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Mallee is an endemic Australian woodland and shrubland of semi-arid, summer–dry regions between dry
woodland and desert shrubland. In other parts of the world, such as Africa and the Americas, such climatic
regions support grassland ecosystems. Using Australian and African climofunctions and models gives very
different reconstructions of paleoclimate (subhumid versus perhumid) and paleovegetation (woodland ver-
sus rainforest) for North American fossil mammal faunas before Cenozoic evolution of grassland ecosystems.
Modern mammal faunas of Africa and Australia have different ecological spectra of taxonomic units, body
size, feeding, and locomotion of species of mammals on precipitation gradients. Gradients in proportions of
such categories yield transfer functions for mean annual precipitation from percent species of Artiodactyla
or Macropodidae, percent species of moderately large animals (45–180 kg), percent species of arboreal mam-
mals, and percent species of grazers. These transfer functions can be applied to fossil mammal faunas to es-
timate paleoprecipitation in Africa, Australia and North America. Modern transfer functions match well
paleoprecipitation estimates based on depth to calcic horizons in paleosols at the same localities in Kenya
and inland Australia back through the Miocene. For fossil mammal faunas of the Rocky Mountain region of
North America, African transfer functions fail, but Australian transfer functions predict paleoprecipitation
back to the Cretaceous–Tertiary boundary (66 Ma). Furthermore, modern mallee soils investigated in this
study closely match Cretaceous to Eocene paleosols of the Rocky Mountains. Extinct mallee-like vegetation,
such as pori woodlands of Kenya and cunhaka woodlands (newly defined) of the Rocky Mountains better
explains the dominance of small, nocturnal, insectivorous, arboreal mammals of Paleogene and Mesozoic
mammal faunas, than comparisons with African grassland or rainforest faunas.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Mammals of African grasslands are ecologically and taxonomically
distinct from faunas elsewhere in the world (Gheerbrant and Rage,
2006; Shorrocks, 2007), yet are used to interpret the taphonomy and
paleoecology of North American mammals (Bakker, 1983; Webb,
1983). Mammals of African grassland communities are geologically
young, no more than 15 Ma, and as C4-photosystem communities, no
more than 7 Ma, based on evidence from the isotopic composition of
pedogenic nodules and distinctive crumb ped structure of paleosols
(Jacobs, 2004; Retallack, 2004a, 2004b, 2007a; Tipple and Pagani,
2007; Edwards et al., 2010). A modern analog widely applied to fossil
mammalian faunas before evolution of grassland is the fauna of
African rainforests (Andrews and Van Couvering, 1975; Archer et al.,
1991), which have many small, nocturnal, arboreal mammals like
Paleogene faunas (Andrews et al., 1979; Evans et al., 1981).

There are reasons to doubt that all Paleogene mammals lived in
rainforest. Rainforests produce large leaves with drip tips, abundant
vines, and dicot wood. Some Eocene fossil vertebrates are found at

localities with fossil plants of that description, such as the Clarno
Nut Beds of Oregon (Manchester, 1994; Hanson, 1996). However,
many vertebrate localities have associated fossil floras of medium to
small leaves of legumes or eucalypts and few if any vines: such as
the flora of the early Eocene (48 Ma) Green River Formation of
Wyoming (MacGinitie, 1969), middle Eocene (46 Ma)Mahenge local-
ity of Tanzania (Jacobs and Herendeen, 2004), and middle Miocene
(16 Ma) Ngapakaldi locality of South Australia (Tedford, 1991).
Evidence against rainforest is most convincing for fossil soils which
entomb mammal fossils. Rainforest soils are thick, red and non-
calcareous with hematite, boehmite, and kaolinite (Retallack, 2008a,
2010a), but many paleosols yielding mammals are smectitic with
abundant carbonate nodules: such as the early Eocene Willwood For-
mation of Wyoming (Bown, 1979; Retallack, 1998; Kraus and Riggins,
2007), early Miocene sites of Songhor, Koru and Rusinga Island in
Kenya (Retallack, 1991a; Retallack et al., 1995), and Miocene sites of
Kangaroo Well and Lake Palankarinna in Australia (Metzger and
Retallack, 2010). These are unlike soils of rainforest or grasslands,
but indistinguishable from Australian mallee soils (Northcote, 1956;
McKenzie et al., 2004). Quantitative estimates of mean annual pre-
cipitation fall well short of the minimum requirement (1750 mm)
for rainforest (White, 1983), even in Australia, where rainforest is
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very broadly defined (Webb, 1968). The spike in mean annual pre-
cipitation during the transient warm-wet spike of the basal Eocene
is 605±147 to 804±147 using paleosol depth to Bk in Utah
(Retallack, 2009a), 683±182 to 1316±182 mm using paleosol geo-
chemistry in Wyoming (Kraus and Riggins, 2007), and 769+332

/−232

to 1470+636
/−444 mm using leaves in Wyoming (Wilf, 2000; Wing

et al., 2005). Cenograms of ordered mammalian body masses of
mammal faunas show a continuous linear distribution in rainforest
communities that is distinct from a disjointed size distribution of
grassland communities, but Australian mallee cenograms are also
continuous, not broken (Stirling Range of Travouillon and Legendre,
2009). Finally, climatemodeling cannot find the amount of water need-
ed for rainforest as widespread as has been inferred from Australian
Miocene mammals (Herold et al., 2011). This paper explores whether
mallee faunas of southeastern Australia or rainforest and grassland
faunas of Africa (Tables 1–3) are better modern analogs for fossil mam-
mal faunas of the early Cenozoic and Mesozoic (Background dataset for
online publication Tables 4–7).

