, is unavoidable,

although the time required for the crisis to become manifest, i.e. the extent

of the weakness of expectational coordination, depends upon certain system

characteristics that we identify.

The failure of common knowledge to trigger coordination, and the real-time

falsi�cation of beliefs in the long run, indicates that in this setting real-time

learning must play a signi�cant role. Section 5 therefore takes up adaptive

learning and examines what we call �B1-stability,�the possibility in this con-

text of maintaining a collective view of the future, i.e. consistency of the

realized path with beliefs that it will remain in the initially conjectured neigh-

borhood of the equilibrium, and thus in some sense avoiding the crisis. We

again �nd that consistency of conjectured beliefs paths is not robust in the

sense that any collective view will be falsi�ed, at some point in time, for a

large set of adaptive learning rules indexed by the �gain�parameter.

Section 6 discusses the implications of our results and concludes. Although

the instability results of Section 4 indicate that full coordination on the REE is

implausible, rational expectations remains an anchor, and this paper obtains

fundamental results for analysis of the role of expectations and the degree of

expectational coordination around this anchor. Speci�cally, in Section 2 we

identify a key general sensitivity parameter, and associated (in�nite) matri-
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ces, which together determine the e¤ect of the time pro�le of expectations on

the path of planned decisions. Weak and extended weak forms of eductive

stability, and thus limited forms of coordination, obtain for suitable parame-

ter values. Similarly, although B1-stability is not robust across our class of

adaptive learning rules, Section 5 shows that asymptotic stability holds under

adaptive learning for a wide range of parameters. Furthermore, the extent of

divergence from the REE during the learning transition is governed by the key

parameters we identify, and this divergence can be large or small depending

on parameter values. Thus our eductive analysis, which emphasizes the dif-

�culty of expectational coordination, opens a door to the evolutive learning

viewpoint, and to an understanding of the range of possible dynamics.

2 Model and Preparation Theorem

We consider a standard RBC model, except that for simplicity we assume a

�xed labor supply and omit exogenous productivity shocks.3 These simpli-

�cations, which amount to a focus on a nonstochastic discrete-time Ramsey

model, are not critical to our results and are made in order to clarify the central

features of our analysis. Elimination of both random shocks and labor-supply

response to disequilibrium expectations can be expected to facilitate coordi-

nation on the rational expectations equilibrium (REE).4 Despite eliminating

these in�uences we establish that a strong form of eductive stability fails.

2.1 The model and equilibrium

There is a continuum of identical in�nitely-lived households, indexed by ! 2
[0; 1]. At time t each household ! holds capital kt(!), resulting from previous

decisions, and supplies inelastically one unit of labor. At time t = 0, facing

interest rate r0 and prospects of future interest rates rt and wages qt, household

3Seminal RBC papers include Kydland and Prescott (1982) and Long and Plosser (1983).
4For example, the weak eductive stability conditions, given below, can be shown to be

stricter when labor supply is elastic. Also, it is straightforward to extend our instability
results to allow for iid random productivity shocks with small support.
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! determines his actions today and plans for the future by solving

max E0(!)

1X
t=0

�tU(ct(!)), where 0 < � < 1, (1)

subject to kt+1(!) = (1 + rt)kt(!) + qt � ct(!); (2)

with initial wealth k0(!) given. Here E0(!) captures the expectations of agent

! formed using his subjective distribution.

We will focus on the case in which k0(!) is the same for all agents, but we

do not impose this initially. The utility function U(c) is increasing, strictly

concave and smooth. We further impose a No Ponzi Game (NPG) condition

that the present value of their limiting lifetime wealth be nonnegative. The

household�s Euler equation is

U 0(ct(!)) = �Et(!) ((1 + rt+1)U
0(ct+1(!))) . (3)

When the future is viewed as deterministic, expectations of future interest

rates rt and wages qt are point expectations. Iterating forward the household

�ow budget constraint, and imposing the NPG and transversality conditions,

gives the lifetime budget constraint of the household:

1X
t=0

Rtct(!) =
1X
t=0

Rtqt+(1+ r0)k0(!), where Rt =
tY
i=1

(1+ ri)
�1, R0 = 1: (4)

Goods are produced by �rms from capital and labor using a constant

returns to scale production function f(K;L), satisfying the usual assump-

tions, under conditions of perfect competition. Thus rt and qt are given by

rt = fK(Kt; 1)� � and qt = fL(Kt; 1); where Kt =
R 1
0
kt(!)d!, fK = @f=@K,

fL = @f=@L, and 0 � � � 1 is the depreciation rate. For convenience, below,
we also write f(K) in place of f(K; 1) and use the notation f 0 = fK and

f 00 = fKK . In addition we have the aggregate capital accumulation equation

Kt+1 = (1� �)Kt + f(Kt)� Ct; where Ct =
Z 1

0

ct(!)d!: (5)
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In this model, the de�nition of an intertemporal perfect foresight equilibrium

follows from routine considerations. The model has a unique a (unique) perfect

foresight steady state, on which we focus attention.

De�nition 1 The perfect foresight steady stateKt = kt(!) = �K, Ct = ct(!) =
�C, rt = �r and qt = �q is given by 1 = �(1+ �r), �r = fK( �K; 1)� �, �q = fL( �K; 1),
�C = f( �K; 1)� � �K = �r �K + �q:

If K0 = �K then under perfect foresight the economy stays in the steady

state for all t, and if K0 6= �K, then there is a unique perfect foresight path that

converges to the steady state as t ! 1. We now assume that the economy
is initially in the steady state, with k0(!) = �K for all !, and we examine the

robustness of expectational coordination on this equilibrium.

2.2 Beliefs, actions, plans and realizations

Consider an individual agent facing the consumption/savings problem (1)-(2).

The behavior of the agent is in part determined by his beliefs about the future

values of wages and interest rates. In general, an agent�s beliefs could be

stochastic, summarized by a sequence of joint density functions fFt(qt; rt)g;
where qt and rt are the time t wage and interest rate histories, respectively.

We restrict attention to deterministic beliefs, i.e. to point expectations. This

is not only justi�ed by the fact that our reference solution is nonstochastic,

but also, as we will make clear later, because we focus on variations in beliefs

that are small deviations from perfect foresight beliefs.

The beliefs of agent ! may therefore be summarized by real sequences

of expected wages and interest rates. We choose to assume that the agent

understands the relationship between aggregate capital and input prices, that

is, the agent knows rt = f 0(Kt) � �; and qt = f(Kt) � f 0(Kt)Kt: Hence his

beliefs are completely and consistently captured by a sequence of real numbers

identifying his point expectations of future capital stock.5 We denote these

5Note that a di¤erent assumption, that people have beliefs on wages and interest rates
inconsistent with the competitive behaviour of �rms, would make expectational coordination
more di¢ cult and not easier.
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beliefs by Ke(!) = fKe
t (!)gt�0; where Ke

0(!) = K0 = �K is known to all

agents. A beliefs pro�le is the collection of all agents�beliefs: Ke = fKe(!) :

! 2 [0; 1]g.
The key ingredient of the analysis is the understanding of the e¤ect of

changes in individual expectations on changes in individual actions or plans

(particularly when these changes occur around the equilibrium). Taking as the

reference point the perfect foresight steady-state path K0 = �K;Kt = �K, for

all t, we examine the solution to the program, which determines the agent�s

present actions and future plans. This is simply the program (1) subject to

(4), where qt and rt are replaced by qet (!) and r
e
t (!), derived as just explained

from Ke
t (!).

We focus on small changes, around the steady-state values, in the individual

agent�s initial capital k0(!) and point expectations Ke
t (!), and on the e¤ect

of these small changes on the agent�s initial plans. We measure these small

changes in capital as deviations from steady state: we set dk0(!) = k0(!)� �K

and dKe
t (!) = Ke

t (!) � �K. We also write dKe(!) = fdKe
t (!)gt�0 for the

beliefs path of agent !, and dKe = fdKe(!) : ! 2 [0; 1]g. Similarly, for
the agent�s corresponding optimal plans kt(!) and ct(!), which as we will see

are fully determined by their beliefs and their initial capital holdings, we write

dkt(!) = kt(!)� �K and dct(!) = ct(!)� �C. Throughout the paper we maintain
the assumption that each agent�s beliefs are such that their plans are well

captured by �rst-order approximations. Given this assumption, we can identify

a particular variable�s time path with its �rst-order approximation, and thus

from now on, we use our deviation notation to capture this identi�cation.

2.2.1 Expectations and plans of agents: the preparation theorem

Our objective is, as argued above, to determine the change in the agent�s plans

as functions of the changes in the agent�s expectations and initial savings.

We will make the connections between changes in expectations and changes

in planned actions fully explicit in Theorem 1, which we call the Prepara-

tion Theorem. We begin with several lemmas that will provide intuition for

later results. Here, as below, we use the �rst-order viewpoint, with the just-
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introduced notation. For the �rst lemma it is useful to allow for variations in

the initial aggregate capital stock, i.e. dK0 6= 0.

Lemma 1 (Welfare Lemma). Consider any time path of beliefs dKe
t (!), and

any initial saving dk0(!) and aggregate capital stock dK0. Let dct(!) be the

associated sequence of consumption decisions. Then

��1dk0(!) =
X
t�0

�tdct(!): (6)

Lemma 1, which is proven in the Appendix, relies on the fact that, given

the individual budget constraint (4), the equilibrium plan Kt = kt(!) = �K,

Ct = ct(!) = �C; remains just feasible, to �rst-order approximation. Indeed,

as shown in the proof,X
t�0

�tdct(!) = ��1dk0(!) +
X
t�0

�t(dqt + �Kdrt);

where the income e¤ect is captured by
P

t�0 �
t(dqt + �Kdrt), i.e. the change

in the present value of wage and rental income due to a change in current

and expected aggregate capital stocks. However, constant returns to scale

technology implies �KfKK( �K; 1)+fKL( �K; 1) = 0, so that dqt+ �Kdrt = 0, from

which the result follows. In summary, to �rst order, changes in current and

expected aggregate capital stock have zero income e¤ect.

