
The developmentally regulated loss of female germ cells at
various stages of pre- and post-natal development is con-
sidered a normal physiological process ensuring the greatest
chance for ovulation of viable, fertilizable oocytes. However,
abnormally high rates of attrition often result in subclinical
or clinical infertility or the premature termination of fertility
(for example, reproductive senescence or human meno-
pause). Ovarian follicle atresia in all vertebrates studied to
date is mediated via apoptosis, a process that can be
initiated from within ovarian germ or follicle somatic cells,
or in response to extrafollicular physiological (for example,
cytokines) and pathological (for example, viral) signals.
Caspases represent a family of intracellular cysteine proteases
the actions of which are linked both to the initial and final
stages of apoptosis in virtually all types of vertebrate cell.
Moreover, recent studies have implicated additional intra-
cellular factors in the mediation of the survival or death of
vertebrate ovarian follicles. These factors include the Bcl-2
family of death-inducing and -suppressing proteins, inhibitor
of apoptosis proteins (IAPs), membrane-anchored and soluble
receptors (for example, tumour necrosis factor receptor
family, plus receptor-associated proteins) and cell signalling
pathways (for example, adenylyl cyclase–cAMP, mitogen-
activated protein kinase and phosphoinositol-3-kinase–Akt).
Virtually all of these factors appear to interact with the
caspase cascade of proteolytic activity. 

Apoptosis mediated by caspases 

Apoptosis occurs in eukaryotes (including plants) and
prokaryotes (Aravind et al., 1999). Genetic studies in 
the nematode Caenorhabditis elegans identified three
fundamental components of the apoptotic pathway that are
now known to be conserved in all eukaryotes (Miura and
Yuan, 1996). Ced-9 is a negative regulator of apoptosis
functionally related to the mammalian Bcl-2 family of
death-suppressing proteins. By contrast, Ced-3 is an
orthologue from the family of mammalian caspases that 
acts as an effector of the cell-death pathway, whereas 
Ced-4 (which is orthologous to the mammalian apoptosis
protease-activating factor-1, or Apaf-1) is a regulator of 
Ced-3–caspase activation. Loss of function mutations 
of either the ced-3 or ced-4 genes in C. elegans results 
in an abnormal increase in the number of germ cells,
hyperplasia of the gonad and a subsequent decrease in 
the number of mature oocytes available for fertilization
(Gumienny et al., 1999).

Apoptosis in vertebrate species involves well-organized
morphological and biochemical processes characterized 
by membrane blebbing, cell shrinkage, DNA fragmenta-
tion (oligonucleosome formation), and the formation of
membrane-enclosed vesicles (apoptotic bodies). A
physiological consequence of apoptotic (compared with
necrotic) cell death is the elimination of affected cells
without the initiation of an inflammatory response. Apoptosis
is a highly regulated process involving the sequential
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In the vertebrate ovary, apoptosis is the process by which excess or non-viable germ and
granulosa cells are eliminated early in ontogeny (often beginning before birth), and
thereafter continuously throughout reproductive life. Accordingly, an excessively high
rate or abnormal triggering of such cell death (and, by implication, follicle atresia) can
negatively affect fertility. Programmed cell death involves the integration of many
pathways and intracellular proteins, and central among these at almost every stage are
members of the caspase family. Relatively little attention has been focused upon the ovary
with regards to elucidating initiator and effector members of the caspase family, and
pathways by which they are activated and inactivated. The present review briefly
describes vertebrate caspases and the regulation of their function in non-ovarian tissues.
Subsequently, the status of caspase expression and function in orchestrating apoptotic cell
death in ovarian germ and follicle somatic cells is considered. The most compelling results
implicating specific caspases in ovarian function have been derived from mouse single
and double knockout model systems. The final outcome of continued studies, in addition
to providing information regarding understanding and management of infertility, will
influence the development of strategies to treat ovarian cancers and ameliorate the
adverse effects of their therapy (for example, chemotherapy).
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activation of multiple caspases, each of which cleaves
target substrates at specific aspartic acid residues. A number
of non-caspase proteases implicated in apoptosis (for
example, granzyme B, cathepsins, calpains and the protease
complex) have been reviewed elsewhere (Johnson, 2000)
and will not be considered in this review.

