Characterization of the Chicken Follicle-Stimulating Hormone Receptor (cFSH-R) Complementary Deoxyribonucleic Acid, and Expression of cFSH-R Messenger Ribonucleic Acid in the Ovary¹

S. You,³ J.T. Bridgham,⁴ D.N. Foster,³ and A.L. Johnson^{2,4}

Department of Animal Science,³ University of Minnesota, St. Paul, Minnesota 55108 Department of Biological Sciences,⁴ The University of Notre Dame, Notre Dame, Indiana 46556

ABSTRACT

Studies were conducted to characterize the chicken (c) FSH receptor (R) cDNA, and to evaluate expression of cFSH-R mRNA in the hen ovary at known stages during follicle development. A total of 2.5 kb of nucleic acid sequence including the complete cFSH-R coding region was isolated by a combination of the reverse-transcription polymerase chain reaction and 5'- and 3'-rapid amplification of cDNA ends techniques. Overall, the nucleic acid sequence homology of the cFSH-R cDNA coding region is 71.8% and 72.2% compared to the rat and bovine FSH-R, respectively, while the deduced amino acid sequence identity for the receptor protein (693 amino acids) is 71.9% and 72.4%, respectively. By comparison, the cFSH-R nucleic acid and amino acid sequences are 60.1% and 49.4% identical to the respective cLH-R sequences. Northern blot analysis detected a single 4.3-kb cFSH-R mRNA transcript, which was selectively expressed in ovarian (granulosa, theca, and stromal) tissues, but not the oviduct, adrenal, liver, muscle, or brain. As the follicle developed from the prehierarchical (6- to 8-mm diameter) to the largest preovulatory (F1 follicle) stage, cFSH-R mRNA levels progressively declined within both the granulosa and theca layers (p < 0.05). Moreover, cFSH-R mRNA levels were lower in whole atretic than in morphologically normal 3- to 5-mm follicles (p = 0.0015). The pattern of cFSH-R mRNA expression within the granulosa layer during follicle development was notably different from that of the recently reported cLH-R, in that cLH-R mRNA levels increase to become readily detectable coincident with dramatically increased steroidogenic capacity during the last few days before ovulation of the follicle. On the other hand, highest levels of cFSH-R mRNA in 6- to 8-mm (prehierarchical) follicles were consistent with a role for the cFSH-R in maintaining the viability of prehierarchical follicles and in initiating granulosa cell differentiation at the time when follicles are selected into the preovulatory hierarchy.

INTRODUCTION

The gonadotropins FSH and LH are heterodimeric glycoproteins produced within the adenohypophysis that, in the female, act primarily at the level of the ovarian follicle. While the complementary DNA sequences of the chicken (c) gonadotropin α and LH β subunits have recently been fully characterized [1–3], there is as yet no information available concerning the nucleic acid sequence for the avian FSH β subunit. In addition, despite the fact that the cFSH protein has been purified to apparent homogeneity [4], there remains considerable ambiguity regarding the potential biological activity of FSH within the largest (F1) through sixth largest (F6) preovulatory follicles. For instance, while LH is generally thought to be the more active gonadotropin in promoting progesterone production from preovulatory follicle granulosa cells, FSH has been reported to demonstrate limited [4–6] to no [7, 8] biological activity when steroid production is evaluated as a physiological endpoint.

By contrast, results from in vitro studies indicate that recombinant human (rh) FSH (a preparation devoid of detectable LH bioactivity [8]) acts within prehierarchical (6to 8-mm diameter) follicle granulosa cells to increase levels of cytochrome P450 cholesterol side-chain cleavage (P450_{scc}) and P450 17 α -hydroxylase (P450_{17 α OH}) mRNA, initiate $P450_{scc}$ and $P450_{17\alpha OH}$ enzyme activity, and promote progesterone and androgen synthesis. These actions occur, at least in part, via the adenylyl cyclase/protein kinase A second messenger signaling pathway [9, 10] and are proposed to occur during the final stages of granulosa cell differentiation following selection of a follicle into the preovulatory hierarchy. There is also evidence that FSH can induce modest, but significant, progesterone, androgen, and estrogen production from the prehierarchical follicle theca layer in vivo [11] and prevent granulosa cells from undergoing apoptosis in vitro [12]. Moreover, relatively low levels of FSH binding have been detected within ovarian stroma, the theca layer, and granulosa tissue, and such binding generally decreases during follicle development [13, 14]. Recently, a partial chicken (c) LH receptor (R) cDNA has been characterized, and the cLH-R mRNA transcript in granulosa cells is found to be expressed only within preovulatory follicles [15]. By comparison, there is essentially no change in LH-R mRNA levels during development in the theca, and taken together these data are consistent with previously determined biological effects of exogenously administered LH on granulosa and theca tissue steroidogenesis in vitro. To better understand the relationship between LH and FSH actions with regard to the process of hen follicle selection and the initiation of granulosa cell differentiation, we conducted the present studies to 1) characterize the cFSH-R cDNA and 2) evaluate changes in FSH-R mRNA levels in granulosa and theca tissues during growth and differentiation of ovarian follicles.

MATERIALS AND METHODS

Animals and Reagents

Single-comb white Leghorn hens (H&H Poultry, Portland, IN), 25–40 wk of age and laying regular sequences of at least 5–6 eggs, were used in all studies described. Birds were housed individually in laying batteries, provided with free access to feed (Purina Layena Mash; Purina Mills, St. Louis, MO) and water, and were exposed to a photo-

Accepted June 24, 1996.

Received April 22, 1996.

¹Supported by USDA 92-37203-7767 and NSF IBN94-19613 (to A.L.J.) and USDA 58-1265-1-162 (to D.N.F.). The nucleotide sequence reported here has been deposited in the GenBank database (Accession number U51097).

²Correspondence: Dr. A.L. Johnson, Department of Biological Sciences, The University of Notre Dame, Notre Dame, IN 46556. FAX: (219) 631–7413; e-mail: johnson.128@nd.edu

TABLE 1. Nucleic acid and deduced cFSH-R amino acid sequences compared to the rat [22] and bovine [23] FSH-R, and chicken LH-R [15] sequences, considering the extracellular (EC), transmembrane (TM) and intracellular (IC) domains.^a

	Nucleic	Amino	Amino acid by receptor domains						
Sequence	acid	acid	EC	TM	IC				
Rat FSH-R	71.8	71.9 (87.2)	64.8 (83.1)	83.0 (93.6)	66.7 (84.1)				
Chicken LH-R	72.2 60.1⁵	72.4 (87.4) 49.4 (70.7) ^b	65.0 (83.6) 35.1 (56.7) ⁶	83.7 (93.6) 74.6 (94.3)	68.3 (84.1) 33.3 (65.1)				

^a Numbers are percentage of rat, bovine, and chicken vs. cFSH-R. Numbers outside parentheses represent the percentage of exact amino acid matches, whereas numbers within parentheses consider conservative amino acid substitutions.

^b Represents incomplete sequence from the extracellular domain of the cLH-R; see [15].

period of 15L:9D, with lights-on at midnight. Individual laying cycles were monitored by the daily timing of oviposition. Hens were killed by cervical dislocation approximately 12–18 h before a mid-sequence ovulation. All procedures described herein were reviewed and approved by the University of Notre Dame Institutional Animal Care and Use Committee and were performed in accordance with the Guiding Principles for the Care and Use of Laboratory Animals.