This study builds on a tradition of ecological diversity characteriza-
tion established by Andrews et al. (1979) for reconstructing climate
and vegetation from fossil mammal faunas. Fundamental to themethod
is number of species within particular categories of taxa, size, locomo-
tion and diet, which can be used to calculate proportional representa-
tion in the fossil record (Evans et al., 1981; Maas and Krause, 1994;
Alroy, 1998; Janis, 2000; Nieto et al., 2005). These data also can be
used to generate transfer functions to predict from mammal assem-
blages such local environmental variables as precipitation and vegeta-
tion (Kay and Madden, 1997; Reed, 1998). In the studies cited above,
this approach was used with local assemblages (alpha diversity of
Whittaker, 1972), but comparable results come from studies of regional
diversity (gamma diversity within grid squares 240 km in size by
Badgley and Fox, 2000; 158 km by Andrews and O'Brien, 2000; and
0.5° or 55 km at the equator by Eronen et al., 2010a,b). The alpha diver-
sity approach is extended here tomodern faunas of Australia, in order to
derive predictive equations for precipitation frommammalian commu-
nity composition for application to fossil assemblages in Australia,
Kenya, and North America.

2. Mallee ecosystems

Mallee is an Australian aboriginalword for awoody plant community
of stature intermediate (2–10 m) between woodlands and shrublands,
and a distinctive tree architecture with multiple thin trunks (Whittaker
et al., 1979).Mallee covers a large area ofwestern Victoria, southwestern
New South Wales, southeastern South Australia and southwestern
Western Australia (Fig. 1), mainly in the climatic region of Australia
with a Mediterranean (summer dry) climate (Hill, 1989). Fossil plants,
pollen and soils provide evidence that mallee is an endemic Australian
vegetation type dating from at least the middle Miocene (Martin, 1989;
Metzger and Retallack, 2010).Mallee soils, plants and animals are similar
in some ways to those of other woodlands such as those of ancient
Greece (Retallack, 2008b), but mallee has been less profoundly altered
by humans (Whittaker et al., 1979; Nicolle, 2006).

2.1. Plants

Mallee is dominated by many species of Eucalyptus with lignotubers
and multiple, thin, spreading trunks (Fig. 2G, I). The mallee region
however includes a variety of other small trees, including cypress pine
(Callitris columellaris: Fig. 2C) and belah (Casuarina cristata; Fig. 2E).
Mallee trees decline in stature from box woodlands (Fig. 2A) of regions
receiving more than 500 mm mean annual precipitation to desert
shrublands (Fig. 2K) receiving less than 200 mmmean annual precipita-
tion (Fig. 3). In the data collected here (Table 3), the decline in average
tree height (H in m) is related to mean annual precipitation (P in mm)
and to depth to calcareous nodules (Bk) in soil (D in cm) by the following
relationships (both R2=0.91, standard error=± 2.3 m):

H ¼ 16:13 lnP−84:71 ð1Þ

H ¼ 12:39 lnD−35:74: ð2Þ

Mallee is easy to walk through, but has a continuous canopy,
unlike the meadow-and-glade structure of African wooded grassland
(Shorrocks, 2007). The ground under mallee is littered with branches
and bark, rather than leaves, because mallee plants are evergreen.
Mallee eucalypts (mallets) have a variety of adaptations to aridity:
leaves which are small, rolled, reflective, hanging edgewise to the
sun, and roots which are stout and deep. Mallee plants are also su-
perbly adapted to fire: resprouting leafy branches from lignotubers
in the ground and from epicormic shoots on charred trunks, and
releasing seeds after scorching of gum nuts (Nicolle, 2006). Mallee
is not vegetation early in ecological succession, but a mature commu-
nity (Holland, 1986) of high plant diversity (Whittaker et al., 1979).

2.2. Soils

Mallee soils are silty to sandy, brown to red, and have common
subsurface calcareous nodules (Figs. 2–3). In soil taxonomy (Soil
Survey Staff, 2000) mallee soils are Aridisols, lacking the highly-
organic surface horizons of grassland soils (Mollisols) and deeply
weathered clayey subsurface horizons of rainforest soils (Ultisols,
Oxisols). Australian mallee soils were regarded by Northcote (1956)
as distinct enough for the name “Mallisol”, but in modern Australian
classifications (Isbell, 1998; McKenzie et al., 2004) these soils are Cal-
carosols, distinct from rainforest soils (Ferrosols) and bunch grass-
land soils (Vertosols). Mallee vegetation is found in rocky outcrops,
such as Iron Knob (South Australia) and Stirling Range (Western Aus-
tralia), but for most of its range grows on alluvium and loess of large
sedimentary basins likely to be preserved in the sedimentary record
(Wasson, 1989).

Table 1
Comparison of modern mallee, grassland and rainforest ecosystems.