Lemma 1 implies in particular that, given beliefs dKe
t (!), if k0(!) = �K

then the optimal consumption path satis�es
P
�tdct(!) = 0: Thus a change

in the expected path of aggregate capital, and the corresponding expected

price changes that it triggers, have no �rst-order impact on welfare, since it

leaves the present value of consumption unchanged. This is the reason we call

the above result the Welfare Lemma.6 The next two lemmas complete the

intuitive picture of how expectations a¤ect plans and actions. The household

Euler equation (3) leads to (7) and the �ow budget constraint (2) leads to (8).

See the Appendix for details.

6The Appendix provides the same result for time t, i.e. ��1dkt(!) =
P

s�t �
sdcs(!):
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Lemma 2 The consumption and savings paths for agent ! satisfy

dct(!) = dct�1(!) + ��1� �Cf 00dKe
t (!) (7)

dkt+1(!) = ��1dkt(!)� dct(!); (8)

where � = � �CU 00( �C)=U 0( �C) is the consumption elasticity of marginal utility
and where f 00 denotes f 00( �K):

It is useful to de�ne the �expectations feedback�parameter

� = ���1(1� �)�1�2 �Cf 00 > 0;

which will be of considerable interest, as it plays a central role in determining

the responsiveness of consumption and savings plans to changes in expectations

of the aggregate capital path.

Lemma 3 Given beliefs path dKe(!), the optimal plans for agent ! satisfy

dct(!) = ��1(1� �)dkt(!) + ��1(1� �)�
X
n�1

�ndKe
t+n(!) (9)

dkt+1(!) = dkt(!)� ��1(1� �)�
X
n�1

�ndKe
t+n(!): (10)

Equations (9)-(10) can be interpreted as the time t consumption and saving

functions of agent !, since they relate the agent�s consumption and saving at

t to his wealth dkt(!), and to expected future prices, captured by dKe
t+n(!).

These equations motivate our interpretation of � as an expectations feedback

parameter: � measures the impact on consumption and savings of a permanent

unit increase in expected future aggregate capital. The following Theorem

gives the optimal plans explicitly in terms of the full belief path dKe(!).

Theorem 1 (Preparation Theorem). Assume dk0(!) = 0. Given beliefs path
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dKe(!), the optimal plans for agent ! are given by

dct(!) = ���1(1� �)�
X
T�1

�c(t; T )dKe
T (!); for t � 0, and

dkt(!) = ��
X
T�1

�k(t; T )dKe
T (!); for t � 1;where

�c(t; T ) =

(
��T if 0 � t < T

1� �T if t � T
;

�k(t; T ) =

(
�T�t � �T if 1 � t < T

1� �T if t � T
:

We can also write this as

dc(!) = �c (dKe(!)) � ����1(1� �)�cdKe(!)

dk(!) = �k (dKe(!)) � ���kdKe(!);

where �c and �k are semi-in�nite matrices. Note that the �rst row of �c

determines the �rst coordinate of dc(!), i.e. dc0(!), resulting from dKe(!).
Thus the (i; j) element of �c corresponds to �c(i� 1; j). Analogously the �rst
row of �k determines the �rst coordinate of dk(!), i.e. dk1(!), resulting from
dKe(!). Thus the (i; j) element of �k corresponds to �k(i; j). We have

�c =

0BBBBBBB@

�� ��2 ��3 � � �
1� � ��2 ��3 � � �
1� � 1� �2 ��3 � � �
1� � 1� �2 1� �3 � � �
...

...
...

. . .

1CCCCCCCA
and �k =

0BBBBBBB@

1� � � � �2 �2 � �3 � � �
1� � 1� �2 � � �3 � � �
1� � 1� �2 1� �3 � � �
1� � 1� �2 1� �3 � � �
...

...
...

. . .

1CCCCCCCA
:

A formal proof of Theorem 1 is available in the Extended Appendix. We

here give an alternative argument based on the observation that the T th column

of the matrices describes the impact on the paths of consumption and savings

plans of a unit increase in dKe
T (!). Thus consider a thought experiment in
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which dKe
T (!) > 0 and dK

e
t (!) = 0;8t 6= T: Our aim is to derive column T of

the matrix �c. We do so using the Euler equation (7) and the Welfare Lemma

(6). For this path dKe(!) = fdKe
t (!)gt�1, the expected interest rate remains

constant at its steady-state value in all periods, except for period T in which

it changes by f 00dKe
T (!) < 0: By the Euler equation planned consumption

remains constant before and after the period of expected change; also, because

dKe
T (!) > 0 implies a lower expected interest rate at t = T , the price of time

T � 1 consumption is low relative to the price of time T consumption. These
observations coupled with (7) may be summarized as follows:

d�c � dc0(!) = � � � = dcT�1(!) = dcT (!)� � �C��1f 00dKe
T (!)

> dcT (!) = dcT+1(!) = � � � � dĉ:

Lemma 1 states that the present value of consumption is zero. Thus

0 =
T�1X
t=0

�tdct(!) +
1X
t=T

�tdct(!) = (1� �)�1
�
(1� �T )d�c+ �Tdĉ

�
= (1� �)�1

�
dĉ�

�
1� �T

�
� �C��1f 00dKe

T (!)
�
:

It follows that dĉ = ����1(1 � �)
�
1� �T

�
dKe

T (!), as is stated in Theorem

1: see �c(t; T ) for t � T: The expression d�c = ��
�
�T�1 � �T

�
dKe

T (!) follows

immediately from the above equalities.

The next question is how to translate the consumption change to a savings

change. Continuing with the same thought experiment, and using the �ow

budget equation (8), we get dk1(!) = �d�c = ��
�
�T�1 � �T

�
dKe

T (!). Recur-

sively substituting into the �ow budget constraint gives dkt(!) = ��(�T�t �
�T )dKe

T (!) for t � T: See �k(t; T ) for t � T . Since consumption is constant for

t � T , the Welfare Lemma applied to time T (see footnote following Lemma

1) implies that dĉ = (��1 � 1)dkT (!) = �rdkT (!); i.e. agents consume the

interest on their savings. It follows that, for n � 1

dkT+n(!) = ��1dkT (!)� dĉ = dkT (!) = ��(1� �T )dKe
T (!);
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as indicated by Theorem 1: see �k(t; T ) for t > T: Note that the impact on

dkt(!) is negative for all t � 1 even though the impact on dct(!) changes sign
over time. We emphasize this point in the next section.

2.2.2 Implications of the Preparation Theorem

The Preparation Lemma, through the expectations feedback parameter � and

the matrices �c and �k, fully describes the connection between expectations

and the planned actions of the individual agents. We will later exploit this

knowledge to obtain consequences of these beliefs for describing the possible

corresponding paths of aggregate capital. At this stage we provide intuition

for later results, limiting attention to discussion of the e¤ects of beliefs on the

plans of individual agents.

First we note that the general sensitivity of decisions to expectations is

governed by the value of �: A high � means that the individual decisions and

plans react strongly to expectations. We discuss later the interpretation of

�; but it is intuitively clear that a high f 00 or a low � increases expectational

sensitivity. In addition to this general expectational sensitivity, our results

also stress the pro�le e¤ect of beliefs, which are fully captured by the above

matrices. Taken together, we get rich information �indeed exhaustive to �rst-

order approximation �giving the e¤ects of beliefs on the agent�s plans.

This information can be used to provide a more comprehensive intuition

about agents�plans. Here we pick out three insights,7 Corollaries 1 �3, which

are particularly relevant for what follows.

First, as foreshadowed above, a striking and immediate implication from

inspecting �k is the following corollary on strategic substitutability.8

7There are many others. For example, the reader is invited to compute the sum of the
rows of each matrix to evaluate the e¤ect of extreme beliefs.

8This property suggests that we could identify the set of rationalizable trajectories in the
RBC model using the �ndings of Guesnerie-Jara-Moroni (2010), who characterize rational-
izable equilibria in �nite-dimensional models with strategic substitutabilities. Because our
model is in�nite dimensional, the results in our setting are not immediate, however, and
left for future research. The results of next section suggest that the set under discussion is
(very) large.
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Corollary 1 The map �k exhibits local strategic substitutability, i.e.

@ (dkt(!))

@ (dKe
T (!))

< 0 for all t; T � 1:

Second, consider beliefs of a cylinder form, as we shall do later i.e. �e <
dKe

t (!) < e; where e > 0.9 Implications for savings in period one, dk1(!),

which then follow from the �rst row of �k, are given by Corollary 2.

Corollary 2 If �e < dKe
t (!) < e for all t � 1 then ��e < dk1(!) < �e:

Third, the connection between the in�nite path of beliefs and the individual

savings decision is further clari�ed by the following example. Suppose that

expected capital is above the steady state by a �xed amount e > 0 for N > 0

periods before reverting to the steady state. That is, suppose the agent !�s

beliefs pro�le, dKe(!), satis�es

dKe
T (!) =

(
e for T = 1; : : : ; N

0 for T > N
: (11)

Because of its later importance, we call these �N -period deviation�beliefs. By

acting on dKe(!), the operators �k and �c yield the savings and consumption

plans of agent !, respectively: dk(!) = �k (dKe(!)) and dc(!) = �c (dKe(!)).