Oligonucleotide primers (for polymerase chain reaction [PCR] amplification, 5'- and 3' rapid amplification of cDNA ends [RACE], and nucleic acid sequencing) were synthesized by Integrated DNA Technologies, Inc. (Coralville, IA) or the University of Notre Dame Biotechnology Core Facility. Additional reagents were acquired from Sigma Chemical Co. (St. Louis, MO), unless otherwise stated.

Isolation and Characterization of a Partial cFSH-R cDNA

Total RNA was isolated from small white ovarian follicles (\leq 5-mm diameter) and reverse-transcribed into firststrand cDNA using oligo(deoxythymidine) primer and recombinant M-MLV reverse transcriptase in the presence of deoxynucleotides (Perkin-Elmer, Norwalk, CT). Sequences for degenerate oligonucleotide primer pairs were based on the published human FSH-R cDNA sequence ([16]; location of amino acids corresponding to published human sequence in parentheses): forward primer (amino acids 397– 404) CCN MGN TTY CTG ATG TGY AAY CT; reverse primer (amino acids 590–584) AAG SWG ATK GGR GCC ATR CA; where M = A, C; Y = T, C; S = G, C; W = A, T; K = G,T; R = G, A; N = A, T, G, C.

First-strand cDNA was subjected to 40 cycles of PCR amplification using GeneAmp core reagents (Perkin-Elmer; 30-sec denaturation at 95°C, 30-sec annealing at 55°C, and 30-sec extension at 72°C). The amplified 440-bp PCR product was resolved through a 1.2% agarose gel, isolated, purified (GeneClean; Bio 101, La Jolla, CA), and subcloned into the pBluescript SK(+) vector (Stratagene, La Jolla, CA) for large-scale plasmid preparation and nucleic acid sequence analysis.

Subsequently, the RACE technique was utilized to further characterize the FSH-R cDNA sequence in the 5' and 3' directions, and was accomplished essentially as described by the manufacturer (Clontech Laboratories, Inc., Palo Alto, CA). Briefly, poly(A)⁺-enriched RNA from granulosa tissue of the second largest (F2) preovulatory plus prehierarchical (6- to 8-mm) follicles was isolated using the Micro-Fast Track Kit (Invitrogen, San Diego, CA). Doublestranded cDNA was synthesized, and Marathon cDNA Amplification adaptors (Clontech) were ligated. Nested genespecific primers for the 5' direction (GSP1: 5'-TGG GAA GAA GTG CCA CCG TGA AAG-3' [bp 1513–1490 from cFSH-R sequence] and GSP2: 5'-TTG CGG TTG AGT TGC ATG GCA TAG G-3' [bp 1439–1415]) and 3' direction (GSP3: 5'-AAC TCA ACC GCA AGG TTC GAC-3' [bp 1427–1447] and GSP4: 5'-GCA TCT ACT TTA CTG TGA GAA ACC CC-3' [bp 1652–1677]) were designed from the transmembrane cFSH-R PCR product described above.

An initial amplification of the 5' region by PCR was performed using GSP1 and Adaptor Primer 1 (Clontech) under the following conditions: 1 min, 94°C; 0.5 min, 94°C; and 4 min, 72°C for five cycles; 0.5 min, 94°C, and 4 min, 70°C, for five cycles; 0.5 min, 94°C, and 4 min, 68°C, for 25 cycles. A second amplification was conducted using one-tenth the volume of the first reaction as template, with the GSP2 and Adaptor Primer 2 as internal primers and amplification conditions as described above. Three PCR products (ranging from 1.1 to 1.5 kb in length) were gelpurified and ligated into the PCRII vector (TA Cloning Kit, Invitrogen), then further amplified and purified from plasmid preparations. All three products were determined to be homologous to mammalian FSH-R, and the sequence of one of these extended beyond the 5'-end of the predicted start codon. These cloned products were fully sequenced in both directions by the dideoxychain termination method using ³⁵S-dATP (Amersham Corp., Arlington Heights, IL) and the Sequenase version 2.0 sequencing kit (United States Biochemical Corp., Cleveland, OH).

Initial and secondary amplifications of the 3' region were conducted using GSP3 and Adaptor Primer 1, and GSP4 and Adaptor Primer 2, using the same amplification conditions for each combination as described above, with the exception that during the final 25 cycles annealing was at 65°C for 0.5 min. Two different PCR products (each approximately 1.5 kb in length) were gel-purified and ligated into the PCRII vector, and then amplified and purified from plasmid preparations. Sequence analysis of each subsequently determined that both products were derived from the cFSH-R and extended through the end of the proposed coding region. Sequence data were assembled from multiple products over the entire coding region and analyzed by the MacVector and AssemblyLIGN programs (IBI, New Haven, CT).

RNA Isolation and Northern Blot Analysis

Total cellular RNA was collected from granulosa and theca tissue from hierarchal (F1, F2, F3) follicles, follicles recently selected into the follicle hierarchy (9- to 12-mm follicles), and prehierarchical (6- to 8-mm and 3- to 5-mm) follicles as previously described [17]. To evaluate selective tissue expression of the cFSH-R transcript, total cellular RNA was prepared from liver, cerebrum, cerebellum, adrenal, kidney, oviduct, and ovarian stromal (interstitial tissue plus follicles < 1 mm in diameter [18]) and 3- to 5-mm follicle granulosa tissue. In addition, morphologically normal and atretic follicles (3- to 5-mm diameter) were collected and processed for RNA without separating granulosa and theca layers. Atretic follicles were identified on the basis of the presence of follicle haemorrhagia, collapsed morphology, and opaque appearance [12]. Total cellular RNA from all tissues was isolated using Trizol Reagent (Gibco-BRL, Grand Island, NY), and the purity and quality were assessed by measuring the optical density of each sample at 260 and 280 nm. Fifteen micrograms of total cellular RNA was resolved in 1% agarose gels in the presence of 6% formaldehyde, then transferred to nitrocellulose Nitro ME membranes (MSI, Westboro, MA) by capillary action overnight.

The cFSH-R cDNA probe was produced by the randomprimer labeling method using the Megaprime DNA labeling System (Amersham) and $[\alpha^{32}P]$ -dCTP (3000 Ci/mmol; Amersham). The labeled probe was subsequently purified from unincorporated nucleotide using Centri-Sep columns (Princeton Separations, Adelphia, NJ) according to the manufacturer's recommendations. Northern blots were prehybridized in a solution containing 10-strength Denhardt's solution, 4-strength sodium chloride-sodium citrate solution (SSC; single-strength SSC = 150 mM sodium chloride and 15 mM sodium citrate, pH 7.0), and 100 µg/ml herring sperm DNA (Promega, Madison, WI), plus 0.5% SDS for 30 min at 60°C. Hybridizations were conducted at 60°C overnight with a solution of 10-strength Denhardt's solution, 4-strength SSC, 0.1% SDS, 10 mM Tris-HCl (pH 7.4), and 100 μ g/ml herring sperm DNA, plus the heat-denatured cDNA probe (2 \times 10⁶ cpm/ml). Membranes were subsequently washed twice (for 5 min each) with double-strength SSC at room temperature, followed by twice at 60°C for 15 min in double-strength SSC containing 0.1% SDS, and finally with 2-3 washes in 0.1-strength SSC plus 0.1% SDS (for 15 min each wash) at 60°C. Membranes were exposed to autoradiographic film at -70° C for 1 to 5 days.