Vertebrate caspases

The mammalian caspase family includes 14 members
(caspases 1–14) (Hu et al., 1998; Humke et al. 1998; Wolf
and Green, 1999) (Fig. 1). Several of these, including
caspases 2, 3, 9, 11 and 12, have been implicated directly
in mediating apoptosis within the ovary using genetic
models (for examples, see Bergeron et al., 1998; Matikainen
et al., 2001; Morita et al., 2001). Phylogenetic analysis of
members of the caspase family has resulted in the
classification of caspases into five lineages: (i) caspases 1, 4,
5, 11, 12 and 13 comprise the interleukin-1β-converting
enzyme (ICE), or caspase 1 subfamily (mainly involved in
the processing of pro-inflammatory cytokines); (ii) caspase

14; (iii) caspases 3, 6, 7, 8 and 10 belong to the caspase 3
subfamily; (iv) caspase 2; and (v) caspase 9 (Wang and Gu,
2001). 

All caspases are translated as inactive zymogens that
contain a variable length prodomain and one or more hetero-
dimerization modules, depending upon their function and
position within the caspase cascade. For example, upstream
initiator caspases such as caspases 8 and 10 contain two
death effector domains (DED), whereas caspases 2 and 9
and ICE-related caspases contain a caspase recruitment
domain (CARD), in addition to the proteolytic carboxy-
terminus. Binding of caspases to specific adaptor molecules
via DED or CARD domains results in caspase auto-
activation together with the activation of effector (or
executioner) caspases. The functional carboxy-terminus of
all caspases consists of large (for example, p20) and small
(for example, p10) subunits that are cleaved at caspase-
specific sites (the carboxy side of an aspartate residue)
before activation. By comparison, downstream effector
caspases contain only a variable length prodomain plus the
functional carboxy-terminus domain. Processed subunits
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Fig. 1. Phylogenetic and functional relationships among members of the caspase family. Although
phylogenetic analysis indicates five major lineages (i–v) for the members of the family, caspases can be
functionally grouped into interleukin-converting enzyme (ICE)-related members (associated primarily
with cytokine activation), initiator capases (acting as transducers of extrinsic signals from death domain-
containing receptors, or of intrinsic mechanisms acting through mitochondria), and effector caspases
(largely responsible for the downstream cleavage of functional cellular proteins). CARD: caspase
recruitment domain; DED: death effector domain. Large (LG) and small (SM) subunit domains are
processed to form the active caspase. The N-terminal, variable length prodomain of each caspase is not
depicted. Phylogenetic relatedness, as presented, is derived primarily from Wang and Gu (2001).
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from two procaspase zymogens self-associate (to produce
so-called homo–hetero dimers) and form two active
enzyme sites at opposite ends of the complex (Earnshaw et
al., 1999). Effector caspases cleave critical cellular proteins,
such as nuclear lamins, cytoskeletal proteins, and the
inhibitor of caspase-activated DNase, ICAD. For instance,
cleavage of the ICAD permits activation of caspase-
activated DNase (CAD), the endonuclease responsible for
oligonucleosome formation.