Agent ! believes the real interest rate will be at its steady-state value after

period N ; thus he will hold consumption and savings constant from period N

onward. These constant values can be determined using the operators �k and

�c. The Extended Appendix shows that we obtain:

Corollary 3 Suppose an agent has N-period deviation beliefs (11). Then

dkt(!) =

(
��
�
t� �r�1(1� �t)�N�t

�
e for 1 � t < N

��
�
N � �r�1(1� �N)

�
e for t � N

(12)

dct(!) =

(
�
�
1� �N � �rt

�
e for 0 � t < N

�rdkt(!) for t � N
: (13)

9Here, of course, e is small enough that �rst-order approximations apply.
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Note that for e > 0 it follows that dct(!) > 0, that dct(!) declines over

time for t < N , and that dct(!) < 0 for t � N . For t � N equation (13) is

familiar: agent ! consumes the net return to savings, leaving the savings stock

unchanged. Thus the expectation of a period of low interest rates associated

with dKe
T (!) = e > 0 for T � N leads agents to shift consumption from

the future to the present. However, for our purposes equation (12) is more

signi�cant. Most strikingly, for t � N the right-hand side implies that dkt(!)

becomes large (in magnitude) as N gets large. Thus even if agent ! thinks

that capital deviates from steady state by only some small e, and only for

some �nite period of time, his savings path will move away from, and remain

arbitrarily far from, the steady state, provided that period is long enough.

With the operators �k and �c in hand we can now turn to our central

concern, which is the possibility of rational agents coordinating on the rational

expectations steady-state path.

3 Eductive stability

We �rst provide a de�nition of eductive stability based on rather abstract

game-theoretical considerations. This will be the �high-tech�view on expecta-

tional coordination. However we will later see how the sophisticated high-tech

viewpoint has a more intuitive counterpart that may be termed �low-tech.�

Our analysis initially will leave in the shadow the time dimension of the prob-

lem. After illustrating the concepts in a simple cobweb framework, we then

reintroduce time and adapt the general ideas to our in�nite horizon setting.

3.1 Local eductive stability: the high-tech view

We begin by considering an abstract economy populated with rational eco-

nomic agents (in all the following, we shall assume that these agents are in�n-

itesimal, with the collection modelled as a continuum). The agents know the

logic of the collective economic interactions (the underlying model). Both the

rationality of the agents and the model are Common Knowledge (CK). The
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state of the system is denoted E and belongs to some subset E of some vector
space.10 Emphasizing the expectational aspects of the problem, we view an

equilibrium of the system as a state E� such that if everybody believes that it

prevails, it does prevail.11

Under eductive learning, as described below, each agent contemplates the

possible states of the economy implied by the beliefs and associated actions

of the economy�s agents. Coordination on a particular equilibrium outcome

obtains when this contemplation, together with the knowledge that all agents

are engaged in the same contemplation, rules out all potential economic out-

comes except the equilibrium. If coordination on an equilibrium is implied by

the eductive learning process, then we say that the equilibrium is eductively

stable.12 We call this the �high-tech�view since it relies on higher-order men-

tal reasoning. The argument can be either global or local. We now introduce

the local version of eductive stability. As we will see, even local stability is at

issue in our in�nite-horizon model.

Formally, we say that E� is locally eductively stable if and only if one can

�nd some (non-trivial) small neighborhood of E�, V (E�), such that Assertion

A implies Assertion B:

Assertion A : It is �hypothetically�CK that E 2 V (E�).
Assertion B : It is CK that E = E�.

Assertion A is at this stage hypothetical.13 In the stable case the mental

process that leads from Assertion A to Assertion B is the following:

1. Because everybody knows that E 2 V (E�), everybody knows that every-
body limits their responses to actions that are best responses to some

10Note that E can be a number (the value of an equilibrium price or a growth rate),
a vector (of equilibrium prices), a function (an equilibrium demand function), an in�nite
trajectory of states, as will be the case in this paper, or a probability distribution.
11Note that E� is such that the assertion �it is CK that E = E��is meaningful.
12The term �strongly rational�is also used. For details on the game theoretic background

of our investigation see Guesnerie and Jara-Moroni (2011). A study within a �normal form�
framework echoing the preoccupations of the present paper can be found in Matsui and
Oyama (2006). We also remark that we here view eductive stability as a zero-one criterion.
Less stringent indices of stability could also be developed, e.g. see Desgranges and Ghosal
(2010) for one such approach.
13Although it might be sustained by some policy commitment.
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probability distributions over V (E�). It follows that everybody knows

that the state of the system will be in a set E(1) � E .

2. If E(1) is a proper subset of V (E�), the mental process goes on as in step
1, but based now on E(1) instead of V (E�). In this case it follows that
everybody knows that the state of the system will be in a set E(2) � E .

3. The process continues inductively provided that at each stage, E(n) is a
proper subset of E(n� 1).

In the stable case, we have a decreasing sequence V (E�) � E(1) � � � � �
E(n � 1) � E(n).14 When the sequence converges to E�, the equilibrium is

locally eductively stable. Here �locally�refers to the fact that the initial neigh-

borhood is small.15 Note also that intuitively, in the small neighborhood case,

whenever the �rst step conclusion obtains the next step normally follows.16

Although inspired by game-theoretic considerations,17 we view eductive

stability as a natural expectational coordination criterion that has indepen-

dent merit. The connections of the approach with the game theoretical view-

point, for example the relationship between eductive stability and uniqueness

of rationalizable strategies, is assessed in Guesnerie, Jara-Moroni (2011).18

3.2 Example: Cobweb Model

To illustrate the eductive approach, consider the cobweb model, interpreted

as a producers�game in which the strategy of each �rm is its output and the

14A given economic model may be naturally allied with several distinct common knowledge
assumptions: these common knowledge assumptions will all impose the recursive reasoning
process described above, but will di¤er in the initial restrictions on agents� beliefs; and
because of the central role the initial restriction plays in the eductive learning process,
di¤erent common knowledge assumptions may produce di¤erent stability results.
15If the initial neighbourhood is E then the word global replaces the word local.
16At step 1, E(1) � V (E�) � E is CK and the mental process goes on in step 2, so that

the �rst step contraction still acts with a decreased support. See footnote 22, below.
17See the literature on rationalizable beliefs, e.g. Bernheim (1984) and Pearce (1984).
18Most of their analysis is conducted in a �nite-dimensional state space E . Thus their

results would require an extension to an in�nte-dimensional setting to ensure applicability
to our RBC framework.
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optimal choice of output depends on expected price, which then can be viewed

as the previous one-dimensional state E. This example is analyzed in detail

in Guesnerie (1992). For simplicity, consider a static, nonstochastic model

and assume that market demand d(p) is decreasing in price p and that for

each �rm the cost of producing quantity q is (2C)�1q2, with C > 0. There

is a continuum of �rms ! 2 [0; 1]. Each �rm ! must make its production

decision before the price is known, and chooses its quantity q(!) based on

expected price pe(!). Thus q(!) = Cpe(!) and with market clearing d(p) =R
q(!)d! = C

R
pe(!)d!. There is a unique perfect foresight equilibrium �p,

satisfying d(�p) = C �p, and pe(!) = �p for all !. For small deviations in expected

price, the equilibrium price p is given to �rst order by p = � � �
R
pe(!)d!;

for appropriate � and � = �C=d0(�p) > 0. We now ask whether individually

rational agents endowed with common knowledge, as previously discussed,

would necessarily coordinate on rational expectations.

The eductive argument works as follows. Let V (�p) denote a small open

symmetric interval containing �p. Suppose all agents believe that p 2 V (�p).

It follows that p 2 E(1) � �V (�p); and if � < 1 then E(1) is a proper subset
of V (�p). Continuing in the stable case, if, in addition, it is hypothetically

common knowledge that p 2 V (�p), then pe(!) 2 V (�p) for all ! and this is

also common knowledge. It then follows that it is common knowledge that

p 2 E(1): Iterating this argument it follows that pe(!) 2 E(N) � �NV (�p)

for all N = 0; 1; 2; : : :, so that high-tech eductive stability is implied. In

contrast, eductive stability fails if � > 1 since, even under the hypothetical

common knowledge assumption p 2 V (�p), hyper-rational agents are unable to
coordinate on p = �p through mental reasoning.

3.3 Local eductive stability: the low-tech interpretation

The above de�nition, based on the successful deletion of non-best responses

and starting under the assumption that the state of the system is close to the

equilibrium state, re�ects the local version of a �hyper-rationality�viewpoint.

An alternative �low-tech�de�nition of local expectational stability is the fol-
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lowing: there exists a non-trivial neighborhood of the equilibrium such that,

if everybody believes that the state of the system is in this neighborhood, it

is necessarily the case, whatever the speci�c form taken by everybody�s belief,

that the state is in the given neighborhood.19 With the above formal appa-

ratus, the de�nition is: one can �nd some non-trivial small neighborhood of

E�, V (E�), such that if everybody believes that E 2 V (E�), then the state

of the system will be in E(1); a proper subset of V (E�). Again, V (E�) is an
initial belief assumption, a universally shared conjecture on the set of possible

states, and for low-tech eductive stability we require that this belief cannot

be falsi�ed by actual outcomes resulting from individual actions that are best

responses to some probability distributions over V (E�).20 The argument is

here low-tech in the sense that it refers to the rationality of agents, but not to

CK of rationality or of the model, and does not even require full knowledge

of the model: the criterion focuses on agents�actions which depend only on

their beliefs about the state of the system, and not on their beliefs about other

agents�beliefs. To put it another way, the criterion appeals only to the results

of the �rst step of the high-tech criterion and emphasizes the one-step elastic-

ity of realizations to expectations. However, we have argued above that it is

intuitively plausible that the local high-tech and low-tech criteria turn out to

be equivalent in this abstract setting, as previously stressed in the literature.21

In the cobweb example with � < 1, low-tech eductive stability follows directly

from E(1) being a proper subset of V (�p).
Finally, some words are in order concerning the connections between the

eductive viewpoint and the �evolutive�or adaptive learning viewpoint. At this

point let us only say that the failure to �nd a set V (E�) for which the equi-

19The conjectural equilibrium bounds discussed by Benhabib and Bull (1988), in the
context of the overlapping generations model of money, has a similar motivation.
20Equivalently, in the absence of such a neighborhood V (E�), facts may falsify any �col-

lective�conjecture, whatever the proximity of the conjectured set to the equilibrium (unless
the conjecture is reduced to the equilibrium E� itself).
21A formal statement of the equivalence requires additional technical assumptions such

as the (weak) assumptions stressed of Guesnerie and Jara-Moroni (2011). Their results
also allow one to show that the local analysis may concentrate on heterogenous point-
expectations.
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librium is locally eductively stable signals a tendency for any near-equilibrium

states of beliefs, a priori reachable through some �reasonable� evolutive up-

dating process, to be driven away in some cases, a fact that threatens the

convergence of the corresponding learning rule.22

3.4 Eductive stability within the RBC model

We now return to the RBC model, and in line with the above discussion we

begin with the high-tech viewpoint. The time dimension of our problem, and

in particular the in�nite horizon, as well as the fact that agents are in�nitely-

lived, brings some additional features to our general framework and then raises

some additional issues.