Data Analysis

Northern blot analyses were repeated a minimum total of three times. The relative extent of hybridization was evaluated by densitometry (UltraScan XL laser densitometer; Pharmacia LKB, Piscataway, NJ), and equal loading of RNA onto gels was verified after the evaluation of ethidium bromide-stained 28S and 18S bands of ribosomal RNA. The rationale for this analysis is that β -actin mRNA, a common house-keeping gene, is not expressed at consistent levels during hen follicle development (unpublished results). Moreover, it is reasoned that potential bias due to uneven loading, incomplete transfer, and/or unequal hybridization efficiency within a blot is virtually eliminated by combining data from several independent, replicate analyses. Messenger RNA levels (fold increase vs. the appropriate control) are presented as the mean \pm SEM of scanning data from replicate experiments. Data were analyzed by regression analysis, paired t-test, or one-way analysis of variance, with significant interactions determined by Scheffe's F-test.

RESULTS

Identification and Characterization of cFSH-R cDNA

The nucleotide and deduced amino acid sequences of the cFSH-R are presented in Figure 1. The nucleic acid se-

quence of the cloned cDNA has an open reading frame of 2079 bp, and includes 51 bp encoding a putative signal peptide (including the 5' ATG start codon [19]), 1047 bp corresponding to the extracellular domain, 792 bp from the predicted transmembrane region, and 189 bp from the intracellular domain [20]. The deduced translated sequence for cFSH-R encodes a total of 693 amino acids, the first 17 amino acids of which represent the proposed signal peptide. Accordingly, the mature protein consists of 676 amino acids, corresponding to an estimated molecular mass of 78 767 daltons.

The extracellular domain region consists of 349 amino acids and has three potential *N*-linked glycosylation sites and a total of 11 cysteine residues. The transmembrane domain is represented by 264 amino acids arranged as seven transmembrane-spanning segments typical of a G proteinrelated receptor [21]. The intracellular loops between transmembrane segments (TM) I-II, TM III-IV, and TM V-VI contain multiple tyrosine, serine, and threonine residues that may represent potential phosphorylation sites. Two sites within the TM domain (Thr⁵⁵⁵ and Ser⁵⁹⁶) may represent consensus sites for protein kinase C phosphorylation. A total of nine cysteine residues and one potential *N*-linked glycosylation site (Asn³⁸⁰) are located within this domain.

The intracellular domain consists of 63 amino acids, including potential sites for phosphorylation by protein kinase C (Thr⁶³²) and protein kinase A (Thr⁶⁵⁸). Nucleic and amino acid (identity and conservative substitutions [22]) homologies of the cFSH-R aligned with the rat [23] and bovine [24] FSH-R sequences, as well as the recently characterized cLH-R [15] sequences, are compared in Table 1 and Figure 2.

Selective Tissue Expression of cFSH-R mRNA

Northern blot analysis of the cFSH-R mRNA detected a single 4.3-kb transcript from total cellular RNA prepared from ovarian stromal tissue, and there was no evidence of expression in any nonovarian tissues including the oviduct (Fig. 3). When compared on the basis of total cellular RNA, FSH-R mRNA levels were determined to be 6.3 ± 1.1 -fold higher in the granulosa, compared to the theca, layer within the F1 follicle (p < 0.05; n = 4).

Complementary FSH-R mRNA during Follicle Development and Atresia

Complementary FSH-R mRNA levels progressively declined within both the theca (p = 0.038, by regression analysis; Fig. 4) and granulosa (p < 0.001, by regression analysis; Fig. 5) layers as the follicle developed from the prehierarchical (3- to 8-mm diameter) to the largest preovulatory (F1) follicle stage (p < 0.05). Highest levels of cFSH-R mRNA were repeatably detected within granulosa cells from 6- to 8-mm follicles (p < 0.05 vs. F1 and F2 follicles). Finally, Northern analysis demonstrated that c-FSH-R mRNA levels were decreased in atretic vs. morphologically normal follicles (mean decline, 54.8 ± 4.9%, range 43–53%; p = 0.0015; Fig. 6).

DISCUSSION

A cDNA corresponding to the cFSH-R has been cloned, and the overall sequence was determined to be considerably more homologous to the rat and bovine FSH-R than the recently characterized cLH-R ([15]; Table 1, Fig. 2). The mature cFSH-R protein sequence (693 amino acids) is sim-