Six caspase orthologues have been at least partially
characterized to date in Aves (chicken caspases 1, 2, 3, 6, 8
and 9), and each of these is expressed within the ovary
(Johnson et al., 1997, 1998a; Johnson and Bridgham, 2000;
S. Barton, J. T. Bridgham and A. L. Johnson, unpublished).
(A recent search of a chicken Expressed Sequence Tag (EST)
database indicates the presence of a caspase 7 orthologue
(accession number AI981164).) Moreover, work with more
distantly related vertebrate model systems, such as the
zebrafish (Danio) and Xenopus, further establishes the high
degree of caspase conservation among vertebrates and
emphasizes the importance of an established cascade of
caspase activity in cell death. There are at least six known
caspase orthologues in Danio (Danio caspases 2, 3, 6, 8, 9
and 13; Inohara and Nunez, 2000), and Xenopus ortho-
logues include caspases 1, 2, 3, 6, 8 and 10; Nakajima et al.,
2000). Current efforts directed towards genome sequencing
in each of a variety of non-mammalian species are
predicted to find orthologues to most, if not all, of the
remaining mammalian members of the caspase family.

Caspase activation and cell death signalling

Two general intracellular pathways involving initiator
caspases that mediate apoptosis have so far been identified.
One upstream pathway promoted by the activation of
several members of the tumour necrosis factor receptor
(TNF-R) family that contain an intracellular death domain
(DD) results in the processing of the initiator caspases,
caspases 8 or 10, or both (Fig. 2). For instance, Fas-induced
cell death is mediated by the recruitment and activation of
caspase 8 via the Fas adaptor protein, Fas-associated death
domain (FADD; Strasser and Newton, 1999). Whereas a
FADD death domain is required for association with the
death receptor to form the death-inducing signal complex
(DISC), a FADD death effector domain (DED) is critical for
the recruitment of caspase 8. Conversely, inhibition of such
death receptor-induced activation may be affected by a
FADD-like ICE inhibitory protein (FLIP), which competitively
blocks the processing of the procaspase at the DISC
(Budihardjo et al., 1999). The overall importance of FLIP
expression in attenuating apoptotic cell death is suggested
by the finding that FLIP –/– mouse embryos fail to survive
past day 10.5 (Yeh et al., 2000).

An alternative upstream pathway involving an initiator
caspase occurs after a perturbation of the mitochondria (for
example, one induced by chemotherapeutic drugs, oxidative
stress or DNA damage), which promotes the release of

mitochondrial cytochrome C and the intermembrane
protein DIABLO–Smac to the cytosol (Ekert et al., 2001).
Cytosolic cytochrome C mediates the formation of a high
molecular weight complex consisting of Apaf-1 and caspase 9
(the apoptosome complex), and the subsequent processing
of caspase 9, whereas a primary action of DIABLO–Smac is
to inactivate IAPs. Autoactivation of either caspase 8 or
caspase 9 eventually initiates the processing of an effector
caspase such as caspase 3, 6 or 7, and the full potentiation
of the caspase cascade. 

Not unexpectedly, caspase activation and activity is
regulated tightly by a variety of cellular pro- and anti-
apoptotic proteins, including members of the Bcl-2-related
family and IAPs. Given the abundance of information
derived from both primary and transformed cell lines, only a
few pertinent examples will be provided here (for more
complete reviews, see Schendel et al., 1998; Miller, 1999).
Anti-apoptotic members of the Bcl-2 family, such as Bcl-2
and Bcl-xLong, consist of four Bcl-2 homology (BH)
domains (BH1–4) plus a transmembrane region for
anchoring to mitochondria. It has been proposed that such
proteins form ion channels within the mitochondrial
membrane, and help maintain mitochondrial integrity by
allowing the export of H+ ions from the inner mitochondrial
space. Overexpression of Bcl-2 can inhibit agonist (for
example, resveratrol)-induced apoptosis by preventing
cytochrome C release and caspase 9 activation (Park et al.,
2001). Similarly, staurosporine-induced caspase 9-like
activity and the progression of apoptosis is attenuated by
chicken Bcl-xLong (Fig. 3). Such results clearly place anti-
apoptotic proteins of the Bcl-2 family upstream of caspase
activation. 