The equilibrium E� under consideration is given by dKt = 0 for all t,

where here and in the sequel we use the deviation notation of Section 2.2.

The �rst issue concerns the notion of a neighborhood V (E�), which is less

straightforward here than in timeless or short-horizon contexts. Consider the

economy at time zero with dk0(!) = 0 for all !. We begin with a simple,

natural restriction on the initial time paths of beliefs, that they lie within

an "-neighborhood of the steady state, which might be called the �cylinder�

assumption. In later sections we consider alternative initial assumptions. The

cylinder assumption is:23

B1: For some " > 0 su¢ ciently small, dKt 2 D(") � [�"; "] for all t.

Under the high-tech eductive approach, we assume that agents are rational,

know the model (including the connections between r; w andK), know that all

agents are rational, and know that these facts are common knowledge. Finally,

we hypothetically assume that B1 is common knowledge:

CK1: It is hypothetically Common Knowledge that B1 is satis�ed.

Given our emphasis on point expectations, which is justi�ed for a small

22And certainly forbids a strong form of �monotonic�convergence: see Guesnerie (2002),
Guesnerie and Woodford (1991) and Gauthier and Guesnerie (2004).
23Recall that we restrict attention to paths su¢ ciently close to the steady state that

�rst-order approximations remain valid.
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neighborhood of beliefs, a point expectations beliefs pro�le Ke, as introduced

above, satis�es B1 provided that dKe
t (!) 2 D(") for all ! and t. Furthermore,

with CK1, we assume that agent !0 knows that dKe
t (!) 2 D("), and that

agent !00 knows that agent !0 knows that dKe
t (!) 2 D("), etc.

De�nition 2 The steady state is CK1 strongly eductively stable if CK1, in
addition to the above assumptions, implies that it is common knowledge that

the equilibrium path, dKt = 0 for all t, will take place.24

When we need to be explicit we index B1 by B1(") and CK1 by CK1(").

We denote by dKt =
R
dkt(!)d! the time t aggregate planned savings of

agents, where we use our �rst-order notation for convenience. A proof of strong

eductive stability would then proceed as follows. The �rst stage of the mental

process places attention on the possible aggregate plans dK = fdKtgt�0 gen-
erated by the in�nite-horizon plans fdkt(!)gt�0;!2[0;1] associated with a pro�le
dKe = fdKe

t (!)gt�0;!2[0;1] of initial beliefs satisfying B1. If these possible paths
dK restrict the initial beliefs, then the process continues given these new belief

restrictions, and so on. If this mental process converges, the agents�CK beliefs

about the aggregate path coincide with the equilibrium path: they correctly

predict the next period�s state and all future states resulting from the guessed

actions and plans; in our terminology, the steady state is strongly eductively

stable. Hence, in our intertemporal context, while the high-tech story is more

sophisticated than it is in the abstract timeless or one-period context intro-

duced above, it follows the same logic: rational agents relying on CK1 are able

to deduce at time zero that dKt = 0 for all t:

We now move to a low-tech interpretation for our model consistent with

Section 3.3, which is given by the following de�nition:

De�nition 3 The steady state is B1 strongly stable under the low-tech view-
point if beliefs consistent with B1 imply aggregate plans consistent with B1.

24We slightly depart from previous terminology, by leaving the local aspects of the analysis
implicit (and not referring to local eductive stability) and by using the word �strong� to
stress that the simultaneous coordination at time zero concerns the entire time path of
aggregate capital. Below we distinguish this notion of stability from less demanding concepts.
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In the timeless environment examined in Sections 3.1-3.3, aggregate plans

are fully determined by the beliefs of agents, making the low-tech implemen-

tation unambiguous. In our dynamic setting, however, the realizations of

the aggregate over time can di¤er from agents�expectations, leading them to

change their plans, and possibly to revise their expectations of the future. We

will come to the question of revised expectations later in Section 5.

At this stage, we introduce an alternative low-tech interpretation in our

model, which emphasizes the real-time evolution of the economy when initial

beliefs fKe
t (!)g

1
t=1 are strictly maintained as the economy evolves.

De�nition 4 The steady state is B1 strongly stable, under the low-tech view-
point, in the alternative sense, if beliefs consistent with B1 and maintained over

time imply aggregate trajectories consistent with B1, i.e. fdKsg1s=1 2 D1(") �
D(")�D(")�� � � ; when each agent ! chooses dct(!); dkt+1(!) optimally given
his savings dkt(!); dKt and his expectations fdKe

s (!)g
1
s=t+1 :

There are close connections between these three notions of stability:

Proposition 1 A failure of strong stability under the low-tech viewpoint of

De�nition 3 implies both a failure of strong stability in the sense of De�nition

2 and in the alternative sense of De�nition 4.

Proof. If stability in the sense of De�nition 3 does not hold, agents are thus
unable to deduce from CK1 that the path for capital must remain in D(").

The hypothetical common knowledge assumption cannot be con�rmed, the

mental process cannot go further and eductive stability fails in the sense of

2. To sketch the argument for instability in the alternative sense of De�nition

4, note that because there are no income e¤ects associated with changes in

aggregate capital, it follows from the Preparation Lemma that the plans of

agent ! are to �rst order independent of aggregate capital. The same is true

of the actual decisions for unchanged beliefs. Hence, if the aggregate plans

considered in De�nition 3 went outside D("), the same would be true for the

actual trajectory.25

25Indeed, with some additional assumptions the three de�nitions of strong stabilty are
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In the following section, we will rely on this proposition to stress that a

failure of strong stability under the �rst low-tech de�nition implies a failure of

strong stability in all senses.

4 Impossibility of Strong Eductive Stability

The principle of our investigation is the following: we focus on individual

agents ! noting that given their expectations of the aggregate capital stock

fdKe
t (!)g

1
t=1 they formulate optimal dynamic consumption and savings plans,

fdct(!)g1t=0 and fdkt(!)g
1
t=1. These individual plans generate an aggregate

consumption trajectory dCt =
R 1
0
dct(!)d!, for t � 0, and hence a correspond-

ing trajectory for the aggregate capital stock fdKtg1t=1. We note that if all
agents hold the same expectations then dCt = dct(!) and dKt = dkt(!), and in

particular the map �k determines the implied path of aggregate capital. From

Proposition 1 a necessary condition for strong stability is that for homogeneous

beliefs consistent with B1 the implied paths lie within D1(").

4.1 Preliminaries: weak eductive stability

From the above analysis, a prerequisite to strong stability, whatever its def-

inition, is the following: under the beliefs restrictions B1, the optimal plans

of agents necessarily lead to consumption and saving decisions dc0(!); dk1(!)

that imply dK1 2 D("): This condition, clearly a necessary condition, will be
called weak eductive stability.

De�nition 5 The steady state is weakly eductively stable if, given the initial
condition dk0(!) = 0 for all agents !; and given that all agents�beliefs satisfy

B1, then the aggregate capital stock in period t = 1 implied by the agents�

optimal plans satis�es dK1 2 D(").

Using the above remarks and Corollary 1 we immediately conclude:

equivalent when " is small enough. The required additional assumptions for the equivalence
would have the same �avor as those referred to in footnote 22.
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Corollary 4 Under B1 the steady state is weakly eductively stable if � < 1

(and only if � � 1).

We have earlier stressed the key role of the parameter � in relating real-

izations to expectations. The condition � < 1 implies that high � and low

f 00 promote eductive stability. This makes intuitive sense: if f 00 is small then

a given change in the path dKe(!) results in a small change in the expected

interest rate path dre(!). If � is large then the substitution e¤ect is small,

leading to a small change dc0(!). Thus when f 00 is small and � is large, changes

in dKe(!) result in a small change dC0 in consumption at t = 0 and hence a

small change in �rst-period capital dK1.

For example, suppose production is Cobb-Douglas, so that f(K) = K',

for 0 < ' < 1, and utility takes the form U(c) = (c(1��) � 1)=(1 � �), for

� > 0. Then �K =
�
' (�r + �)�1

�1=(1�')
and f 00 = '(' � 1) �K'�2. Using these

and the steady-state equations �r = ��1 � 1 and �C = �K' � � �K, it can be

computed that if, say, ' = 1=3, �r = 0:05 and � = 0:10, then we have weak

eductive stability if and only if � > 2=3. This condition is perhaps plausibly

satis�ed, though we have obtained the somewhat surprising result that even

weak eductive stability of the RBC model cannot be taken for granted.

4.2 Strong eductive stability: impossibility theorems

We now turn to several central results in which we establish the failure of

(local) strong eductive stability.

4.2.1 The impossibility of CK1 strong eductive stability

In Corollary 4 we gave a condition for a minimal consistency requirement:

given beliefs B1, the initial plans of agents will necessarily be consistent with

B1 in the �rst period t = 1 whenever the stated condition � < 1 is satis�ed.

However, this is only a weak necessary condition for coordination on the full

equilibrium path. Recall that D(") = [�"; "]. For strong eductive stability of
the steady state under B1("), it is necessary26 that the aggregate planned tra-

26And in fact, as argued above, this is almost su¢ cient.
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jectories of aggregate capital lie inD("). Conversely, as stressed in Proposition

1, if for a given beliefs path satisfying B1("), the corresponding trajectory of

aggregate capital does not remain in D1("), this implies eductive instability,

whichever local de�nition is adopted.