Mallee Grassland Rainforest

Low multiple bole trees
(ca. 8 m)

Dense grasses (b1 m) Large trees (10–100 m)

Sclerophyll leaves Mesophytic leaves Mesophytic leaves
Bunch grasses Sod grasses Bambusoid broad-leaved

grasses
Bare ground showing Complete ground cover Bare ground showing
Low carbon soil (2 wt.% C) High carbon soil

(8–10 wt.% C)
Low soil carbon
(b1 wt.% C)

Low soil moisture High soil moisture High soil moisture
Blocky angular soil peds Granular-crumb soil peds Spherical micropeds
Soil calcareous nodules Soil calcareous nodules Non-calcareous soils
Smectite soil clays Smectite soil clays Kaolinite soil clays
Endemic mammal clades Cosmopolitan mammal

clades
Endemic mammal clades

Few large (>180 kg)
mammal species

Many large (>180 kg)
mammal species

Few large (>180 kg)
mammal species

Many non-bat mammal
gliders

Few non-bat mammal
gliders

Many non-bat mammal
gliders

Many mammal fungivores
and omnivores

Few mammal fungivores
and omnivores

Many mammal fungivores
and omnivores

Mammals different
500–1500 mm MAP

Mammals different
500–1500 mm MAP

Mammals similar
1800–4000 mm MAP

Mostly nocturnal mammals Mostly diurnal mammals Mostly nocturnal mammals
Paws Hooves Paws
Common cursorial bipeds Rare bipeds Rare bipeds
Noncursorial quadrupeds Cursorial quadrupeds Noncursorial quadrupeds
Brachydont molars Hypsodont molars Brachydont molars
Plagiaulacid premolars Conical premolars Conical premolars
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2.3. Mammals

The native fauna of mallee vegetation includes a variety of marsu-
pials and monotremes of small size, insectivorous to frugivorous
diet, and nocturnal activity patterns (Tables 1–2). Unusual for such
dry climates is the high proportion of arboreal and aerial mammals:
the latter including gliders (Table 2), as well as 16 species of bats
(Bennett et al., 2006). Also distinctive are fungivores, such as bettongs

(Bettongia leseur), which exhume and consume native truffles (Maser
et al., 2009).

2.4. Other animals

The invertebrate fauna of mallee is dominated by ants, unlike
grasshopper and termite dominance of Australian grasslands and
rainforest (Greenslade and Greenslade, 1989: Shorrocks, 2007). Of

Table 2
Indigenous mallee mammals (excluding bats) of Mildura, Victoria.
Sources: Strahan (1995), Bennett et al. (2006).

Species Common name Family Body mass (kg) Locomotion Diet Activity

Tachyglossus aculeatus Spiny echidna Tachyglossidae 2–7 Large ground Insectivore Nocturnal
Ornithorhynchus anatinus Platypus Ornithorynchidae 1.0–2.2 Aquatic Omnivore Diurnal
Lasiorhinus latifrons Southern hairy-nosed wombat Vombatiformes 19–32 Large ground Grazer Nocturnal
Antechinus flavipes Yellow-footed antechinus Dasyuridae 0.02–0.08 Scansorial Insectivore Nocturnal
Dasyurus geoffroii Western quoll Dasyuridae 0.6–2.2 Scansorial Carnivore Nocturnal
Dasyurus maculatus Spot-tailed quoll Dasyuridae 4–7 Scansorial Carnivore Nocturnal
Ningaui yvonneae Mallee ningaui Dasyuridae 0.004–0.01 Small ground Insectivore Nocturnal
Phascogale calura Red-tailed phascogale Dasyuridae 0.04–0.07 Small ground Insectivore Nocturnal
Planigale gilesi Paucident planigale Dasyuridae 0.005–0.016 Scansorial Omnivore Nocturnal
Planigale tenuirostris Narrow-nosed planigale Dasyuridae 0.004–0.009 Scansorial Omnivore Nocturnal
Sminthopsis crassicaudata Fat-tailed dunnart Dasyuridae 0.01–0.03 Small ground Insectivore Nocturnal
Sminthopsis murina Slender-tailed dunnart Dasyuridae 0.01–0.03 Small ground Insectivore Nocturnal
Chaeropus ecaudatus Common dunnart Peramelidae 0.2 Small ground Insectivore Nocturnal
Isodon af. I. auratus Short-nosed bandicoot Peramelidae 0.25–0.67 Small ground Omnivore Nocturnal
Macrotis lagotis Bilby Peramelidae 1.0–2.5 Large ground Omnivore Nocturnal
Perameles bougainville Western barred bandicoot Peramelidae 0.18–0.29 Small ground Omnivore Nocturnal
Perameles gunni Eastern barred bandicoot Peramelidae 0.5–1.45 Large ground Omnivore Nocturnal
Phascolarctos cinereus Koala Phascolarctidae 7–15 Arboreal Browser Diurnal
Petaurus breviceps Sugar glider Phalangerida 0.1–0.2 Aerial Omnivore Nocturnal
Petaurus norfolcensis Squirrel glider Phalangerida 0.2–0.3 Aerial Omnivore Nocturnal
Trichosurus vulpecula Common brushtail possum Phalangerida 1.5–4.5 Arboreal Omnivore Nocturnal
Cercarcetus concinnus Western pygmy mouse Burramyidae 0.008–0.02 Arboreal Insectivore Nocturnal
Cercartetus lepidus Little pygmy mouse Burramyidae 0.006–0.008 Arboreal Insectivore Nocturnal
Pseudocheirus peregrinus Common ringtail possum Pseudocheiridae 0.7–1.1 Arboreal Browser Nocturnal
Acrobates pygmaeus Feathertail glider Acrobatidae 0.01–0.04 Aerial Omnivore Nocturnal
Bettongia leseur Burrowing bettong Potoroidae 1.5 Large ground Fungivore Nocturnal
Bettongia penicillata Brush-tailed bettong Potoroidae 1.3–1.6 Large ground Fungivore Nocturnal
Lagorchestes leporides Eastern hare wallaby Macropoidea 1–10 kg Ground Browser Diurnal
Macropus fuliginosus Western gray kangaroo Macropodidae 3–53.5 Large ground Grazer Diurnal
Macropus greyi Toolache wallaby Macropodidae 10–45 Large ground Grazer Diurnal
Macropus robustus Common wallaroo Macropodidae 6–47 Large ground Grazer Diurnal
Macropus rufogriseus Red-necked wallaby Macropodidae 15–27 Large ground Grazer Diurnal
Macropus rufus Red kangaroo Macropodidae 17–85 Large ground Grazer Diurnal
Onychogalea fraenata Bridled nailtail wallaby Macropodidae 4–8 Large ground Grazer Diurnal
Onychogalea lunata Crescent nailtail wallaby Macropodidae 3.5 Large ground Grazer Diurnal
Wallabia bicolor Black wallaby Macropodidae 10.3–20.5 Large ground Browser Diurnal
Hydromys apicalis Water rat Muridae 0.34–1.27 Aquatic Carnivore Diurnal
Leporillus apicalis Lesser stick-nest rat Muridae 0.15 Small ground Browser Nocturnal
Leporillus conditor Greater stick-nest rat Muridae 0.18–0.45 Small ground Browser Nocturnal
Notomys mitchelli Mitchell's hopping mouse Muridae 0.04–0.06 Small ground Frugivore Nocturnal
Pseudomys apodemoides Silky mouse Muridae 0.016–0.022 Small ground Frugivore Nocturnal
Pseudomys bolami Bolam's mouse Muridae 0.01–0.21 Small ground Frugivore Nocturnal
Pseudomys desertor Desert mouse Muridae 0.015–0.035 Small ground Frugivore Nocturnal