Pro-apoptotic Bcl-2-related proteins, such as Bid, Bad,
Bik and Bim, contain a single BH3 domain and are capable
of counteracting the cytoprotective effects of anti-apoptotic
Bcl-2 and Bcl-xLong by forming heterodimers. For instance,
Fas receptor-activated caspase 8 mediates cleavage of Bid, and
the resulting truncated Bid proceeds to neutralize the anti-
apoptotic activity of Bcl-2 or Bcl-xLong. However, pro-
apoptotic Bax lacks a BH4 domain but maintains the ability
to form ion channels within the mitochondrial membrane.
After cellular DNA damage, Bax can heterodimerize with and
antagonize the anti-apoptotic effects of Bcl-2 or directly pro-
mote the release of cytochrome c and DIABLO–Smac (Fig. 2).

Vertebrate IAPs directly bind to and potently inhibit
caspase activation and activity (Deveraux and Reed, 1999).
The second in the series of three baculovirus IAP repeat
(BIR) domains derived from X-Linked IAP (XIAP or MIHA) is
both necessary and sufficient to suppress caspase 3 and
caspase 7 activity, while the third BIR domain of
XIAP–MIHA combined with the adjacent zinc-binding
RING domain interacts with and inhibits caspase 9
(Deveraux et al., 1999). Significantly, the inhibitory actions
of XIAP–MIHA can be blocked after the release of
mitochondrial DIABLO–Smac, which preferentially binds
XIAP–MIHA and thus facilitates activation of caspase 9
(Ekert et al., 2001).
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Receptor-mediated cell signalling pathways, including
mitogen-activated protein (MAP) kinase and phosphoinositol-
3-kinase–Akt, can attenuate or promote caspase-dependent
apoptosis, depending upon the type of cell. Growth factor
(for example, epidermal growth factor or insulin-like 
growth factor I)-induced activation of the phosphoinositol-
3-kinase–Akt cell survival pathway inhibits caspase 9 acti-
vation and activity directly, presumably via a phos-
phorylation event (Cardone et al., 1998), and signalling 
via Akt prevents serum withdrawal-induced apoptosis 
in cultured hen granulosa cells (Johnson et al., 2001).
Conversely, downstream effector caspases, such as caspases

3 and 7, target the epidermal growth factor receptor (EGFR)
presumably to reduce further cell survival signalling (Bae et
al., 2001).

Collectively, the selective examples above illustrate the
complexity and redundancy of the pro- and anti-apoptotic
regulatory mechanisms that ultimately determine the status
of cellular caspase activity. Given that the myriad of cell
signalling pathways and cellular proteins that ultimately
balance cell viability and cell death is largely specific to the
type of cell, the next section of this review specifically
addresses current understanding of these processes within
the ovary.
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mechanisms largely remain to be determined. Apaf-1: apoptosis protease-activating factor-1; CARD: caspase recruitment domain; FLIP:
FADD-like interleukin-1β-converting enzyme (ICE) inhibitory protein; IAPs: inhibitor of apoptosis proteins.



Caspases in the vertebrate ovary

Evidence for the involvement of caspases in regulating
ovarian germ cell viability 

During embryonic development, the female ovary is
endowed with considerably more germ cells than are
present at puberty. This excessive number of germ cells is
reduced by two-thirds or more via the process of apoptosis
during the late embryonic–early postpartum stage (Morita
and Tilly, 1999). Targeted caspase 2 gene inactivation in
mouse embryonic stem cells results in a marked decrease 
in this development-related germ cell death, and con-
sequently, a significantly greater number of primordial
follicles within the postnatal ovary compared with the
number of follicles in wild-type controls. Moreover, the
absence of caspase 2 activity renders germ cells largely
resistant to chemotherapeutic drug (doxorubicin)-induced
apoptosis (Bergeron et al., 1998). 