Theorem 2 The steady state is never strongly CK1 eductively stable, whichever
de�nition is adopted.

Proof. To prove that strong stability fails in the sense of De�nition 3, we
consider the homogeneous belief class in which all agents have the N -period

deviation beliefs as given by (11). Setting 0 < e � ", it can be seen from (12)

that jdkN(!)j > " for N large.

We emphasize the ubiquitous instability implied by Theorem 2 and its

generalization given by Theorem 3 below: these results hold for all utility

and production functions meeting standard assumptions and for all discount

factors 0 < � < 1 and depreciation rates 0 � � � 1.
We remark that, for the class of homogeneous N -period deviation beliefs

given by (11), for � su¢ ciently small the �rst N such that jdkN(!)j > " can

be relatively large. This can be viewed as an extension of our weak eductive

stability result: if e = ", using equation (12), it can be shown that for t < ��1

aggregate capital dKt remains inside D(") in accordance with B1.27

To summarize the intuition corresponding to Corollary 3, with expectations

dKe
s = " > 0 for s � N , the optimal plan for agents is to increase consumption

today at the expense of future consumption. For � > 1 the positive impact

on dC0 is large enough to be immediately destabilizing in the short run in

the sense that dK1 < �". However, even for � < 1, and even if � is small,

expectations dKe
s = " > 0 for s � N for N large imply that eventually

dKt < �". The planned future reduction in consumption is not enough to
avoid, and is consistent with, dKt leaving D(").

Theorem 2 should be contrasted with the fact that, as noted in the In-

troduction (and as demonstrated in the Appendix), with short-lived agents

27For example, the reader will notice that in the previous Cobb-Douglas economy, � > 2=3
was enough to get weak eductive stability. Because � = 2=(3�) it follows that � > 3 implies
that the exit time t; just emphasized, is greater than 5.
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eductive stability often holds under natural conditions. The long-run horizon

dramatically a¤ects expectational coordination, as evaluated from the strong

eductive viewpoint.

In the next Section we show that the instability result does not depend on

our speci�c choice of the neighborhood.

4.2.2 The general impossibility of strong eductive stability

We now consider a more general class of beliefs, which nests B1:

B2: There exists a speci�ed deterministic sequence f"tg1t=1 with 0 < "t < �"

and �" su¢ ciently small, such that dKt 2 [�"t; "t] for all t.

Under B2, all of our concepts and de�nitions of strong eductive stability are

modi�ed in the obvious way. For example we refer to CK2 strong eductive

stability when CK1 is replaced in De�nition 2 by CK2: it is hypothetically

common knowledge that B2 is satis�ed.

Theorem 3 Under B2, the steady state is never locally strongly eductively
stable, whichever de�nition is adopted.

Proof. As above, it is enough to prove that stability fails in the low-tech sense
of De�nition 3. Letting sm =

Pm
i=1 "i, we observe that for any � > 0, there

is some m so that �sm > "m. Indeed, if sm diverges the result is immediate;

otherwise, �sm is increasing and "m ! 0. Next, �x some horizon N > 0, and

let agent ! have beliefs dKe
N(!) = "t for 1 � t � N , and zero otherwise.

His savings decision is dkN(!) = ���k � dKe
N(!): Noting that the entries of

�k are all positive, that the �rst m entries in row m are increasing, and that

�k(m; 1) = 1� � for all m, we have that

��dkNN (!)�� = �
NX
i=1

�k(N; i)"i � �(1� �)
NX
i=1

"i:

For � = �(1��) and N large, the proof is completed by the initial observation
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and the su¢ ciency of considering individual behavior.28 ;29

The negative result of Theorem 3 means in particular that the hyper-

rationalistic viewpoint of strong eductive stability is never conclusive.30 Our

hyper-sophisticated agents cannot convince themselves that the rational ex-

pectations equilibrium will necessarily prevail.

5 Combining eductive and evolutive learning

We have found that the steady state �K is not strongly eductively stable ac-

cording to the various de�nitions given above: beliefs of the B1 or B2 type

cannot trigger CK of the equilibrium. If common knowledge of full rationality

has no predictive power, boundedly rational considerations seem unavoidable

and this suggests introducing real-time learning, At the same time, it is known

that, for a suitable and natural class of adaptive learning rules, the steady

state is locally asymptotically stable. At �rst sight, this suggests a disconnect

between the adaptive and eductive approaches that is much more signi�cant

than previously noted in the literature. However, a better way to consider the

connection is to adopt the next viewpoint which combines the two approaches,

mixing bounded rationality, along the lines of evolutive or adaptive learning,

with considerations on the proximity of beliefs to the steady state, associated

with the eductive viewpoint.

28We remark that if we modify CK2 to allow "t = 0 for some proper subset of times t,
the contradiction obtains more directly by focusing attention on such times.
29While the given proof exploits the functional form of the matrix �k, in the Appendix

we show that this fundamental instability result follows from strategic substitutability of
the map taking expectations to actions, which the map �k exhibits.
30Instability results also appear in the adaptive learning literature. For example, Howitt

(1992) and Evans and Honkapohja (2003) show instability for a class of interest-rate rules in
monetary models. However, these models can also su¤er from indeterminacy, and stability
under adaptive learning can be restored with a suitable choice of interest-rate rule. The
generic instability results of the current paper are particularly striking since the RBC model
is in general well-behaved.
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5.1 The framework

We again endow agents with expectations about the future path of the ag-

gregate capital stock. These expectations are restricted to belong to a set,

which for convenience we will take to be the set D(") described by B1. This

set can here be viewed as describing a collective belief that provides bounds

on individual beliefs. Following the eductive approach of this paper, agents�

decisions are based on an assessment of the whole future,31 but in line with

what we called the alternative sense in De�nition 4, we look at the system

in real time. Our focus remains on whether the realized path for aggregate

capital stays within D("). Now, however, in accordance with the evolutive or

adaptive learning viewpoint, the expected trajectory at time t is assumed not

only to re�ect initial beliefs but also to respond to observed actual capital.

More precisely, we specify a set of adaptive learning rules that determine

the way initial expectations change along the real-time trajectory of aggre-

gate capital. Then, coming back to the collective belief interpretation of B1,

reminiscent of the eductive approach, we ask if the implied path fdKtg1t=1 will
necessarily satisfy B1, i.e. if the collective belief, which serves as a frame for

the individual beliefs, is subject to real-time falsi�cation. If for some nonempty

subset of adaptive learning rules, falsi�cation is impossible, then we say that

the steady state is B1-stable under evolutive learning, and if this occurs for all

adaptive learning rules within the set of rules under consideration, we say the

steady state is robustly B1-stable under evolutive learning.

5.2 The real-time system

In the real-time system we assume that at each time t each agent ! re-solves

their dynamic optimization problem. That is, at each time t agent ! chooses

dkt+1(!) optimally given their savings, their expectations (which are now re-

31In the adaptive learning literature, within in�nite-horizon models, this approach has
been followed, for example, in Sargent (1993, pp. 122-125), Preston (2006), Eusepi and
Preston (2008) and Evans, Honkapoha and Mitra (2009). An alternative approach in the
adaptive learning literature is based on one-step-ahead �Euler equation�learning. See, e.g.
Evans and Honkapohja (2001), Ch. 10.
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vised each period) and the aggregate capital stock. Using Lemma 3, the real-

time description of savings behavior is given by

dkt+1(!) = dkt(!)� ��1(1� �)�
X

j�1
�jdKe

t;t+j(!); (14)

where now dKe
t;t+j(!) is the point expectation of aggregate capital in period

t + j held by agent ! in period t, which, as implied by the notation, we now

allow to evolve over time.32

It can be seen from equation (14) that the agent�s decision dkt+1(!) depends

on a single su¢ cient statistic for
�
dKe

t;t+j(!)
	1
j=1
, given by

dK̂e
t (!) = ��1(1� �)

X
j�1

�jdKe
t;t+j(!):

The normalization factor ��1(1 � �) ensures that the sum of the weights on

dKe
t;t+j(!) is one, so that under B1, dK̂

e
t (!) must lie in the interval D("). We

thus rewrite (14) as dkt+1(!) = dkt(!)��dK̂e
t (!); and, following the boundedly

rational adaptive learning approach, interpret this equation as providing a

behavioral decision rule in which we re-envision the agent�s saving choice as

depending solely on current wealth and the su¢ cient statistic dK̂e
t (!). For

convenience we refer to dK̂e
t (!) as �expected future capital.�

Finally we specify a simple adaptive scheme for the revisions of expectations

over time: dK̂e
t (!) = (1 � �)dK̂e

t�1(!) + �dKt; where 0 < � � 1, called the

gain parameter in the literature, describes how expectations re�ect current

information about the actual capital stock.33

32The proofs of Lemmas 1 - 3 show that the formulae may be applied at any time t, using
time t expectations of future aggregate capital, the time t realization of aggregate capital,
and the agent�s time t savings, provided these quantities are near the steady state �K.
33Adaptive learning in nonstochastic models with in�nite horizons often assumes that

forecasts are the same at all horizons. See, for example, Evans, Honkapohja and Mitra
(2009). In the current context this means dKe

t;t+j = e at t for all j. Our formulation in

terms of dK̂e
t allows for greater generality, while retaining a single su¢ cient statistic that is

updated over time. In stochastic models, the time pattern of variables can be estimated and
updated using recursive least squares. For technical reasons this procedure cannot be used
in nonstochastic systems. Intuitively, in a nonstochastic equilibrium the asymptotic lack of
temporal variation makes impossible consistent estimation of time-series parameters. See
Evans and Honkapohja (2001, pp. 152-154).
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We are now in a position to describe the real-time evolution of the system.