\mathbf{H}																
-23	AGGA	GACAA AT	GTGAA	GACAGI	AG ATG Met	TCC Ser	TTG Leu	GAT Asp	CTC Leu	ACC Thr	тGC Сув	ttg Leu	CTG Leu	27 9	1372 458	TAC ACA CTG Tyr Thr Leu
28 10	ATT CTC	CTG GCC Leu Ala	AGC 2 Ser (TGC TO Cys Se	CT GGC er Gly	тсс Суз	CAG Gln	CAC His	CAC Eis	ACG Thr	тGC Сув	CTC Leu	тст Суз	75 25	1420 474	GCC ATG CAA Ala Met Gln
76 26	GAA GGC . Glu Gly .	AGG ATA Arg Ile	TTC P Phe	ATC TO Ile Cy	GC CAG 78 Gln	GAG Glu	ATC Ile	AAG Lys	GTG Val	GTC Val	CAG Gln	CTG Leu	CCC Pro	123 41	1468 490	ATG GTT TTT Met Val Phe
124 42	CGG GAC A	ATT CCC Ile Pro	ACC I	AAT GO Asn Al	CC ACA la Thr	GAA Glu	CTG Leu	AGA Arg	TTT Phe	GTC Val	CTC Leu	ACC Thr	AAG Lys	171 57	1516 506	TTT GGC ATC Phe Gly Ile
172 58	ATG AGA	GTC ATT Val Ile	CCG I Pro I	AAG GO Lys Gl	GA GCT Ly Ala	TTC Phe	ACA Thr	GGA Gly	CTT Leu	CAT His	GAC Asp	CTA Leu	GAG Glu	219 73	1564	ATA GAA ACA Ile Glu Thr
220 74	Lys Ile	Glu Ile	Ser (Gln As	ar Gar an Asp	Ala	Leu	Glu	Ile	Ile	Glu	Ala	Asn	89	1612	AAT GTA CTT Asn Val Leu
90 316	Val Phe	Ser Ser	Leu	Pro Ly	ys Leu	His	Glu	Ile	Arg	Ile	Glu	Lys	Ala	105	1660 554	TTT ACT GTG Phe Thr Val
106 364	Asn Lys	Leu Met	Lys :	Ile As	sp Gln CA AAC	Asp	Ala	Phe	Gln AGC	His	Leu TTA	Pro	Ser	121 411	1708	ATT GCC AAG Ile Ala Lys
122 412	Leu Arg	Tyr Leu AGG GTG	Leu : CAC :	Ile Se TCC T	er Asn FC CAG	Thr AAA	Gly GTT	Leu TTG	Ser CTA	Phe GAT	Leu GTT	Pro CAA	Val GAC	137 459	1756 586	GCA CCA ATA Ala Pro Ile
138 460	Val His . AAT ATC	Arg Val CAT ATA	His : CGT :	Ser Pl	he Gln TT GAA	Lys AGG	Val AAC	Leu ACG	Leu TTC	Asp ATG	Val GGC	Gln CTG	Asp AGT	153 507	1804	ATC ACA GTC
154 508 170	TCT GAA .	AGT GTG	Arg :	CTA CO	G CTA	Arg	AAA	AAT	GGG	ATT	CAG	GAA	ATC	555 185	602 1852	AAT TCC TGT
556 186	AAG GAT	CAT GCA His Ala	TTT 1	AGT G Ser G	GA ACC ly Thr	TGC Cys	CTG Leu	GAT Asp	GAG Glu	CTA Leu	* AAT Asn	CTA Leu	AGT Ser	603 201	1900	CGC AGG GAT
604 202	GAC AAT Asp Asn	TAC AAC Tyr Asn	TTA (Leu (GAA AA Glu Lj	- AA TTG ys Leu	CCG Pro	GAG Glu	AAA Lys	GTC Val	TTC Phe	CAA Gln	GGA Gly	GCC Ala	651 217	1948 650	CAA GCC CAG Gln Ala Gln
652 218	ATC GGG Ile Gly	CCT GTI Pro Val	GTT : Val 1	TTG GA Leu A:	AT ATT sp Ile	TCA Ser	AGG Arg	ACA Thr	AGA Arg	ATC Ile	AGC Ser	TTC Phe	CTG Leu	699 233	1996 666	CAC ACA AGA His Thr Arg
670 234	CCA AGT Pro Ser	CAT GGA His Gly	TTA (Leu (GAA T Glu Pl	TC ATT he Ile	AAG Lys	AAG Lys	CTA Leu	AGA Arg	GCG Ala	AGG Arg	TCT Ser	ACA Thr	747 249	2044 682	ACT ATT TAT Thr Ile Tyr
748 250	TAC AAG Tyr Lys	TTA AAA Leu Lys *	LYS 1	CTT CO Leu Pi	CT GAT ro Asp	GTA Val	AAC Asn	AAA Lys	TTT Phe	AGA Arg	TCT Ser	TTG Leu	ATT Ile	795 265	209 4 2157	GAATTTGTGTC
796 266	GAG GCA . Glu Ala	AAC TTC Asn Phe	ACC 1	TAT CO Tyr P	CT AGC ro Sei	CAT His	TGC Cys	ТСТ Суз	GCA Ala	TTT Phe	ACA Thr	AAT Asn	CGG Arg	843 281	2220	CGAGATGGCAC
282	Lys Thr	GAR ARC	Thr (GAA T. Glu Pl GAG C	he Tyr	Pro	Ile	Cys	AGC Ser	Met	Ser	Pro	Ala	297 939	2283 2346	AAGTGTCCTTG
298 940	Lys Gln GCA GCT	Asp Leu GAA GAI	Gly	Glu G	In Thr	Gly TAT	Lys GGC	Arg ACG	Lys CGT	His TTT	Arg	Arg	Ser TTG	313 987	2409	TCAAAAAAGGG
314 988	Ala Ala GAG AAC	Glu Asp GAA TTI	GAC	Ile Se TAT G	er Bis GC TTG	Tyr TGC	Gly AAC	Thr GAA	Arg GTC	Phe GTT	Gly Gat	Pro TTT	Leu GTT	329 1035	B	
330 1036	Glu Asn TGC TCA	Glu Phe CCC AAA	CCT	Tyr G GAT G	ly Leu CC TTC	Сув ААТ	Asn	Glu TGT	Val GAA	Val GAT	Asp ATC	Phe ATG	Val GGA	345 1083 361	DACE	products
1084	TAC AAC	GTG CTG	AGA	GTT C	TG ATA	TGG	TTT	I ATC	AAC	ATT	TTA	GCT	ATC	1131	#3	, producis
362 1132	Tyr Asn ACT GGG	Val Leu AAC ACC	Arg :	<u>Val L</u> GTC C	<u>eu Ile</u> TC ATT	Trp	Phe TTA	Ile ATA	Asn AGC	Ile AGT	Leu CAA	Ala TAC	Ile AAA	377 1179	#2	-23
378	Thr Gly	Asn Thr	Thr '	Val L	eu Ile	<u>Ile</u>	Leu	Ile	Ser I	Ser	Gln	Tyr	Lys	393	#1	
1180 394	Leu Thr	GTA CCT Val Pro	Arg	TTT C	TA ATG eu Met	Cys	AAT Asn	Leu	Ala	Phe	Ala	Asp	Leu	409	#4	
410	Cys Ile	Gly Ile	Tyr	Leu L	eu Phe	Ile	Ala GAC	Ser TGG	Val CAA	Asp	Ile	Gln	Thr	425	#5	
426	Lys Ser	Arg Tyr	Tyr	Asn T	yr Ala	Ile	Aab	Trp	Gln	Thr	Gly	Ala	Gly	441	cFSH	-R 5'
1324 442	TGC AAT Cys Asn	GCT GCA Ala Ala	GGA Gly	TTT T Phe P	TT ACT	GTT Val	TTT Phe	GCA Ala	AGT Ser	GAA Glu	CTC Leu	TCA Ser	GTC Val	1371 457		bp ► 1 5