Studies with caspase 11-deficient mice showed that
females are born with a severe depletion of germ cells
(Morita et al., 2001). In light of considerable previous data
implicating caspase 11 as a functional mediator of cytokine
processing (Fig. 1; Earnshaw et al., 1999), it was reasoned
that the absence of caspase 11 activity results in a
deficiency of fully processed cell survival cytokines within
developing oocytes. In fact, a significantly greater
proportion of fetal ovarian germ cells derived from caspase
11-deficient mice and cultured in the presence of
interleukin 1α (IL-α) or IL-1β survived than did those
cultured in the absence of these cytokines. Further
experiments with caspase 11–caspase 2 double mutants
determined that the germ cell loss observed in caspase 11-
deficient females was dependent upon functional caspase 2
activity. These results lead to the conclusion that cytokines
processed as a result of caspase 11 activity (including, but
not necessarily limited to, IL-1α and IL-1β) suppress
downstream effector caspases such as caspase 2.

Prenatal germ cells in cultured ovaries from caspase 9 –/–
mice are more resistant to apoptosis induced by cytokine
deprivation than are those from wild-type controls (Maravei
et al., 2001), whereas cumulus-denuded oocytes from
mature caspase 12 –/– mice are comparatively more
resistant to the chemotherapeutic drug doxorubicin (Perez
et al., 2001). Although both these reports provide intriguing
evidence for the involvement of caspases 9 and 12 in the
regulation of the number of germ cells, the physiological
significance in vivo and the precise mechanisms of
activation in the ovary remain to be elucidated.

In contrast, caspase 3 activity is apparently not essential
for either development-related or chemotherapeutic (for
example, doxorubicin)-induced germ cell apoptosis at day
4 after birth, as determined from studies using caspase 3
gene knockout mice (Matikainen et al., 2001). In light of
evidence that additional effector phase members of the
caspase family are expressed within the oocyte (for
example, caspases 6 and 7; Exley et al., 1999), it is likely
that redundant effector caspases function to ensure the

completion of apoptosis. In addition to functional studies of
caspases 2, 3, 9 and 11 in pre- and early postnatal oocytes,
RT–PCR studies have detected expression of caspases 1, 6
and 7 within oocytes from superovulated mice (Exley et al.,
1999); however, the activity and function of each caspase
within mature oocytes has yet to be established. 

Future genetic model systems designed to evaluate the
role of additional caspases will likely require the use of
conditional knockout model systems (Pru and Tilly, 2001),
as some caspase knockout models (for example, those for
caspases 7 and 8) have proven to be lethal to embryos
(Zheng et al., 1999). Nevertheless, results from the various
caspase-deficient model systems generated to date have
initiated the elucidation of the germ cell-specific pathways
(compared with the ovarian somatic cell-specific pathways;
Fig. 4) responsible for mediating apoptosis both before and
after birth. 
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Fig. 3. Overexpression of chicken Bcl-xLong (Bcl-xL) in Chinese
hamster ovary (CHO) cells attenuates caspase 9-like activity and
the progression of apoptosis in staurosporine-treated cells. (a) CHO
cells were transfected with chicken Bcl-xL and clonally selected for
stable expression. (b) Cultured cells were treated with 0–200 nmol
staurosporine l–1 for 18 h, then collected for evaluation of
oligonucleosome formation or assayed for caspase 9-like activity
using the fluorogenic substrate Ac-LEHD-AFC. White bar: CHO-
Control; blue bar: CHO-clone number 7; red bar: CHO-clone
number 8. *Significant attenuation of in vitro caspase activity
compared with the control cells (P < 0.05).



Mediation of follicle atresia by caspases

During the postnatal development of primordial through
to preantral mammalian follicles, atresia is initiated mainly
by the death of the oocyte (Morita and Tilly, 1999). Germ
cell apoptosis may result from either the absence or
insufficient availability of cell survival factors (for example,
ILs, stem cell factor, leukaemia inhibitory factor and insulin-
like growth factor I; Morita and Tilly, 1999), environmental
toxins or chemotherapeutics (Robles et al., 2000). The loss
of germ cell viability results in the death of the adjacent
somatic cell layer via apoptosis (Fig. 4). In contrast, atresia
in preantral through to preovulatory follicles is frequently
characterized by the rapid progression of apoptosis
throughout the granulosa layer, which leads ultimately to
the demise of the oocyte (Morita and Tilly, 1999; Tilly,
2001). 