For the sake of simplicity, we start from an initial situation in which the time-

zero belief is the same for everybody:

dK̂e
0(!) � ��1(1� �)

X
j�1

�jdKe
0;j(!) = dK̂e

0 ;

and thus the su¢ cient statistics are initially, and remain, homogeneous across

agents. Finally, in line with our earlier analysis, we assume that dK0 = 0.34

The homogeneity assumption allows us to calculate the resulting time path,

and is also illuminating in the sense that we would hope the system to be stable

under learning if we start with small expected future capital dK̂e
0 . Under

homogeneity the system�s dynamics, which depend only on initial dK̂e
0 and on

the parameters � and �, can be written as

dKt+1 = dKt � �dK̂e
t and dK̂

e
t+1 = (1� �)dK̂e

t + �dKt+1: (15)

We can now return to the previously suggested concept of B1-stability under

adaptive learning and give formal de�nitions.

De�nition 6 The steady state is B1-stable under adaptive learning for a given
0 < � � 1 if, for all " > 0, jdK̂e

0 j < " implies that the trajectory fdKtg1t=1 ;
generated by (15) remains in the cylinder D(")1.

De�nition 7 The steady state is robustly B1-stable under adaptive learning
if it is B1-stable under adaptive learning for all 0 < � � 1.

If the steady state is B1-stable for some nonempty subset of 0 < � � 1, but
is not robustly B1-stable, then we will say that it is partially B1-stable under

adaptive learning.

5.3 The results

The �rst result is again an impossibility theorem.

34Our results are qualitatively robust to small perturbations of intial aggregate capital.
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Theorem 4 Under adaptive learning the steady state is not robustly B1-stable.

The proof is given in the Appendix. In fact the result should be expected in

view of Proposition 1 and Theorem 2. The trajectory under adaptive learning

is continuous in � (for small � > 0 the �-trajectory is close to the � = 0

trajectory under an appropriate metric). The path of dKt under adaptive

learning and when � = 0 corresponds to the path that would be realized by

the actions of eductive agents with the constantly held beliefs dKe
t (!) = dK̂e

0 .

Failure of robust B1-stability would then follow by continuity as a result of

the impossibility of strong eductive stability in the alternative sense.

A striking feature of Theorem 4 is that instability arises for small �, which

in the adaptive and least-squares learning literature is usually viewed as a

stabilizing case (the �small gain� limit).35 In our approach, the problem is

that in this case the initial collective belief will be falsi�ed, which we view as

a fragility of expectational coordination.

The instability result is stronger than stated in the following sense, which

can be veri�ed from the proof of Theorem 4. Given " > 0, consider any initial

beliefs 0 < jdK̂e
0 j < ". Then there exists � > 0 such that the corresponding

trajectory under adaptive learning will have jdKtj > " for some t � 1. That
is, starting from the steady state, all initial expectations, for appropriate �,

lead to paths dKt that leave D(").

We next turn to partial B1-stability under adaptive learning. We will

see that a natural necessary condition is given by asymptotic stability of the

system (15). Asymptotic stability is the classical stability criterion used for

adaptive learning. We therefore start with the following result:

Lemma 4 System (15) is asymptotically stable if and only if � < 4��1 � 2:
35The connection between eductive stability and stability under evolutive (or adaptive)

learning rules has been discussed in Evans and Guesnerie (1993), Guesnerie (2002) and
Hommes and Wagener (2010). In short-horizon set-ups, eductive instability is usually re-
�ected in adaptive instability for large gains (here � < 1 large). This is seen for the
overlapping generations model with money in Guesnerie and Woodford (1991) and Evans
and Honkapohja (1995). We also note that in experiments the complex expectational dy-
namics found in Hommes (2011) for the cobweb model arise in the eductively unstable case
we identify in Section 3.2. For related work see Bao and Du¤y (2013).
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Lemma 4 implies asymptotic stability for all � if � < 2 and for � <

4(2 + �)�1 if � � 2. For given " > 0, asymptotic stability implies that

jdKtj; jdK̂e
t j � " for t su¢ ciently large. In fact asymptotic stability is a neces-

sary condition for partial B1-stability under adaptive learning.36 However this

is only one necessary condition for partial B1-stability under adaptive learn-

ing. It is immediate from (15) that � < 1 is another necessary condition. A

more complete picture is provided by the following Theorem.

Theorem 5 We have the following results on partial B1-stability and asymp-
totic stability for the adaptive learning system (15) with � > 0 and 0 < � � 1:

1. Given �, the steady state is B1-stable for su¢ ciently small �.

2. Given � satisfying � � 1:

(a) the steady state is not B1-stable for su¢ ciently small �;

(b) the steady state is B1-stable for su¢ ciently large �;

(c) the steady state is asymptotically stable for all �.

3. Given � satisfying � > 1:

(a) the steady state is not B1-stable for any �;

(b) for 1 < � < 2; the steady state is asymptotically stable for all �;

(c) for � � 2; it is asymptotically stable for � < 4(2 + �)�1.

This theorem emphasizes the relevance of the expectations feedback para-

meter for understanding real-time learning. Indeed, the coe¢ cient �, stressed

in Sections 2 and 3, plays a key role in both partial B1-stability and asymp-

totic stability under adaptive learning. Clearly small � is stabilizing: for any �,

36To see this, assume the system is not asymptotically stable. It can be shown that the
eigenvalues in this case are real. (The proof of Lemma 4 implies that in the complex case
the modulus of the eigenvalues is 1� �.) We must show that dK0 = 0, dK̂e 6= 0 leads to a
divergent path. Noting that (0; 1) is not an eigenvector it follows that all initial conditions
(0; dK̂e) lead to divergent paths provided at least one of the eigenvalues has magnitude
larger than one.
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B1-stability obtains for su¢ ciently small �; and whenever � < 1 B1-stability

holds for � su¢ ciently large. Similarly, large � is destabilizing. If � > 1 then

partial B1-stability fails: for some initial beliefs satisfying B1, the path will fal-

sify these beliefs, whatever the speci�c (asymptotically stable or not) adaptive

learning rule used by the agents. Furthermore for � > 2 asymptotic stability

obtains only for � su¢ ciently small, while for � < 2 asymptotic stability holds

for all �.37

We emphasize that while for given � the asymptotic stability condition

� < 4��1 � 2 is easier to satisfy when � > 0 is small, it is small values of �

that generate the failure of robust B1-stability under adaptive learning. Small

� under adaptive learning leads to a cumulative movement of aggregate capital

away from the steady state value, which over �nite time periods, as � ! 0,

track the possible dKt paths deduced by agents in our eductive setting.38

6 Discussion and Conclusion

This paper examines the impact of the presence of long-lived agents on the

coordination of expectations within the context of a simple RBC model. Ex-

pectational coordination is assessed from several competing yet complementary

viewpoints.

In all cases we �nd coordination di¢ cult to achieve. The di¢ culty relates

to the elasticity of the economic outcome to the agents�expectations. A clear

contribution of the paper is to show that, within the model under consider-

ation, the presence of long-sighted agents implies that these elasticities are

high: this is the lesson of the Preparation Theorem. Our analysis emphasizes

37Partial B1-stability results for � < 1 exhibit a trade-o¤ between � and �: as � ! 1 from
below, the partial B1-stability region tends to � > 1=2. Numerical results indicate partial
B1-stability for � 2 ((�); 1] where (�) is continuous and monotonically increasing in �
with (�) ! 0 as � ! 0. When � = 1 we have partial B1-stability for � 2 [1=2; 1] . We
note a discontinuity in B1-stability for given �, which is caused by �rst-period behavior:
dK1 = ��dKe

0 implies B1-instability for any � > 1.
38An interesting feature of the lack of robust B1-stability under adaptive learning, which

can be seen in the proof of Theorem 4 given in the Appendix, is that the instability is
associated with long cyclical movements in dKt.
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the key roles of the expectations feedback parameter � and the matrices �c and

�k, which govern the magnitude of the elasticities and reveal the cumulative

e¤ects of small but persistent deviations of expectations from the equilibrium.

The Preparation Theorem implies a generic failure of strong eductive sta-

bility in the RBCmodel: hypothetical common knowledge assumptions cannot

trigger common knowledge of the equilibrium.39 Thus full coordination on the

REE, as of time zero, cannot be expected based on full rationality and on

common knowledge of the model. Strikingly, the negative result holds inde-

pendently of the system characteristics, in sharp contrast to previous eductive

learning studies that emphasize on �good cases�in which CK considerations

provide support for the possibility of expectational coordination on the REE

�see Guesnerie (2005).

There is a sense, however, in which small � favours expectational coordi-

nation: � < 1 is the condition for weak eductive stability. The parameter � is

additionally central to an extended notion of weak eductive stability: it fol-

lows from Corollary 3 that, for given homogeneous N -period deviation beliefs

(11), the implied path of aggregate plans stays inside the "-cylinder when the

expectational feedback � is su¢ ciently small. Thus for expectations that de-

viate for a �nite horizon, the beliefs assumption B1 is not contradicted when

� is small. This provides some support for the possibility of a degree of coor-

dination. However, this coordination is only partial in two distinct ways: (i)

under the beliefs (11), the implied aggregate plans will deviate from equilib-

rium beyond the horizon; and (ii) for �xed � , the compatibility of plans and

beliefs will cease to be maintained for a large enough horizon N because dKt

will become too large, at some t < N , leading to a violation of B1 and hence

the CK assumption.40

39We do not claim however that this di¢ culty occurs in every model with in�nitely-lived
agents. For example, it would not occur in the world of Lucas (1978) for the reasons stressed
in Section 6 of his paper. The di¤erence in conclusions re�ects the fact that in the Lucas
tree model the dividend of a tree is exogenous, while in the RBC setting beliefs of agents
a¤ect rental rates though the endogeneity of aggregate capital.
40To elaborate, there is negative short-run feedback, which may be destabilizing, while

in the long run strategic substitutability is decisive and the negative feedback of expected
capital will be destabilizing. That is, given an expectation that aggregate K will fall below
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This is, as stressed in the Introduction, a striking di¤erence from dynamic

models with short-lived agents. In a separate analysis we have studied educ-

tive stability in an overlapping generations (OLG) model with capital. This

OLG model can also be interpreted as a variant of the RBC model in which

agents are myopic in the sense that their planning horizon extends only to

the following period. In line with the �ndings stressed in the Introduction,

we �nd that myopia makes expectational coordination easier. In particular we

obtain a strong eductive stability condition that is satis�ed for one frequently

employed parametric class.