.312	TAC	ACA	CTG	ACT	GTG	ATA	ACT	CTG	GAA	AGG	TGG	CAT	ACC	ATT	ACC	TAT	1419
458	Tyr	Thr	Leu	Thr	Val	Ile	Thr	Leu	Glu	Arg	Trp	His	Thr	Ile	Thr	Tyr	473
																.	
420	000	bmC	6 8 8	CTTC		~~~	ANG.	Gmm	CGN	രന്ന	cca	0.210	GCT	GTG	ATC	ATA	1467
474	Ala	Met	Gln	Leu	Asn	Arg	Lvs	Val	Arg	Leu	Arq	His	Ala	Val	Ile	Ile	489
					-	2					-						
468	ATG	GTT	TTT	GGC	TGG	ATG	TTT	GCT	TTC	ACG	GTG	GCA	CTT	CTT	ccc	ATA	1515
490	Met	Val	Phe	Gly	Ţrp	Met	Phe	Ala	Phe	Thr	Val	Ala	Leu	Leu	Pro	Ile	505
516	ጥጥም	<i></i>	3000	100	100	mac	ATC.	220	GRC	100	አምሮ	ዋርሞ	ምምር	ccc	ልጥር	CAC	1563
506	Phe	Glv	Tle	Ser	Ser	Tvr	Met	Lvs	Val	Ser	Ile	Cvs	Leu	Pro	Met	His	521
		1				-1-		-1-				-1-					
													v				
564	ATA	GAA	ACA	CCG	TTT	TCT	CAG	GCT	TAT	GTT	ATA	TTT	CTT	TTA	GTG	TTG	1611
522	Ile	Glu	Thr	Pro	Phe	Ser	Gln	Ala	Tyr	Val	Ile	Phe	Leu	Leu	Val	Leu	537
612	8 8 T	GTA	CTT	GCC	որդորդո	GTG	ATC	ATC	TGC	ATC	TGC	TAC	ATC	TGC	ATC	TAC	1659
538	Asn	Val	Leu	Ala	Phe	Val	Ile	Ile	Cys	Ile	Cys	Tyr	Ile	Cys	Ile	Tyr	553
														-		-	
660	TTT	ACT	GTG	AGA	AAC	ccc	AAT	GTT	ATC	TCT	TCA	AAC	AGC	GAC	ACC	AAA	1707
554	Phe	Thr	Val	Arg	Asn	Pro	Asn	Val	Ile	Ser	Ser	Asu	Ser	Asb	Thr	LYs	569
709		~~~		~~~		~~ m	2002	mmc	200	mmc	V.	I	mme	CTC	TCC	N TT (3	1755
570	Tle	Ala	LVS	Arg	Met	Ala	Tle	Leu	Tle	Phe	Thr	Asp	Phe	Leu	Cvs	Met	585
			-1-	· y				200									
756	GCA	CCA	ATA	TCT	TTT	TTT	GCA	ATA	TCA	GCT	TCT	CTC	AGG	GTT	CCT	CTC	1803
586	<u>Ala</u>	Pro	Ile	Ser	Phe	Phe	Ala	Ile	Ser	Ala	Ser	Leu	Arg	Val	Pro	Leu	601
804	ATC	ACA	GTC	TCC	***	TCC	AAG	ATC	CTT	CTG	GTT	TTG	TTT	TAC	CCT	ATT	1851
602	Ile	Thr	Val	Ser	Lys	Ser	Lys	Ile	Leu	Leu	Val	Leu	Phe	Tyr	Pro	Ile	617
					•		-										
852	AAT	TCC	tgt	GCT	AAC	CCT	TTC	CTC	TAT	GCC	ATT	TTC	ACA	AAG	ACT	TTT	1899
618	<u>Asn</u>	Ser	Cys	Ala	Asn	Pro	Phe	Leu	Tyr	Ala	Ile	Phe	Thr	Lys	Thr	Phe	633
000	000	200	съ.	mme	mme	3.000	Cm/d	mm/d	100	220	mmm	COT	maa	TOT	GAA	አጥር	1947
634	Arg	Arg	Asp	Phe	Phe	Tle	Leu	Leu	Ser	LVS	Phe	Glv	Cvs	Cvs	Glu	Met	649
										-1-		1	-1-	-1-			
948	CAA	GCC	CAG	ATT	TAC	AGA	ACA	GAG	ACT	TCC	TCA	TCT	GCT	CAT	AAT	TTC	1995
650	Gln	Ala	Gln	Ile	Tyr	Arg	Thr	Glu	Thr	Ser	Ser	Ser	Ala	818	Asn	Phe	665
996	CAC	ACA	AGA	ААТ	GGC	CAT	TAC	ССТ	АСТ	GCA	TCA	AAA	AAC	AGT	GAT	GGG	2043
666	Bis	Thr	Arg	Asn	Gly	His	Tyr	Pro	Thr	Ala	Ser	Lys	Asn	Ser	Asp	Gly	681
			-		-		-				_	-			-		
1044	ACT	ATT	TAT	TCA	CTG	GTT	CCT	CTG	AAT	CAC	TTG	AAC	TGA	AAT	GCTT	GCAT	2093
682	Thr	116	TYL	ser	Leu	var	PIO	Leu	Asu	818	rea	ASU					033
2094	GAA	rTTG/	rgtc:	rgag	GCAG	rgtg/	ATAA	rCAC:	PTTC	ACT	\TTT	GAAT	AATG	ACTTO	CAACI	ATAG	2156
157	CATO	SCAA	ACTTI	ATTT	PTTA	rgag <i>i</i>	AAAA	CATT	PCTA:	TTTC	CACT	TGC:	CTTT:	PTGC:	FCAT	CCTC	2219
	CON				namm/	5 mm/	2000							-		2002	2282
:220	CGAG	ATG	GCACI	ATTA	FCTT	CATTO	GTT	-T'TG	AGG	ICAA	IGAA.	GAA	4CTG	AGT	ATAG	JICA	2202
283	AAG	FGTC	CTTG	TAGA	ATTC	rgcco	CAGA	ATA	ACG	GCT	LATA	ATG	CATA	FCAC	TGC	ГАТА	2345
346	CAG	GCAG.	AGAT	rccc	CTCA	STCT	AGGA	AGAC	SCTT	ATGA	GAACO	GAAG	FAAT	GTT	ATATO	GTGG	2408
1400							m 1. m *		~~~~								7445
:409	TCA	1AAA	nggg.	nggg	мааа	AAAA	TATA	TATA	TTTT	тG							4440
T																	
К																	

FIG. 1. A) Nucleic acid and deduced amino acid sequences for the partial cFSH-R cDNA. Nucleotides and amino acids are numbered to the left and right. Shown are 23 bases of the untranslated 5' region and 5' ATG start codon (nucleic acid +1), followed by 2079 bases of open reading frame. The seven predicted transmembrane-spanning domains are single-underlined (numbered above with roman numerals); a 17-amino acid putative leading signal peptide is double-underlined. Putative *N*-linked glycosylation sites are marked above with an asterisk. **B**) Schematic diagram of the composite cFSH-R cDNA, 5'- and 3'-RACE products, and original PCR product derived from degenerate oligonucleotide primers.

ilar to the size previously reported for the FSH-R sequences of the rat (675 amino acids [23]) and bovine (678 amino acids [24]) species. Not unexpectedly, the predicted transmembrane region is the most highly conserved domain when the two chicken gonadotropin receptors are compared, as well as when the cFSH-R sequence is compared to those from mammalian species. Ten of 11 cysteine residues (including 5 of 5 cysteines located near the junction between the putative extracellular and transmembrane domains) and two cysteine residues (Cys⁴⁴² and Cys⁵¹⁷) that reportedly form a disulfide bridge between the first and second extracellular loops are conserved in the cFSH-R compared to the rat and bovine FSH-R cDNA [20]. Cysteine residues are generally thought to be required for maintain-