Granulosa cells from healthy follicles possess almost
exclusively the inactive (unprocessed) form of caspase 3,
whereas granulosa cells from atretic follicles demonstrate
increased concentrations of activated caspase 3. The active
processing of caspase 3 is associated with the cleavage of
poly-(ADP-ribose)-polymerase (PARP) and actin, and the
formation of oligonucleosomes (Boone and Tsang, 1998).
Unlike the progression in germ cells, the normal
progression of apoptosis in granulosa cells from preantral to
preovulatory follicles is dependent upon the activity of
caspases 3 and 7, as determined from studies using 

caspase 3 knockout mice (Matikainen et al., 2001). This
finding reinforces the specificity of cell lineage-dependent
apoptotic pathways, and provides for specificity in the
paracrine–autocrine signals that initiate germ cell versus
somatic cell death.

Moreover, ovaries from caspase 9-deficient mice contain
numerous developing follicles that fail to complete atresia
owing to an apparent failure of granulosa cell apoptosis
(Maravei et al., 2001). Indirect evidence indicates a role 
for caspase 9 as an initiator of caspase 3 activity, as 
Apaf-1 expression in antral follicles is suppressed by
gonadotrophin (equine chorionic gonadotrophin) priming
(Robles et al., 1999). Angelastro et al. (2001) have reported
ovarian expression of a caspase 9 variant containing a
unique carboxy-terminus (caspase 9-carboxy-terminal-
divergent) that may act as a dominant-negative isoform, 
but it remains to be established to what extent this
alternatively spliced variant functions to modify the pro-
gression of apoptosis within the ovary under physiological
conditions.

Although pathways mediating death receptor-induced
caspase activation have received less attention, there is
evidence for both expression and activity of caspase 8 
(but not caspase 10) in granulosa cells (Hu et al., 2001; 
S. Barton, J. T. Bridgham and A. L. Johnson, unpublished).
Finally, evidence for direct involvement of caspase 1 in
granulosa cell apoptosis is less convincing, as the amounts
of mRNA transcript encoding caspase 1 compared with
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dependent and can be attenuated by cell survival factors such as interleukin-1α (IL-1α) and IL-1β,
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known to promote granulosa survival include LH, FSH, IGF-I, epidermal growth factor (EGF) and
transforming growth factor α (TGF-α).



mRNA transcript encoding caspase 3 are extremely low,
and IL-1β fails to attenuate the progression of apoptosis in
hen granulosa cells (Johnson et al., 1998a).

In addition, various IAPs are expressed within ovarian
granulosa cells (cIAP1: Johnson et al., 1998b; Li et al., 1998;
XIAP: Asselin et al., 2001; survivin, Fig. 5). Nevertheless,
much work remains to be done to establish the site of
inhibitory action for each IAP within the caspase cascade. 

Several intracellular signalling pathways have been linked
directly to promoting granulosa cell survival, including
pathways involving gonadotrophin- and vasoactive intestinal
peptide-induced cAMP formation (Flaws et al., 1995;
Johnson et al., 1999), mitogen-activated protein (MAP)
kinase–Erk (Gebauer et al., 1999) and phosphoinositol-3-
kinase–Akt (Westfall et al., 2000; Asselin et al., 2001;
Johnson et al., 2001). For instance, signalling via cAMP
probably enhances resistance of hen granulosa cells to
apoptosis, at least in part, by increasing expression of the
anti-apoptotic proteins Bcl-xLong and cIAP1.