Returning to our RBC framework, a logical consequence of the failure of

strong eductive stability is that the evolution of the economy requires bounded

rationality considerations that incorporate adaptive learning rules. We there-

fore consider paths generated by adaptive learning, and ask whether their

dynamics re�ect the eductive instability results. In this setting the elasticity

of realizations to expectations depends both on the expectations feedback pa-

rameter � and on the gain parameter �, which measures the reaction of beliefs

to observed data. Thus � also plays a key role in the evolutive learning results,

e.g. asymptotic stability is implied when � < 2. Moreover, from Theorem 5,

for given � the implied path of aggregate capital stays inside the "-cylinder

when the expectational feedback � is su¢ ciently small: for �xed �, small �

implies B1-stability.

We present a number of adaptive learning results that link real-time adap-

tive learning dynamics to � and �. Most strikingly, we provide a strong

adaptive learning result that is closely linked to strong eductive instability:

Theorem 4 shows that while real-time adaptive learning under small gain is

asymptotically stable, the resulting time paths will include periods of large

deviations from RE, even if initial expectations are close to the steady state.

This result suggests that non-negligible deviations from the REE are likely.

Starting from a steady state, suppose there is a small shock to expectations,

e.g. created by some news event. Then not only will coordination on the REE

�K by a small amount for a long enough stretch of time, the optimal dynamic plans of agents
call for them to eventually accumulate capital in excess of �K by a large amount.
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be impossible using eductive learning, but also some plausible adaptive learn-

ing rules, even if they return the economy to the steady state asymptotically,

will necessarily �rst lead the economy away from the steady state. Thus the

eductive viewpoint opens another door to the new territories investigated in

learning studies and provides a powerful tool for their exploration.41

Let us summarize. The di¢ culties of expectational coordination can be

ascertained from two sides, the eductive one and the evolutive or adaptive

one. In both cases, long-sighted agents are sensitive to the whole path of ex-

pectations and long-run expectations matter signi�cantly. It is not surprising

that long-run concerns in�uence present decisions and future plans. But the

sensitivity to expectations of long-run plans envisaged today is extreme, and

this is at the heart of the impossibility of strong eductive stability. If adaptive

learning is incorporated into the model, so that expectations evolve over time,

these sources of instability remain pivotal. If the adaptation parameter is large

then unstable overshooting can arise in the short run, while if the adaptation

rate is small then low-frequency swings over the medium run will necessarily

generate instability.

The present analysis presents a useful starting point, and provides a neces-

sary anchor, for an overdue more general re�ection on the appropriate incor-

poration of expectational coordination in long-horizon economic models.

Appendix
Proof of Lemma 1. The agent�s lifetime budget constraint, dated here at
time t and with his transversality condition incorporated, is given by

1X
n=0

Rn
t ct+n(!) =

1X
n=0

Rn
t qt+n + (1 + rt)kt(!), where Rn

t =
nY
i=1

(1 + rt+i)
�1

and R0t = 1. We compute total derivatives at the steady state. Noting from

41For RBC models, important adaptive learning dynamics have been noted in Evans,
Honkapohja and Mitra (2009), Eusepi and Preston (2011) and Branch and McGough (2011).
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dRn
t = ��n+1

Pn
i=1 drt+i that

P
n�0 dR

n
t = �1

�r

P
n�1 �

ndrt+n; we obtainX
n�0

�ndct+n(!) = ��1dkt(!)+dqt+ �Kdrt+
X
n�1

�ndqt+n+�r
�1 � �C � �q�X

n�1
�ndrt+n:

At the steady state, we have �C = �q + �r �K. Also, by constant returns to scale,

q = f(K)�Kf 0(K), so that dq + �Kdr = 0. It follows thatX
n�0

�ndct+n(!) = ��1dkt(!) +
X
n�1

�n(dqt+n + �Kdrt+n) = ��1dkt(!):

Setting t = 0 gives the result claimed in Lemma 1.

Proof of Lemma 2. From the agent�s �ow budget constraint (2) we have, to
�rst order, that dkt+1(!) = (1+ �r)dkt(!)+ �Kdrt+dqt�dct(!) from which (8)
follows using the zero income e¤ect dq + �Kdr = 0. Under point expectations

equation (3) is U 0(ct(!)) = �(1 + ret+1(!))U
0(ct+1(!)). Thus to �rst order

U 00( �C)dct(!) = �(1 + �r)U 00( �C)dct+1(!) + �U 0( �C)dret+1(!): Using dr
e
t+1(!) =

f 00( �K)dKe
t+1(!), �(1 + �r) = 1 and the de�nition of � gives (7).

Proof of Lemma 3. By recursive substitution the linearized Euler equation

(7) taken at time t gives dct+n(!) = dct(!) +
� �Cf 00

�

nP
s=1

dKe
t+s(!): Applying the

Welfare Lemma at time t, i.e.
P

n�0 �
ndct+n(!) = ��1dkt(!), gives

��1dkt(!) = (1� �)�1dct(!) +
� �Cf 00

�

X
n�1

�n
nX
s=1

dKe
t+s(!):

Using
P

n�1 �
nPn

s=1 dK
e
t+s(!) = (1 � �)�1

P
n�1 �

ndKe
t+n(!) yields the op-

timal plan for consumption (9). Combining this with (8) yields dkt+1(!) =

dkt(!) +
� �Cf 00

�

P
n�1 �

ndKe
t+n(!); which is equivalent to (10).

Proof of Theorem 4. To examine B1-stability we consider the system (15)

with the assumed initial conditions dK0 = 0 and dKe
0(!) = e, where e = �"

for all !. The dynamics of dKt can equivalently be written as

dKt+2 = (2� �(1 + �))dKt+1 � (1� �)dKt;
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with dK0 = 0 and dK1 = ��e. The eigenvalues of the dynamic system are

�1; �2 =
1

2

n
2� �(1 + �)�

p
�
p
�(1 + �)2 � 4�

o
:

If �(1 + �)2 < 4� these eigenvalues are complex conjugates, and the solution

is given by dKt = � �e
r sin 

rt sin( t), where r2 = 1� � and

 = sin�1
�
1

2

p
(1� �)�1 (4��� �2(1 + �)2)

�
:

If �(1+�)2 > 4� the eigenvalues are real and distinct (we omit the non-generic

case of repeated roots) and dKt = �(�1 � �2)
�1�e(�t1 � �t2).

To show lack of B1-stability for small � > 0, note that for su¢ ciently small

� the roots are complex and at t = T = �
2 

dKT = �
2�e

p
�
p
4� � �(1 + �)2

(1� �)�=(4 ).

It can be veri�ed that lim�#0 dKT ( (�)) = �1; where the sign is opposite to

the sign of e. It follows that for � > 0 su¢ ciently small we have jdKtj > " for

values of t near T .

Proof of Lemma 4. The system can be written as 
dKt+1

dK̂e
t+1

!
=

 
1 ��
� 1� �(1 + �)

! 
dKt

dK̂e
t

!
:

Let A denote the 2 � 2 matrix that governs the dynamics. For asymptotic
stability we need both eigenvalues within the unit circle. Equivalently (see

LaSalle (1986), p. 28) we require jdet(A)j < 1 and jtr(A)j < 1 + det(A).

Since det(A) = 1 � � the �rst condition is satis�ed for all 0 < � < 1. Using

tr(A) = 2� �(1 + �) leads to the stated condition.

Proof of Theorem 5. 1) (Sketch) For � su¢ ciently small, the eigenvalues
of the system (15) are real and positive. The proof of Theorem 4 shows that,

in this case, the path dKt is proportional to (�1 � �2)(�
t
1 � �t2), which, as a
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continuously di¤erentiable function of t, has at most one critical point for t > 0.

This, together with the fact that the maximummagnitude of dKt is continuous

in �, and approaches zero as � ! 0, yields the result. 2) Asymptotic stability

is immediate from Lemma 4. Failure of B1-stability for small � > 0 follows

from the proof of Theorem 4. To show B1-stability for large � < 1, note that

for � = 1 the solution is dKt = �(1� �)t�e. By continuity fdKtg1t=0 2 D(")1

for all � < 1 su¢ ciently large. 3) Lack of partial B1-stability is immediate

since dK1 = ��e for dK0 = 0 and dKe
0(!) = e, where e = �" for all !. The

asymptotic stability results follow from Lemma 4.
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Extended Appendix For Online Publication

Proof of Theorem 1. We start with the savings plan. It su¢ ces to show
that

dkt(!) = ��
X
n�1

�k(t; n)dKe
n(!) (16)

satis�es (10), where we recall that

� = � �2 �C

�(1� �)
f 00 and �k(t; n) =

(
1� �n if n � t

�n�t(1� �t) if n > t
:

We compute that dkt(!) +
� �Cf 00

�

P
n�1 �

ndKe
t+n(!)

= ��
X
n�1

�k(t; n)dKe
n(!)� �

�
1� �

�

�X
m�1

�mdKe
t+m(!)

= ��
tX

n=1

�k(t; n)dKe
n(!)� �

X
m�1

�
�m�1(1� �) + �m(1� �t)

�
dKe

t+m(!)

= ��
tX

n=1

�k(t; n)dKe
n(!)� �

X
m�1

�
�m�1 � �t+m

�
dKe

t+m(!)

= ��
tX

n=1

�k(t+ 1; n)dKe
n(!)� �

X
m�1

�m�1
�
1� �t+1

�
dKe

t+m(!)