Table 3
Mallee, woodland and shrubland study sites in New South Wales, Australia.

Location Coordinates MAP
(mm)

Plant height
(m±2σ)

Maximum plant
height (m)

Soil A horizon
thickness (cm)

Soil Bk depth
(cm)

Dominant species Formation

Gunbar S33.95894° E145.12595° 203 0.3±0.3 1.42 16 16 Saltbush (Sclerolaena tricuspis) Shrubland
Booligal S34.03244° E144.82653° 204 1.01±0.6 1.54 17 21 Nitre goosefoot (Chenopodium nitrarium) Shrubland
Lake Mungo S33.74500° E143.08167° 226 0.3±0.2 0.52 9 23 Bluebush (Maireana pyramidata) Shrubland
Damara S34.15419° E143.32983° 274 7.4±2.9 10.7 30 35 Yellow mallet (Eucalyptus incrassata) Mallee
Goolgowi S34.00914° E145.66322° 299 11.1±5.0 16.1 27 34 White cypress pine (Callitris columellaris) Woodland
Balranald S34.55142° E143.58503° 322 7.5±3.0 11.24 12 37 Red mallet (Eucalyptus socialis) Mallee
Maude S34.46547° E144.32517° 364 10.3±4.2 13.9 30 37 Black box (Eucalyptus largiflorens) Woodland
Back Creek S33.86613° E147.35642° 476 15.7±2.8 19.8 23 65 Belah (Casuarina cristata) Woodland
Narrandera S34.75156° E146.50253° 483 14.7±5.2 21.1 17 52 Yellow box (Eucalyptus melliodora) Woodland
Bland Creek S33.76181° E147.51970° 507 13.9±6.4 20.9 32 60 Apple-top box (Eucalyptus bridgesiana) Woodland
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170 species of mallee lizards and frogs, 101 are small and hide in
cracks, 42 are fossorial, 19 scansorial and 8 arboreal (Cogger,
1989). The mallee bird fauna is diverse (92 resident species of
292 observed including migrants and waterbirds: Emison and
Bren, 1989), and includes two large ground birds. First, the mallee
fowl (Leipoa ocellata), 0.6 m long and 1.5–2.5 kg in weight, forms
large (1 m deep, 1.8 m diameter, 0.5 m high) fermentative incuba-
tion mounds in the soil (Frith, 1962). Second, the emu (Dromaius

novohollandiae) is 1.5–1.9 m tall and weighs 18–48 kg (Davies,
2003).

3. Materials and methods

This research included separate data compilations for modern
and fossil soils and mammals, with modern data used to derive
climofunctions for use with fossil data.

Fig. 1. Distribution of mallee in Australia (A: from Hill, 1989) and grassland in Africa (B: from White, 1983), with locations of soil profiles studied in Australia (open circles) and
modern mammal faunas studied in Australia (A) and Africa (B).
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3.1. Soils

Fieldwork for this study included study of soil profiles, measure-
ment of vegetation stature and identification of living plants in south-
western New South Wales, Australia (Table 3). Heights of 100 of the
tallest plants were measured using a laser rangefinder (Opti-logic
model 100LHA). Soils at each station were examined by digging in
existing road cuts and waterhole banks. Graphic sections of the soils
(Fig. 4A–J) were measured with a milliner's tape, tested for acid reac-
tion with dilute hydrochloric acid and fresh colors taken with a
Munsell color chart. The depth to carbonate nodules (Bk horizon)
and height of mallee vegetation in New South Wales are shown in
Fig. 3, which also shows for comparison, African data on depth to car-
bonate nodules and plant height (both culled from a global database
of Retallack, 2005).