A

cFSH-R mRNA IN THE HEN OVARY

c FSH-R r FSH-R	MSLDLTCLLI A L VS A	LLASCSGCQH F GTG H	HTCLCEGRIF WL H SN V	L DS TEI	PRDIPTNATE LRFVLTKMRV T L R I	60
b FSH-R	ALVA A	F SLG H	RL H SNGV	L S TEI	SLRDV	
c FSH-R	IPKGAFTGLH	DLEKIEISQN	DALEIIEANV	FSSLPKLHEI	RIEKANKLMK IDQDAFQHLP	120
r FSH-R	SAFG		V V D	N	N LY NPE N	
b FSH-R	S FG		v v	N	N LY P N	
c LH-R		I S	S R SA	DAS	L LNTKN LH EDG RN	
c FSH-R	SLRYLLISNT	GLSFLPVVHR	VHSFQKVLLD	VQDNIHIRTI	ERNTFMGLSS ESVTLRLNKN	180
r FSH-R		IKH A K	IQL	I NHIV	AS FIWS	
b FSH-R	N	IKH A K	IQ L	I NHV	S F M VW S	
c LH-R	RKSC	IIEF DLTQ	IF SAHFI E	LC LRMT	PQAQMN L KY	
c FSH-R	GIQEIKDHAF	SGTCLDELNL	SDNYNLEKLP	EKVFQGAIGP	VVLDISRTRI SFLPSHGLEF	240
r FSH-R	E HNC	NQ	N E	ND S	I KVHSNN	
b FSH-R	HNC	NQ	SĒ	ND S	I RSYN	
c LH-R	FED HS	ΝΚΝΟΙ	K K RRIH	NDALR T	D SALES Y A	
c FSH-R	IKKLRARSTY	KLKKLPDVNK	FRSLIEANFT	YPSHCCAFTN	RKTQNTEFYP ICSMSPAKQD	300
r FSH-R	L	R NLD	VT M SL	A	LRISLH NKILR	
b FSH-R	L K	R SLE	VT V SL	А	WRR TSDLH NK ILR E	
c LH-R	QVNMS	S R PLD	S L VL	Q	LR E-K-QNSLL-SISDN	
c FSH-R	LGEOTGKRKH	RRSAAEDYIS	HYGTRFGPLE	NEFDYGLCNE	VVDFVCSPKP DAFNPCEDIM	360
r FSH-R	IDDM QIGDQ	V LID -EP	S KGSDMMY	D	VT	
b FSH-R	VDDM QA GQ	VL DEP	S AKG DVMY	S D	VT E	
c LH-R	FSK CEST-M	KPTS VFYR	DASS-NTSLV	G-QQKNT TH	LKILT T E L	
c FSH-R	GYNVLRVLIW	FINILAITGN	TTVLIILISS	QYKLTVPRFL	MCNLAFADLC IGIYLLFIAS	420
r FSH	I	S	VV TT		L	
b FSH-R	DDI	S	IL V T		L	
c LH-R	SF	LA	FI LV T	н	S F M L L	
c FSH-R	VDIQTKSRYY	NYAIDWQTGA	GCNAAGFFTV	FASELSVYTL	TVITLERWHT ITYAMQLNRK	480
r FSH	н Qн		D		A H EC	
b FSH-R	VH TE H		D		A H EC	
c LH-R	A SGQ	H S	ST		I D	
c FSH-R	VRLRHAVIIM	VFGWMFAFTV	ALLPIFGISS	YMKVSICLPM	HIETPFSQAY VIFLLVLNVI	540
r FSH	Q ASV	L T AÁ	F		DDSLL MA	
b FSH-R	Q AS	LV I A	F		DDSLL MS	
c LH-R	L P	LG V SILI	V LL V		D GL ILLIM)	
c FSH-R	AFVIICICYI	CIYFTVRNPN	VISSNSDTKI	AKRMAILIFT	DFLCMAPISF FAISASLRVI	e 600
r FSH	VGT	HL T	IV S	т	к	
b FSH-R	VGT	H L	IT S	M	к	
c LH-R	LV A	K VAQ E	LVAA K		T AIK	
c FSH-R	LITVSKSKIL	LVLFYPINSC	ANPFLYAIFT	KTFRRDFFIL	LSKFGCCEMQ AQIYRTETS	660
r FSH	А			N	Y	
b FSH-R		_		N	YV TS	_
		v		AQ L	M L KSR EL V-NY	7
c LH-R	TN	v				
c LH-R c FSH-R	TN SAHNFHTRNG	HYPTASKNSD	GTIYSLVPLN	HLN*		693
c LH-R c FSH-R r FSH	TN SAHNFHTRNG AT AKS	HYPTASKNSD CSS PRVTN	GTIYSLVPLN S V	HLN* SS		693
c LH-R c FSH-R r FSH b FSH-R	TN SAHNFHTRNG AT A KS T P	HYPTASKNSD CSS PRVTN C P PRVTN	GTIYSLVPLN S V SN T I R	HLN* SS A		693

FIG. 2. Comparison of the deduced c-FSH-R amino acid sequence with the rat and bovine FSH-R, and cLH-R, sequences. Blank spaces within aligned sequences represent residues similar to the cFSH-R sequence; hyphen (-) indicates corresponding residues deleted from respective sequence. Three additional residues (QPK) exist within the chicken LH-R sequence between amino acids 352 and 353 from the chicken FSH-R sequence.

ing the appropriate tertiary structure required for biological function. Thus much of the extracellular binding region would be predicted to be similar in conformation among species.

Consistent with virtually all G protein-coupled receptors thus far characterized, the aspartic acid residue within TM II (Asp⁴⁰⁸), the asparagine residue within TM VII (Asn⁶¹⁸), and proline residues within TM IV, TM VI, and TM VII (Pro^{504, 587, 616, 623}) are conserved within the cFSH-R compared to the rat FSH-R [23]. Also indicative of this family of protein receptors as a whole is the highly conserved acidic-Arg-aromatic triplet motif (ERW, amino acids 466– 468; Fig. 1) located in the second intracellular loop, which is proposed to be the site of interaction with G proteins [25].

Northern blot analysis of tissues from the hen ovary detected a single transcript corresponding to approximately 4.3 kb for the cFSH-R; this size is larger than that recently determined for the cLH-R mRNA transcript (3.0 kb [15]). On the basis of published results from the rat, selective expression of the cFSH-R mRNA within only ovarian tissues is not unexpected for this gonadotropin receptor [26]. On the other hand, the finding of a single cFSH-R transcript is in contrast to the expression of at least two major tran-

FIG. 3. Northern blot of representative tissues showing selective expression of the 4.3-kb FSH-R mRNA transcript in ovarian (stromal and 3- to 5-mm follicle granulosa) samples. The ethidium bromide-stained gel, depicting 28S and 18S rRNA, is pictured below. This experiment was repeated once, with similar results.

scripts (approximately 2.5 and 7.0 kb) and a variable number of minor transcripts found in mRNA extracts from the mammalian ovary (e.g., 1.6, 3.3 and 3.8 kb for bovine [24]; 1.8 and 4.2 kb for rat [26]). Studies in which the mammalian FSH-R protein has been expressed in vitro have determined that the 2.5-kb band codes for a complete and functional receptor [23, 27]; thus it is concluded that the 4.3-kb cFSH-R transcript is in excess of a size required to encode the functional receptor. While we have recently suggested that cLH-R mRNA may be expressed as both a fulllength as well as an alternatively spliced, truncated form of protein corresponding to the extracellular domain [15], there is as yet no evidence for the expression of an alternatively spliced form of the cFSH-R gene. Similarly, isoforms of the FSH-R representing truncated forms of the

FIG. 4. Representative Northern blot of cFSH-R mRNA from theca tissue during follicle development (left) and summary of scanning data (right; mean densitometric units expressed as fold difference vs. F1 \pm SEM; data from 4 replicate autoradiographs). F1, F2, and F3 indicate the largest, most mature; the second largest; and the third largest preovulatory follicles, respectively; 6–8 and 3–5 refer to the diameters of follicles, in millimeters.

FIG. 5. Representative Northern blot of cFSH-R mRNA from granulosa tissue during follicle development (left) and summary of scanning data (right; mean densitometric units expressed as fold difference vs. F1 \pm SEM; data from 4–6 replicate autoradiographs). Hyphenated numbers refer to diameters of follicles, in millimeters.

receptor have been identified in ovine and monkey testes [28, 29], though none have yet been found to be expressed in mammalian granulosa cells [24].

Binding of FSH to hen theca tissue has been identified by radioreceptor assay [13] and immunohistochemical [30] methods, and levels of FSH binding are reported to slightly decrease during follicle maturation. Both methods indicate a relatively limited capacity of theca to bind mammalian FSH. The comparatively lower levels of cFSH-R mRNA in theca vs. granulosa and progressively declining levels of transcript in the theca layer throughout follicle development are consistent with these previous reports (Fig. 4).

Kowalski et al. [11] reported that relatively high doses of cFSH (100-200 ng/ml) and rhFSH (1-2 IU/ml) stimulated progesterone, androgen, and estrogen production from theca cells prepared from 6- to 8-mm follicles, while Robinson et al. [7] concluded that preparations of bovine, turkey, or chicken FSH had little effect on steroidogenesis in whole prehierarchical follicles or theca cells from hierarchal follicles. On the other hand, various preparations of ovine, bovine, turkey, and chicken LH all have a pronounced stimulatory effect on steroid production in whole prehierarchical follicles or in stromal tissue and theca cells at all stages of follicle development [7, 11, 18]. Thus, while FSH may play a supportive role in making steroid precursors available for steroid biosynthesis or maintaining expression of steroidogenic enzymes, the physiological significance of FSH in directly stimulating steroid production within the theca layer remains in question.