= ��
tX

n=1

�k(t+ 1; n)dKe
n(!)� �

X
m�1

�(t+ 1; t+m)dKe
t+m(!)

= ��
X
n�1

�k(t+ 1; n)dKe
n(!) = dkt+1(!):

This establishes the �rst part of Theorem 1.

To prove the second part concerning the consumption plan, we combine
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(9) from Lemma 3 with (16) to obtain

dc0(!) =

�
1� �

�

�
�
X
n�1

�ndKe
n(!)

dct(!) = �
�
1� �

�

�
�

 X
n�1

�k(t; n)dKe
n(!)�

X
n�1

�ndKe
t+n(!)

!
; for t � 1:

It follows that

�c(t; T ) =

(
�k(t; T ) if T � t

�k(t; T )� �T�t if T > t
;

which completes the proof.

Proof of Corollary 3. We apply Lemma 1. For 1 � t < N we have dkt(!)

equals ��e times

tX
T=1

�k(t; T ) +
NX

T=t+1

�k(t; T ) =
tX

T=1

(1� �T ) +
NX

T=t+1

(�T�t � �T )

=
tX

T=1

(1� �T ) + (1� �t)
N�tX
T=1

�T

= t� �
1� �t

1� �
+ (1� �t)

�

1� �
(1� �N�t)

= t� �r�1(1� �t)�N�t:

Similarly for 0 � t < N we have dct(!) equals ��e times

�r

tX
T=1

�c(t; T ) + �r

NX
T=t+1

�c(t; T ) = �r

tX
T=1

(1� �T )� �r
NX

T=t+1

�T

= �r

�
t� �

1� �t

1� �

�
� �r�t+11� �N�t

1� �

= �rt� 1 + �N :
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For t � N we have dkt(!) equals ��e times

NX
T=1

�k(t; T ) =

NX
T=1

(1� �T ) = N � �

1� �
(1� �N) = N � �r�1(1� �N)

and dct(!) equals ��e times

�r
NX
T=1

�c(t; T ) = �r
NX
T=1

(1� �T )

= �r

�
N � �

1� �
(1� �N)

�
= �r

�
N � �r�1(1� �N)

�
;

which implies dct(!) = �rdkt(!).

Strategic substitutability and an alternate proof of Theorem 3. As
usual, let dKe(!) = fdKe

t (!)g be a beliefs path of a given agent. His cor-
responding savings plan is then given by dk(!) = fdkt(!)g = �k(dKe(!)):

As noted before, the map �k can be represented as a semi-in�nite matrix

f�ktmgt;m�1. Using this notation, we may write

dkt(!) =
X
m�1

�ktmdK
e
m(!): (17)

The map �k exhibits local strategic substitutability if �ktm < 0 for all t;m 2 N.

Theorem A1 If �k exhibits local strategic substitutability, and if

� � inf
n>0

j�knnj > 0;

then the perfect foresight steady state is never CK2 strongly eductively stable.

Proof. For notational simplicity, we forgo identifying the dependence of be-
liefs and actions on !. Let " = f"ng be any uniformly bounded sequence of
non-negative real numbers, with at least one strictly positive entry. De�ne
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sequences of expectations dKe(n) as follows:

dKe
t (n) =

(
"t if t � n

0 if t > n
;

and let dk(n) = �k (dKe(n)).

By strategic substitutability, dkt(") < dkt(n) < 0; thus it su¢ ces to �nd

some n and t so that jdkt(n)j > "t: Next, notice that since dKe
n+s(n) = 0 for

s > 0, it follows that dkn+s(n) = dkn(n). This allows us to compute

dkn+1(n+ 1) = dkn+1(n) + �
k
n+1;n+1 � "n+1

= dkn(n) + �
k
n+1;n+1 � "n+1

� dkn(n)� � � "n+1:

Thus, substituting in recursively and using dk0 = 0, we have

dkn+1(n+ 1) � ��
n+1X
m=1

"m:

The proof is completed by applying the initial observation in the proof of

Theorem 3.

We note that by Corollary 1, �k exhibits local strategic substitutability.

Since infn>0 j�knnj = �(1 � �) > 0, Theorem A1 yields Theorem 3 as a corol-

lary. Also, Corollary 1 and Theorem A1 focus on the implications of local

strategic substitutability precisely because our map �k exhibits this charac-

teristic; however, analogous results with analogous proofs hold for maps that

exhibit local strategic complementarity.

A �nite-horizon model with capital. Consider a two-period OLG model
with capital. Population is constant and normalized to one, and all markets

are competitive. Let !t be an agent born at time t. He is endowed with

one unit of labor, which he supplies inelastically for real wage qt. He then

allocates his income between savings s(!t) = k(!t) and consumption c1(!t).

In period t + 1, this agent is now old: he rents his savings for net real return
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rt+1, consumes the gross return, plus his share of pro�ts from ownership of

�rms, and dies. Thus agent !t solves the following problem

maxE(!t) fu (c1(!t); c2(!t))g
s.t. c1(!t) + s(!t) = qt (18)

c2(!t) = (1 + r
e
t+1(!t))s(!t) + �(!t) (19)

Notice that when agent !t makes his savings decision, he does not know the

value of rt+1. Below we assume constant returns to scale production so that

� = 0.

The agent !t�s �rst-order condition is given by

uc1 (c1(!t); c2(!t)) = �(1 + ret+1(!t))uc2 (c1(!t); c2(!t)) : (20)

Equations (18)�(20) may be used to compute the savings decision of agent !t
based on current and expected future factor prices:

s(!t) = s(qt; r
e
t+1(!t)):

Firms hire workers and rent capital in competitive factor markets, and em-

ploy constant returns to scale technology to manufacture goods: Y = f(K;L);

thus pro�ts are zero and factors prices are given by the respective marginal

products. Capital is inelastically supplied �in the morning� by the old and

depreciation is zero: the capital accumulation equation is given accordingly

by

Kt+1 =

Z
s(!t)d!t =

Z
s(qt; r

e
t+1(!t))d!t:

Assuming agents know the relationship between real interest rates and mar-

ginal products, and so form expectations of aggregate capital instead of real

interest rates, we have

Kt+1 =

Z
s
�
fL(Kt; 1); fK(K

e
t+1(!t); 1)

�
d!t; (21)
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where Ke
t+1(!t) is agent !t�s forecast of aggregate capital tomorrow. Equation

(21) captures the dynamics of the economy: given aggregate capital today

and forecasts of aggregate capital tomorrow, the actual value of aggregate

capital tomorrow can be determined. It also highlights a key di¤erence between

the OLG model and the RBC model: in the OLG model aggregate capital

depends only on one-period-ahead forecasts; in the RBC model, aggregate

capital depends on forecasts at all horizons.

To motivate the de�nition of eductive stability, we consider the following

thought experiment at time t = 0: Let �K be a steady state of (21): �K =

s
�
fL( �K; 1); fK( �K; 1)

�
: Assume that at time t = 0 every old household has

capital k0(!) = �K. This determines the wage, and therefore the income,

of the young, as given by �q. Each young agent !t forecasts capital stock

tomorrow, Ke(!t), and determines his savings decision s(�q; fK(K
e(!t); 1)).

He then contemplates the savings decisions of other agents. We again make

the common knowledge CK1:

CK1: It is common knowledge that for some " > 0 su¢ ciently small, Kt 2
D(") � [ �K � "; �K + "] for all t:

These CK beliefs are assumed held by all agents at all times, i.e. for all !t for

all t:

The de�nitions of weak and strong eductive stability under CK1 are identi-

cal to the de�nitions given in Sections 3 and 4. We have the following results:

Theorem 6 The steady state �K is strongly eductively stable if and only if

��@s=@r �fL( �K; 1); fK( �K; 1)� � fKK � �K; 1��� < 1: (22)

Proof. To see this, �rst note that (22) holds if and only if there is � 2 (0; 1)
such that for small " > 0, whenever jKe(!t)� �Kj � " it follows that

��s �fL( �K; 1); fK(Ke(!t); 1)
�
� �K

�� < �":

Under CK1, if (22) holds then s(!̂0) 2 D(�") for all !̂0. Because each agent

!0 knows that Ke(!̂0) 2 D("), he concludes that s(!̂0) 2 D(�") for all !̂0
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and hence that K1 2 D(�"). Thus it is common knowledge that K1 2 D(�").
Iterating the argument it follows that K1 2

T1
n=1D(�

n") = f �Kg: In contrast
if (22) fails then for some beliefs compatible with CK1, the aggregate capital

stock at t = 1 implied by the agents�optimal plans fails to satisfy K1 2 D("):
It follows that it is common knowledge that K1 = �K if and only if (22)

holds. For agents at time t = 1 the situation is identical to the situation at

time t = 0. Thus at t = 1 agents will conclude that K2 = �K and this implies

that it will be the case that K2 = �K and this will also be common knowledge

for agents at t = 0. By induction it follows that the fact that the equilibrium

path will be Kt = �K, for all t, is common knowledge.

We remark that this stability result is local and can provide a re�nement

criterion in the case of multiple steady states.

Note the crucial role played by the short planning horizon in going from

weak to strong eductive stability. Because agents at time t = 0 care only

about outcomes at t = 0; 1, the weak eductive stability result K1 2 D(�"),

can be iterated to show common knowledge that K1 = �K, and hence common

knowledge that the next generation of agents will be in an identical position.

As an exercise for illustrating our results, we specify particular functional

forms and conduct numerical analysis. Assume utility is time separable and

takes the constant relative risk-aversion form

u(c1; c2) =
1

1� �

�
c1��1 + c1��2 � 2

�
;

for � > 0; and assume that production is Cobb-Douglas, f(K;L) = K�L1��. In

this case there is a unique positive steady-state level of capital, and parameter

values for � and � completely characterize the model. For all parameters

examined �� 2 (0; 1) and � 2 (0; 100) �the steady state is strongly eductively
stable.

This example provides a striking contrast to the coordination problems we

have demonstrated for the RBC model with in�nitely-lived agents.
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