3.2. Paleosols

Pedological data also are presented here for Eocene and Cretaceous
paleosols (Fig. 4K–M): Luluta pedotype (5.4 m in section of Retallack,
1998) of the Sand Creek facies (Bown, 1979) of theWillwood Formation
(early Eocene) in Sand Creek 6 miles east of Worland, Wyoming
(Fig. 4K: N43.999035° W107.845628°), Zizi pedotype (6.6 m in section
of Retallack, 1998) in the Elk Creek facies of the Willwood Formation
(early Eocene) in Elk Creek 10 miles northwest of Worland, Wyoming
(Fig. 4L: N44.078963° W108.130487°), and Ainka pedotype in the
Mussentuchit Member of the Cedar Mountain Formation (mid-
Cretaceous) high (171 m in section of Retallack, 2009a) on the eastern
ridge of Little Cedar Mountain km north east of Castle Dale, Utah
(Fig. 4M: N39.19456° W110.80373°). These are representative of 2468
moderately developed paleosols from 40 different sites for Permian to
Eocene rocks of Utah and surrounding states documented by Retallack
(2009a).

3.3. Modern mammals

My Australian mammal compilation aimed to assign species in
modern local assemblages to ecological categories comparable with
those used by Andrews et al. (1979) for an African compilation of
local mammal faunas of comparable diversity. As in that study, bats
were not included because they are rarely fossilized along with
other mammals. Species lists for nature preserves and national
parks were obtained from various printed sources (Schodde et al.,
1992; Woinarski, 1992; Thomson-Dans et al., 1993; Chapman, 1995;
McCarthy et al., 2004; Bennett et al., 2006) and government-
maintained websites (http://wildlifeatlas.nationalparks.nsw.gov.au,
accessed June 22, 2009; http://www.epa.qld.gov.au, accessed June 3,
2009). Taxonomic category, sizes, diets, and locomotion for each
Australian taxon were from Strahan (1995). A total of 71 local faunas
were considered for this study, but only 16 of those had 30 or more
taxa (Fig. 1, see Background dataset for online publication Table 4),

Fig. 2. Studied soil profiles and vegetation in western New South Wales; A–B, box woodland in Bland Creek; C–D, white cypress woodland near Goolgowi; E–F, belah woodland in
Back Creek; G–H, mallee woodland near Balranald; I–J, mallee shrubland near Damara; K–L, desert shrubland at Mungo Lake. Scales for soils are hammer with handle 25 cm long,
and heights and other details of vegetation are in Table 3.

Fig. 3. Distribution of depth to carbonate nodular (Bk) horizon and plant height in the
Australian soils studied here (Table 3), compared with depth to carbonate in African
soils and heights of African vegetation (Retallack, 2005).
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because of human alteration of Australian mammal faunas (McKenzie
et al., 2007). Bandicoots (e.g. Chaeropus ecaudatus, Isoodon macrourus,
Perameles nasuta) are the most vulnerable component of the Australian
fauna to anthropogenic extinctions: most local faunas of less than 30
species lacked bandicoots. Mean annual precipitation for each fauna
was obtained from an Australian government website (www.bom.gov.
au accessed June 22, 2009).

3.4. Fossil mammals

My compilation of fossil mammal assemblages (Fig. 5) in Australia,
Kenya and Rocky Mountain region of the western US (see Tables 5–7
in Background dataset for online publication) emphasized particular
local faunas (alpha diversity) for comparability with the modern
compilations of particular local faunas. Thus each fossil assemblage
is from a small region (b1 km2) at the same stratigraphic level. Online
compilations such as the Paleobiology Database were a useful biblio-
graphic tool for both taxa and taphonomic information, but this
study used primary literature and cited sources. Most sites were
calcareous paleosols or wetlands with disarticulated bones (Pickford,
1986; Retallack, 2009a; Metzger and Retallack, 2010), although
some sites at Riversleigh are limestone fissure sites (Travouillon
et al., 2009). Themain criterion for inclusionwas an adequate number
of taxa. Lists of taxa per fossil fauna were compiled from primary liter-
ature of Australia (Marshall, 1975; Merrilees, 1975; Hope, 1978; Rich,
1991; Long et al., 2002; Megirian et al., 2004; Travouillon et al., 2009),
Kenya (Madden, 1972; Isaac, 1978; Savage and Willamson, 1978;
Pickford and Andrews, 1981; Thomas, 1981; Hill et al., 1985,
2001; Pickford, 1986, 2000, 2001a, 2001b, 2007; Retallack, 1991a;
Nakaya, 1994; Leakey et al., 1995; Retallack et al., 1995; Hill, 1996;

Behrensmeyer et al., 2002; Retallack et al., 2002; Leakey and Harris,
2003; Pickford and Kunimatsu, 2005; Pickford and Senut, 2005;
Tsujikawa, 2005a,b; Ambrose et al., 2007; Peppe et al., 2009) and
the United States (Douglass, 1903; MacDonald, 1949; Black, 1961;
Munthe, 1988; Rasmussen, 1989; Emry, 1990; Stucky et al., 1990;
Bown et al., 1994; Gunnell, 1994; McDonald et al., 1996; Prothero
and Emry, 1996; Cross and Yi, 1997; Pinsof, 1998; Cifelli et al., 1999;
Rasmussen et al., 1999; Reynolds and Lindsay, 1999; Turner and
Peterson, 1999; Hill, 2001; Tabrum et al., 2001; Ackersten et al., 2002;
Sankey, 2002; Foster, 2003; Gingerich, 2003; Kielan-Jaworowska et al.,
2004; Eaton, 2006a,b; Barnosky et al., 2007; Retallack, 2007b).