Gilbert et al. [31] detected FSH labeling in granulosa cells from prehierarchical and hierarchal follicles by immunohistochemical methods, and Ritzhaupt and Bahr [14]

FIG. 6. Representative Northern blot of cFSH-R mRNA from 3- to 5-mm morphologically normal and atretic follicles (left) and summary of scanning data (right; mean densitometric units expressed as fold difference vs. normal follicles \pm SEM; n = 4).

reported specific binding of porcine FSH within the F1 follicle granulosa layer by radioreceptor assay. Whereas measurable levels of FSH-R mRNA are expressed within the granulosa layer throughout follicular development (Fig. 5), it has yet to be unequivocally established to what extent the FSH-R is biologically active in granulosa cells from hierarchal (9- to 12-mm through F1) follicles. For instance, while rhFSH stimulates progesterone secretion from 9- to 12-mm follicles [8], highly purified preparations of bovine, chicken, and turkey FSH fail to initiate detectable progesterone production in granulosa cells from the three largest (F3 to F1) preovulatory follicles [7, 8]. On the other hand, Krishnan et al. [4] concluded that cFSH stimulates progesterone production from F1 follicle granulosa cells, in vitro, although at relatively minor levels compared to the effects of ovine LH.

Taken together, some of the discrepancies in the relative amount of FSH bioactivity (limited vs. none) in preovulatory follicle granulosa cells may be attributed to species differences within the FSH protein (e.g., ability to bind to the cFSH-R, as discussed above), variability in the purity of the FSH preparation (i.e., amount of contamination with LH [7]), and/or the stage of follicle development investigated [32]. For instance, mammalian species are generally proposed to contain three (e.g., bovine [24], rat [23], ovine [33]), or four (human [16, 27], Macaca [28], equine [34]) glycosylation sites (important in peptide ligand recognition) within the extracellular binding domain of the FSH-R; yet only one of three glycosylation sites predicted within the cFSH-R amino acid sequence are conserved compared to the rat, ovine and bovine sequences. It is also conceivable that while the FSH-R protein may in fact be present within the membranes of preovulatory follicle granulosa cells, albeit at lower levels than in prehierarchical follicles ([14]; Fig. 5), such receptors may not be fully coupled to an active adenylyl cyclase enzyme or they may be functionally coupled to alternative second messenger pathways [31, 35]. Nevertheless, it is clear that LH is the more important gonadotropin in promoting granulosa cell steroidogenesis in hierarchal follicles.

By contrast, the effects of rhFSH on granulosa cells from 6- to 8-mm follicles have been well-documented. For instance, rhFSH induces the expression and activity of cytochrome P450_{scc} and P450_{17aOH} enzymes in prehierarchical follicle granulosa cells at a time when cFSH-R mRNA levels are highest and cLH-R mRNA is virtually undetectable [9, 10, 15]. Furthermore, FSH treatment attenuates the onset of apoptotic cell death in prehierarchical follicle granulosa cells incubated in serum-free medium [12], and induces fibronectin production [36]. These effects are presumably mediated via activation of the adenylyl cyclase/ protein kinase A intracellular signaling pathway [12, 36]. The positive effects of FSH on granulosa cell viability are consistent with a recent report, which concluded that FSH is a major survival factor for maintaining early antral follicles of the rat [37].

Finally, it is not unexpected to find that cFSH-R mRNA levels decrease in attretic compared to normal follicles (Fig. 6), as similar results have been reported from the rat ovary [38]. Follicle atresia occurs almost exclusively in prehierarchical follicles [39], and accordingly, follicles selected for this experiment were from 3- to 5-mm in diameter. It has previously been reported that hen attretic follicles exhibit extensive oligonucleosome formation characteristic of apoptosis, and this occurs almost exclusively within the granulosa layer [12, 40]. Thus, we would predict that, in similarity to the decrease in cLH-R transcript recently reported for attretic compared to healthy follicles [15], much of the decrease in cFSH-R transcript levels is specific to granulosa cells. The decrease in gonadotropin receptor mRNA levels may account for the loss of gonadotropin-induced steroidogenesis in attretic follicles, despite the previous observation that both 3β- and 17β-hydroxysteroid dehydrogenase activities persist until the latter stages of follicle resorption [41]. Given that all attretic follicles in these experiments were selected on the basis of morphology, and thus were undoubtedly collected at various stages of the attretic process, it is not possible to speculate on whether the loss of cFSH-R mRNA is a cause or simply an effect of apoptosis and atresia.

In summary, expression profiles of the cFSH-R mRNA transcript are consistent with a role for FSH and the FSH-R in initiating, or at least facilitating, final differentiation of this follicle cell layer [9, 10], as well as in preventing prehierarchical follicle granulosa cells from succumbing to programmed cell death [12]. This shift from an FSH-dominant to an LH-dominant environment in granulosa cells during hen follicle development is not unlike that which occurs in mammalian granulosa cells during the transition from the preantral and antral stages to the preovulatory stage of differentiation [35].

ACKNOWLEDGMENTS

We thank T. Jensen and Dr. J. Witty for assistance and helpful comments during the course of these studies.

REFERENCES

- Noce T, Ando H, Ueda T, Kubokawa K, Higashinakagawa T, Ishii S. Molecular cloning and nucleotide sequence analysis of the putative cDNA for the precursor molecule of the chicken LH-β subunit. J Mol Endocrinol 1989; 3:129–137.
- Foster DN, Galehouse D, Giordano T, Min B, Lamb IC, Porter DA, Intehar KJ. Bacon WL. Nucleotide sequence of the cDNA encoding the common α subunit of the chicken pituitary glycoprotein hormones. J Mol Endocrinol 1992; 8:21–27.
- 3. You S, Foster LK, Silsby JL, El Halawani ME, Foster DN. Sequence analysis of the turkey LH β subunit and its regulation by gonadotrophin-releasing hormone and prolactin in cultured pituitary cells. J Mol Endocrinol 1995; 14:117–129.
- Krishnan KA, Proudman JA, Bahr JM. Purification and characterization of chicken follicle-stimulating hormone. Comp Biochem Physiol 1992; 102:67–75.
- Scanes CG, Fagioli JH. Effects of mammalian and avian gonadotropins on *in vitro* progesterone production by avian ovarian granulosa cells. Gen Comp Endocrinol 1980; 41:1–7.
- Wells JW, Walker MA, Culbert J, Gilbert AB. Comparison of the response *in vivo* to luteinizing hormone and follicle stimulating hormone of the six follicles from the ovarian hierarchy in the chicken (*Gallus domesticus*). Gen Comp Endocrinol 1985; 59:369-374.
- Robinson FE, Etches RJ, Anderson-Langmuir CE, Burke WH, Cheng K-W, Cunningham FJ, Ishii S, Sharp PJ, Talbot RT. Steroidogenic relationships of gonadotrophin hormones in the ovary of the hen (*Gallus domesticus*). Gen Comp Endocrinol 1988; 69:455–466.
- Johnson AL. Regulation of follicle differentiation by gonadotropins and growth factors. Poult Sci 1993; 72:867–873.
- Li Z, Johnson AL. Regulation of P450 cholesterol side-chain cleavage mRNA expression and progesterone production in hen granulosa cells. Biol Reprod 1993; 49:463–469.
- 10. Li Z, Johnson AL. Expression and regulation of cytochrome P450 17α -hydroxylase mRNA levels and androstenedione production in hen granulosa cells. Biol Reprod 1993; 49:1293–1302.
- Kowalski KI, Tilly JL, Johnson AL. Cytochrome P450 side-chain cleavage (P450_{scc}) in the hen ovary. I. Regulation of P450_{scc} messenger RNA levels and steroidogenesis in theca cells of developing follicles. Biol Reprod 1991; 45:955–966.
- 12. Johnson AL, Bridgham JT, Witty JP, Tilly JL. Susceptibility of avian granulosa cells to apoptosis is dependent upon stage of follicle de-

velopment and is related to endogenous levels of *bcl*-xlong gene expression. Endocrinology 1996; 137:2059–2066.

