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A B S T R A C T

This comment questions an hypothesis for formation of the ornamental stone “zebra rock” from Ediacaran red
shales of northwestern Australia as hydrothermal alteration zones. The hypothesis is falsified by absence of Eu
anomalies in REE arrays, lack of associated carbonate, low degree of chemical weathering, associated soluble
gypsum, strata concordance in narrow bands, low thermal stability of magnetization, modest diagenetic alter-
ation, and patterns unlike liesegang banding. Rather than Cambrian hydrothermal veins, zebra rocks were gleyed
paleosols with redox banding, from acid sulfate weathering at low temperature during the Ediacaran.

Zebra rock is a green-red-banded ornamental siltstone from the Edi-
acaran Ranford Formation sold in rock shops around Kununurra, West-
ern Australia. Kawahara et al. (2022) propose that zebra rock formed
“in an acidic hydrothermal system, and that pH buffering of Fe2+-
bearing acidic fluid, in a neutralization reaction with primary carbon-
ate minerals, induced rhythmic Fe precipitation.” A hydrothermal
model may work for other banded textures in coarse grained, crys-
talline, fractured, carbonate rocks, with sulfide minerals (Wallace and
Hood, 2018), but hydrothermal model fails for Western Australian ze-
bra rock non-calcareous siltstones for the following eight reasons.

1. Europium enrichment in rare earth element arrays is
characteristic of hydrothermally altered siltstone (Sugahara et al.,
2010) and basalt (Shikazono et al., 2008), yet no such anomalies
are found in YREE patterns of two samples of zebra rock siltstone,
or of unbanded siltstone immediately above and below those
samples (all within a single 10 cm thick Wajing bed of Retallack,
2021). YREE patterns of Western Australian zebra rock are very
close to post-Archean Australian Shale (Nance and Taylor, 1976),
and thus clastic rather than chemical sediments or ores.

2. Zebra rock includes no carbonate needed for the model of
Kawahara et al. (2022), nor is it interbedded with limestone or
dolostone dolomite, as revealed by chemical and petrographic data

(Wajing bed of Retallack, 2021). Western Australian zebra rock has
no grains larger than sand, is unfractured, and lacks sparry textures
of carbonate zebra banding (Wallace and Hood, 2018). The molar
ratio CaO + MgO/Al2O3 of 14 specimens of zebra rock and other
shales of the Ranford Formation averages 0.0025 ± 0.0024 (one
standard deviation: Retallack, 2021), so these shales were neither
calcareous nor dolomitic.

3. Alumina/bases molar ratios of zebra rock are high (30 ± 4),
and Ba/Sr ratios low (0.15 ± 0.09), and little changed with
depth within beds of zebra rock (Wajing bed Retallack, 2021),
unlike leached hydrothermal clays (Shikazono et al., 2008). Nor is
there chemical, nor petrographic evidence of hydrothermal K-
feldspathization, albitization, biotitization, or chloritization
(Lottermoser, 1992).

4. Zebra rock is associated with gypsum desert roses (Retallack,
2021). These sand crystals cut across bedding of parent material,
and are at a fixed depth below the leached upper surface of
paleosols (Retallack, 2021). How did highly soluble gypsum
formed between episodes of sedimentation withstand
hydrothermal dissolution?

5. Zebra rock is found in thin (5–15 cm) bands traceable laterally
for up to 90 m within single quarries, and forming several
distinct horizons in the Ediacaran Ranford Formation over 45 km
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of strike (Loughnan and Roberts, 1990). Detailed section
measuring (Retallack, 2021), shows that it is not a single
unconformity paleosol, contrary to Trainer (1931). Even in single
commercially sold slabs like those studied by Kawahara et al.
(2022), zebra rock inclined bands pass downward and upward
conformably into horizontally bedded unbanded red siltstones.
Zebra rock bands do not cut across regional bedding. The
inclined oxide bands are silty not colloidal, contrary to
Mattievich et al. (2003). Nor do they show grainsize variation
like cross bedding, as proposed by Larcombe (1927). Zebra rocks
of Western Australia are dominantly silt sized grains (48–81% by
volume), like overlying and underlying parts of the same bed
(Retallack, 2021). Zebra rock has no massive sulfides, no
hydrofracturing, and no gossans common in hydrothermal
alteration (Shikazono et al., 2008). Nor is there any known
connection of zebra rock with dikes or flows of Cambrian flood
basalts in the region (Retallack, 2021).

6. Lack of metamorphism and hydrothermal alteration and burial
temperatures less than 300 °C are indicated by low thermal
stability of remnant magnetization of zebra rock (Abrajevitch et
al., 2018).

7. Weaver index of clays in zebra rock indicate burial depths no
more than 3.3 km, compatible with mapped overburden in the
region (Loughnan and Roberts, 1990; Retallack, 2021). This depth
of burial would give temperatures no more than 90-270o C
inferred by Zotov et al. (1998), for dickite in zebra rock
(Loughnan and Roberts, 1990; Kawahara et al., 2022). These are
normal burial temperatures for that burial depth without
hydrothermal activity (Abrajevitch et al., 2018). No high
temperature minerals were found to explain abiotic reduction of
ferric oxide by alteration to amphibolite facies metamorphism
(Klein, 2005; Hagemann et al., 2016). Microbial reduction of iron
is much faster than abiotic reduction at low to moderate burial
temperatures (Melton et al., 2014).

8. Zebra rock is not liesegang banding as asserted by Hobson (1930)
and Kawahara et al. (2022), because zebra rock does not have
concentric curves, nor asymmetric concentration gradients within
each band (Sadek et al., 2010). Zebra rock red banding is best
matched by symmetrical, to slightly asymmetrical, redox banding
of gleyed soils (Retallack, 2021).

Zebra rock is a striking ornamental stone popular among tourists to
Kununurra, northeastern Western Australia. Evidence so far suggests
that it represents acid sulfate weathering at low temperature during the
Ediacaran (Loughnan and Roberts, 1990; Retallack, 2021), but the hy-
drothermal hypothesis of Kawahara et al. (2022) fails eight critical ob-
servations listed above.
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