The classification of Cretaceous mammals used here follows
Kielan-Jaworowska et al. (2004). Cimolesta is used in the sense of
McKenna and Bell (1997) for a pangolin clade including Palaeorcytidae,
Cimolestidae, Apatemyidae, Stylinodontidae, Tillotheriidae, Wanglidae,
Harpyodidae, Bemalambdidae, Pastoralodontidae, Titanoideidae,
Pantolambdidae, Barylambdidae, Cyriacotheriidae, Pantolambdodon-
tidae, Coryphodontidae, Pantolestidae, Paroxyclaenidae, Ptolemaiidae,
Epoicotheriidae, Metacheiromyidae, Manidae, and Ernanodontidae.
Cete, the whale order of McKenna and Bell (1997) includes the
following terrestrial clades: Triisodontidea, Mesonychidae and Hap-
alodectidae. Other orders ofMcKenna and Bell (1997) used here include
Dinocerata (Uintatheriidae), Procreodi (Oxyclaenidae, Arctocyonidae),
Condylarthra (Hyopsodontidae, Mioclaenidae, Phenacodontidae,
Periptychidae, Peligrotheriidae, Didolodontidae) and Arctostylopida.
Not included in this study were bats (Chiroptera and Dermoptera, in-
cluding fossil Mixodectidae), because they are seldom found with
other mammal fossils.

Geological ages of Kenyan fossil sites summarized by Pickford
(1986), have been modified by Leakey and Harris (2003), Pickford

Fig. 4. Australian soils of dry woodland mallee and desert shrubland examined (A–J: Table 3), and early Eocene paleosols from the Willwood Formation, near Worland, Wyoming,
U.S.A. (Retallack, 1998) and a Cretaceous (Albian) paleosol from the Mussentuchit Member, Cedar Mountain Formation, near Cedar Mountain, Utah, U.S.A. (Retallack, 2009a).
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et al. (2006), Ambrose et al. (2007), and Peppe et al. (2009). Ages of
Australian sites are from Metzger and Retallack (2010) and of Rocky
Mountain sites from Retallack (2007b, 2009a).

The sizes (in kg) of most Australian fossil mammals were taken
from the estimates of Travouillon et al. (2009) and some African
mammal sizes were from Silva and Downing (1995). Other Australian
marsupial weights were estimated from fossil teeth and jaws using
regressions of Myers (2001). Sizes of African and North American fossil
mammals were calculated using regression equations of Damuth and
McFadden (1990) based on molar length, Legendre (1988) using car-
nassial area of carnivores, Hopkins (2008) based on toothrow length
of rodents, and Hemmer (2007) based on molar area of primates.

Locomotion was inferred from skeletal proportions and modern
relatives (Rose, 1990; Strahan, 1995; Janis, 2008), and diets inter-
preted from tooth morphology, wear and isotopic composition
(Janis et al., 1998, 2008; Long et al., 2002; Leakey and Harris, 2003;
Kielan-Jaworowska et al., 2004). Multituberculates and Australian
macropoids with plagiaulacid premolars longer than molars are here
considered fungivores (Retallack, 2010a), because of the observed diet
of living potoroos and bettongs with this distinctive tooth type (Lee
and Cockburn, 1985; Seebeck et al., 1989). Fungivores thus include
the following multituberculate families: Eobataaridae, Plagiaulacidae,
Ptilodontoidea, Eucosmodontidae, and Arginbaataridae. Other multi-
tuberculateswith P4 shorter thanMx are here interpreted as omnivores:

Fig. 5. Cenozoic and Mesozoic fossil sites studied in Australia (A), Kenya (B) and the Rocky Mountain region, U.S.A. (C).
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Allodontidae, Paulchoffatidae, Cimolomyidae, Taeniolabidoidea, and
Djadochtatheroidea. Additional evidence for gritty diet and wide gape
around large food items has been presented for fossil multituberculates
byKrause (1982) and for fossil kangaroos by Flannery (2004). A spread-
sheet with all specific interpretations and literature sources can be
downloaded from my website http://pages.uoregon.edu/dogsci/doku.
php?id=directory/faculty/greg/about.

3.5. Climofunctions

Categories for each fossil assemblage were converted to percent-
ages for comparison of variation in proportion to different categories
through time. All possible relationships between faunal proportions
and mean annual precipitation at the modern sites in Africa and
Australia were explored initially using linear regression (Table 8 in
Background dataset for online publication). Those with the highest
coefficient of determination in linear regression were then further
investigated by curve fitting tofind themost significant climofunctions.
These predictive equations of paleoprecipitation from fossil mammali-
an faunal proportions could then be compared with estimates of
paleoprecipitation calculated from depth to calcareous nodules
(Bk horizon) in paleosols (Retallack, 2005) for the same regions of
Kenya (Retallack, 2007a), Australia (Metzger and Retallack, 2010)
and North America (Retallack, 2007b, 2009a).

4. Modern mammal variation with climate

Proportional variation in different ecological categories along a
rainfall gradient in Africa (Fig. 6) and Australia (Fig. 7) is modest
over the whole range of mean annual precipitation from 1500 to
2500 mm. Africa differs from Australia however in showing two dis-
tinct segments: steeper variation in mammalian faunal composition
is found between 500 and 1000 mm mean annual precipitation than
under higher precipitation.