- Etches RJ, Cheng KW. Changes in the plasma concentrations of luteinizing hormone, progesterone, oestradiol and testosterone and in the binding of follicle-stimulating hormone to the theca of follicles during the ovulation cycle of the hen (*Gallus domesticus*). J Endocrinol 1981; 91:11-22.
- Ritzhaupt LK, Bahr JM. A decrease in FSH receptors of granulosa cells during follicular maturation in the domestic fowl (*Gallus domesticus*). J Endocrinol 1987; 115:303–310.
- Johnson AL, Bridgham J, Wagner B. Characterization of a chicken luteinizing hormone receptor (cLH-R) complementary deoxyribonucleic acid, and expression of cLH-R mesenger ribonucleic acid in the ovary. Biol Reprod 1996; 55:304–309.
- Minigish T, Nakamura K, Takakura Y, Miyamoto K, Hasegawa Y, Ibuki Y, Igarashi M. Cloning and sequencing of human FSH receptor cDNA. Biochem Biophys Res Commun 1990; 172:1049–1054.
- 17. Tilly JL, Kowalski KI, Johnson AL. Stage of ovarian follicular development associated with the initiation of steroidogenic competence in avian granulosa cells. Biol Reprod 1991; 44:305–314.
- Levorse JM, Johnson AL. Regulation of steroid production in ovarian stromal tissue from 5- to 8-week-old pullets and laying hens. J Reprod Fertil 1994; 100:195-202.
- von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res 1986; 14:4683–4691.
- Dohlman HG, Thorner J, Caron MG, Lefkowitz RJ. Model systems for the study of seven-transmembrane-segment receptors. Annu Rev Biochem 1991; 60:653–688.
- 21. Baldwin JM. Structure and function of receptors coupled to G proteins. Curr Opin Cell Biol 1994; 6:180-190.
- 22. Dayhoff MO, Schwartz RM, Orcutt BC. A model of evolutionary change in proteins. Atlas Protein Sequence Struct 1978; 5:345-352.
- Sprengel R, Braun T, Nikolics K, Segaloff DL, Seeburg PH. The testicular receptor for follicle stimulating hormone: structure and functional expression of cloned cDNA. Mol Endocrinol 1990; 4:525–530.
- Houde A, Lambert A, Saumande J, Silversides DW, Lussier JG. Structure of the bovine follicle-stimulating hormone receptor complementary DNA and expression in bovine tissues. Mol Reprod Dev 1994; 39:127-135.
- 25. Attwater TK, Eliopoulos EE, Findlay JBC. Multiple sequence alignment of protein families showing low sequence homology: a methodological approach using database pattern-matching discriminations for G-protein-linked receptors. Gene 1991; 98:153–159.
- LaPolt PS, Tilly JL, Aihara T, Nishimori K, Hsueh AJW. Gonadotropin-induced up- and down-regulation of ovarian follicle-stimulating hormone (FSH) receptor gene expression in immature rats: effects of pregnant mare's serum gonadotropin, human chorionic gonadotropin, and recombinant FSH. Endocrinology 1992; 130:1289–1295.
- 27. Kelton CA, Cheng SVY, Nugent NP, Schweickhardt RL, Rosenthal JL, Overton SA, Wands GD, Kuzeja JB, Luchette CA, Chappel SC.

The cloning of the human follicle stimulating hormone receptor and its expression in COS-7, CHO, and Y-1 cells. Mol Cell Endocrinol 1992; 89:141–151.

- 28. Gromoll J, Dankbar B, Sharma RS, Nieschlag E. Molecular cloning of the testicular follicle stimulating hormone receptor of the nonhuman primate *Macaca fascicularis* and identification of multiple transcripts in the testes. Biochem Biophys Res Commun 1993; 196:1066–1072.
- Khan H, Yarney TA, Sairam MR. Cloning of alternatively spliced mRNA transcripts coding for variants of ovine testicular follitropin receptor lacking the G protein coupling domains. Biochem Biophys Res Commun 1993; 190:888–894.
- Gilbert AB, Davidson MF, Wells JW. Detection of gonadotrophic hormones on isolated theca interstitial cells of the domestic hen, *Gallus domesticus*, by an immunohistochemical method. Histochem J 1985; 17:105-111.
- Gilbert AB, Davidson MF, Wells JW. Detection of gonadotrophic hormones on isolated granulosa cells of the domestic hen, *Gallus domesticus*, by an immunohistochemical method. Histochem J 1983; 15: 753-761.
- Hammond RW, Burke WH, Hertelendy F Influence of follicular maturation on progesterone release in chicken granulosa cells in response to turkey and ovine gonadotropins. Biol Reprod 1981; 24:1048–1055.
- Yarney TA, Sairam MR, Khan H, Ravindranath N, Payne S, Seidah NG. Molecular cloning and expression of the ovine testicular follicle stimulating hormone receptor. Mol Cell Endocrinol 1993; 93:219– 226.
- Robert P, Amsellem S, Christophe S, Benifla J-L, Bellet D, Koman A, Bidart J-M. Cloning and sequencing of the equine follitropin receptor. Biochem Biophys Res Commun 1994; 201:201–207.
- Richards JS. Hormonal control of gene expression in the ovary. Endocr Rev 1994; 15:725-751.
- Novero RP, Asem EK. Follicle-stimulating hormone-enhanced fibronectin production by chicken granulosa cells is influenced by follicular development. Poult Sci 1993; 72:709–721.
- Chun S-Y, Eisenhauer KM, Minami S, Billig H, Perlas E, Hsueh AJW. Hormonal regulation of apoptosis in early antral follicles: folliclestimulating hormone as a major survival factor. Endocrinology 1996; 137:1447–1456.
- Tilly JL, Kowalski KI, Schomberg DW, Hsueh AJW. Apoptosis in atretic ovarian follicles is associated with selective decreases in messenger ribonucleic acid transcripts for gonadotropin receptors and cytochrome P450 aromatase. Endocrinology 1992; 131:1670–1676.
- 39. Gilbert AB, Perry MM, Waddington D, Hardie MA. Role of atresia in establishing the follicular hierarchy in the ovary of the domestic hen (*Gallus domesticus*). J Reprod Fertil 1983; 69:221-227.
- Tilly JL, Kowalski KI, Johnson AL, Hsueh AJW. Involvement of apoptosis in ovarian follicular atresia and postovulatory regression. Endocrinology 1991; 129:2799–2801.
- 41. Chieffi G, Botte V. The distribution of some enzymes involved in the steroidogenesis of hen's ovary. Experientia 1965; 21:16–17.