Caspase-mediated regression of the corpus
luteum–postovulatory follicle

After an infertile ovulatory cycle in a female mammal,
regression of the corpus luteum is a prerequisite to the
initiation of a new wave of follicle development. There has
been relatively little work directed towards elucidating
caspase-dependent pathways involved in corpus luteum
regression. As might be predicted, a number of initiator and
effector caspases expressed within preovulatory follicles
have also been identified within the corpus luteum,
including caspases 1, 3 and 9 (Krajewska et al., 1997;
Rueda et al., 1999; Khan et al., 2000). In non-primate
species, PGF2α derived from the uterus is considered a
primary initiator of luteal regression. PGF2α-induced
apoptosis within the ovine corpus luteum is associated with
both increased mRNA expression and activity of caspase 3
(Rueda et al., 1999). The actions of PGF2α may occur, at
least in part, as a result of protein kinase C-mediated
production of reactive oxygen species (ROS) (Nakamura
and Sakamoto, 2001). Moreover, in cows, increased
concentrations of the caspase 1 transcript in the corpus
luteum occur coincident with the onset of luteolysis 
(Rueda et al., 1997). Although caspase 1 activity is
associated primarily with the processing of pro-
inflammatory cytokines, it is not yet clear whether this
association is involved in the initiation or potentiation of
luteal regression. 

From an evolutionary perspective, ovulated follicles 
from avian species rapidly terminate the biosynthesis of
progesterone and fail to form a functional corpus luteum.
Instead, the residual postovulatory follicle begins to regress
via caspase-mediated apoptosis shortly after ovulation (Fig.
6), and is almost entirely resorbed within 4–6 days after
ovulation. No studies have thus far been reported that
define the signals and initiator pathways responsible for
regression of the postovulatory follicle. 

Ovarian caspases 25

(a)

(b)

Survivin 142Vector
Staurosporine (50 nmol l–1)

0.2

0.6

1.0

Survivin 142
(16 kDa)

R
el

at
iv

e
ca

sp
as

e 
3 

ac
tiv

ity

Fig. 5. Transient transfection of cultured hen granulosa cells with
the inhibitor of apoptosis protein chicken survivin 142 attenuates
caspase 3 activity induced by treatment with staurosporine (A. L.
Johnson, J. Langer and J. T. Bridgham, unpublished). (a) Repre-
sentative western blot hybridization of the overexpressed chicken
survivin 142 protein 36 h after transfection. (b) Caspase 3 activity
(measured using the fluorogenic substrate, Ac-DEVD-AFC) deter-
mined from a cell-free caspase 3 activity assay (Johnson and
Bridgham, 2000).

Fig. 6. (a) Rapid regression of the chicken postovulatory follicle
1–3 days after ovulation is reflected by oligonucleosome formation
(hours before or days after ovulation) and (b) expression of caspase
3 activity. Caspase activity in whole postovulatory follicles is
compared with activity within the largest preovulatory follicle
theca (F1Th) and granulosa (F1Gr) layers collected approximately
17 h before ovulation.



Conclusions

Although there has been considerable recent progress in
defining the caspases involved in regulating the number of
germ cells and follicle atresia, and the differences in the
involvement of specific caspases in ovarian cell lineage in
vertebrate species, there is clearly more to be learned.
Further progress in this area will be complicated by the
presence of multiple, and potentially redundant, caspase
cascades that mediate apoptosis, together with the multiple
checks and balances provided by various pro- and anti-
apoptotic signalling pathways and cellular regulatory
proteins expressed within the ovary. Nevertheless, such
progress will no doubt impact positively upon the diagnosis
and treatment of clinical infertility, the development of
strategies to prevent chemotherapy-induced infertility, and
the understanding of normal and pathological processes
leading to reproductive senescence.

Note added in proof : a recent publication* has
documented in caspase 3 null mice the functional
requirement for caspase 3 activity in the morphological
regression of the corpus luteum after a non-fertile ovulation.

*Carambula SF, Matikainen T, Lynch MP, Flavell RA, Goncalves PBD, Tilly
JL and Rveda BR (2002) Caspase-3 is a pivotal mediator of apoptosis
during regression of the ovarian corpus luteum Endocrinology 143
1495–1505
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