4.1. Taxa

The obvious difference between African and Australian faunas
is dominance of African mammals by ruminants (Artiodactyla) and
Australia by kangaroos (Macropodidae, which is within Phalangerida
but here kept separate from other “Phalangerida pars”). The drier the
climate and more open the vegetation, the more diverse are these
higher taxa (Background dataset for online publication Table 4).

Both Artiodactyla and Macropodidae are cursorial (suited to
running), compared with other mammals (Bakker, 1983; McGowan
et al., 2008). Nevertheless, paws and springing hop (saltatorial loco-
motion) of kangaroos is a fundamentally different form of locomotion
than later evolved hooves and gallop of artiodactyls. African grass-
lands are softened by spreading turf of grasses with buried rhizomes
and modular growth adapted to abuse by herds of hard hooves
(Shorrocks, 2007). In contrast, Australian woodlands are, and pre-
sumably were, silty, sandy, or rocky with scattered plant obstacles,
including shed limbs and bark of mainly woody plants (McKenzie
et al., 2004). These comparisons support the notion that paws are
an ancestral condition that evolved in woodlands, whereas hooves
are derived grassland adaptations (Bakker, 1983).

4.2. Size classes

Small mammals dominate the specific diversity of both African
and Australian mammal faunas. In dry climates (mean annual precip-
itation 500–1500 mm) the representation of small mammals declines
in Africa, but not in Australia. Australia is quite different from Africa
in lacking elephant to zebra sized mammals (>180 kg). Even in the
category of pig to gazelle sized animals (45–180 kg), and baboon to
dog sized species (1–45 kg), Australia is less diverse (Figs. 6B, 7B).

The lack of large (>180 kg) mammals in Australia is due to Pleisto-
cene (ca. 45 Ka) extinction of megafauna, including bunyips (Diprotodon
optatum) and large flightless birds (Genyornis newtoni: Murray and
Vickers-Rich, 2004). This extinction is commonly blamed on immigrant
aboriginals and their “fire-stick farming” (Barnosky et al., 2004; Miller
et al., 2005). Like elephants in Africa today, extinct Australianmegafauna
roamed throughmost Australian climatic zones (Hope, 1978; Prideaux et
al., 2007; Turney et al., 2008; Forbes et al., 2010). The greater decline of
mouse-sized mammals (b1 kg) in dry climates (500–1500 mm mean
annual precipitation) of Africa may be due to the predatory pressure of
eagles and falcons there. Heavily grazed and trampled African grasslands
afford little cover and food for small mammals compared with mallee
woodland and saltbush deserts of Australia.

4.3. Locomotion

The steep decline in aerial, arboreal and scansorial mammals in
Africa toward dry regions (500–1500 mmmean annual precipitation)
is quite different from the pattern in Australia (Figs. 6C, 7C). Aerial
mammals glide from tree to tree, arboreal mammals live all their

Fig. 6. Percent species of mammals in categories of higher taxa (A), size (B), locomotion
(C) and diet (D) along a precipitation gradient of the studied faunas of Africa (Fig. 1).
Data is from Andrews et al. (1979).
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lives in trees, and scansorial mammals take to trees with facility, but
also forage widely on the ground (Andrews et al., 1979).

Aerial, arboreal and scansorial locomotory categories are all
dependent on trees, so that changing proportions mirror the open
parkland vegetation structure of African grasslands compared with
the low woodland structure of Australian mallee (Fig. 3). Continuity
of canopy may be a key variable in maintaining viable populations
of aerial and arboreal mammals, although some, such as African
bush babies (Galago senegalensis), persist even in open wooded grass-
lands (Coe, 1985). Small size is also necessary for aridland arboreal
mammals, because trees are small with thin and flexible branches in
dry regions.

4.4. Diet

A striking difference between Africa and Australia is the high
proportion of omnivores in Australia (Figs. 6D, 7D). Obligate fungivores
are found in Australia, but unrecorded in Africa.

These dietary differences could be a study bias, because the African
data are based on traditional concepts of the diet of Lipotyphla and
other small mammals as insectivores (Andrews et al., 1979). Australian
data are based on more recent observations of diets compiled by
Strahan (1995), who notes thatmany Australian small mammals previ-
ously regarded as insectivores take a wide variety of small food items
including plants, mollusks, seeds, fruits, frogs and lizards. Even combin-
ing omnivores and insectivores, there are still proportionally more in
Australia than Africa.

The preference of potoroos and bettongs for truffles has been docu-
mented by direct observation and analysis of feces (Lee and Cockburn,
1985; Seebeck et al., 1989), and is unlikely to have been overlooked in
Africa. Most truffles are associated with woody plants as mycorrhizae
(Flannery, 2004; Maser et al., 2009), so this difference may reflect the
dominance of woody plants in Australian aridlands, compared with
grasses in Africa. Truffle-eating macropoids all contain plagiaulacid
premolars, which are more elongate than molars (P4>Mx) in truffle
specialists than facultative truffle eaters (Retallack, 2010b). The grooved
blade of the plagiaulacid premolar is well suited to slicing large truffles,
because its steep sides shed attached grit, rather than occluding on
these hard particles.

5. Mammalian climofunctions

Regressions were fit to chosen ecological categories versus mean
annual precipitation (Fig. 8). Regressions between percentage specific
diversity of ecological categories and mean annual precipitation are
more significant for Africa than Australia. A similar discontinuity at
about 1000 mm mean annual precipitation to that found here has
also been demonstrated for gamma diversity of modern faunas in
southern Africa (Andrews and O'Brien, 2000) and North America
(Badgley and Fox, 2000).

5.1. Main herbivore clade

The proportion of species of Artiodactyla in Africa and of
Macropodidae in Australia both increase in drier climates, in data
clouds that are overlapping (Fig. 8A). Both relationships are statisti-
cally significant (F test pb0.05) but their standard errors are broad,
comparable with a similar relationship devised by Reed (1998)
between percent rodent species and mean annual precipitation in
Africa.

This result supports the notion of kangaroos as ecological vicars of
antelope (Freudenberger et al., 1989; Springer et al., 1997; Flannery,
2004). Bunch grasses are uncommon in mallee vegetation, where the
ground is either bare or covered with bark and sclerophyll leaves.
Grasses are restricted to local glades or parks on clayey depressions
or flanking creeks. The supple limbs of mallee trees are not difficult to
push through, but these as well as ground obstacles of fallen branches,
sheets of bark and narrow erosional rills make running difficult and
dangerous. The stature ofmallee trees becomes smaller in drier climates
(Fig. 3) until the point where shrubs can be passed in a bound by
kangaroos, and easily negotiated by emus.

5.2. 45–180 kg size

Pig to gazelle sized species are a greater proportion of faunas in
dry climates in both Africa and Australia, but there are fewer animals
of this size class everywhere in Australia (Fig. 8D). These relationships
are significant (F test pb0.05), but have high standard error.

Fig. 7. Percent species of mammals in categories of higher taxa (A), size (B), locomotion
(C) and diet (D) along a precipitation gradient of the studied faunas of Australia (Fig. 1).
Data is from Table 4 (see also data online at http://pages.uoregon.edu/dogsci/doku.
php?id=directory/faculty/greg/about).
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Australian megafaunal extinctions are a part of the reason for
this discrepancy between African and Australian sizes (Barnosky
et al., 2004; Miller et al., 2005), but do not explain why there are
more large animals in more arid regions. Although pigs and wombats
thrive in closely wooded settings, antelopes and kangaroos avoid the
branches of trees and seek open spaces for running escape. The pro-
portion of these moderately large animals increases at the point
where vegetation becomes more open, and this is different for each
continent: around the 1000 mm isohyet in the grasslands of Africa
and around the 500 mm isohyet in the mallee of Australia (Fig. 3).
Cenograms show fewmammals between 0.1 and 1 kg size in Australian
deserts (drier than shown in Fig. 3), or between 0.5 and 8 kg in African
grasslands (500–1000mm in Fig. 3), but no gaps inmallee or rainforest
mammal size distributions (Travouillon and Legendre, 2009).

5.3. Arboreal

The proportion of arboreal species declines in dry regions of Africa,
but there is no change in the proportion of arboreal species with pre-
cipitation in Australia (Fig. 8B). Only the relationship for African
faunas is statistically significant (pb0.05).

These results may reflect the very different vegetation structures
of Australia and Africa. In Australia, tree canopy declines in stature
continuously from the 2500 mm to the 300 mm isohyet (Eq. (1)).
In Africa, also trees become smaller in semi-arid climates (Fig. 3).
However, African trees are widely spaced in wooded grasslands
between the 1000 and 300 mm isohyet (Shorrocks, 2007). Many
arboreal and gliding mammals cannot tolerate such wide spacing of
trees (Coe, 1985).

5.4. Grazers

The proportion of grazing species increases in drier regions in both
Australia and Africa (Fig. 8C). Both these relationships are significant,
and their data clouds overlap.

Comparable proportions of grazers in Australia and Africa are sur-
prising considering the much lower availability of grass in Australian
mallee compared with African grassland. Mallee presents a monoto-
nous cover, but open glades have seasonal bunch grasses on clayey
depressions, sand dunes and creek banks (Cheal and Parkes, 1989).
Grazing kangaroos have lower basal metabolic rates and are more
flexible in diet than grazing ungulates, and also can abort fetuses to
survive water and food shortages (Strahan, 1995; Flannery, 2004).

6. Paleoecological records

Variation through time of ecological categories of fossil mammals
is available since the late Oligocene in Kenya (Fig. 9) and Australia
(Fig. 10), but since the Cretaceous in the north American Rocky
Mountains, where the Cretaceous–Tertiary mass extinction is a
marked discontinuity (Fig. 11).

6.1. Taxa

Mammals in the fossil record of the Rocky Mountains (Fig. 11A) are
more like those of Kenya (Fig. 9A) in artiodactyl-rodent dominance,
than like indigenous fauna of Australia (Fig. 10A). Artiodactyl-rodent
dominance of specific diversity extends back the base of the available re-
cord inKenya (23.5 Ma), but in the RockyMountains back to basal Eocene
(55.8 Ma). Macropodidae dominance of Australian specific diversity

Fig. 8. Paleoprecipitation predictive equations derived from modern mammal faunas of Australia (open circles) and Africa (closed circles) using percent Artiodactyla or
Macropodidae (A), percent arboreal species (B), percent grazers (C) and percent taxa 45–180 kg (D).

120 G.J. Retallack / Palaeogeography, Palaeoclimatology, Palaeoecology 342–343 (2012) 111–129



Author's personal copy

extends back to the base of the available record in the late Oligocene
(25 Ma). Artiodactyls expanded dramatically in diversity at 17 Ma in
the Rocky Mountains (Fig. 11A) and Kenya (Fig. 9A), but comparable ex-
pansion of Macropodidae was delayed until 2 Ma in Australia (Fig. 10A).
The Cretaceous–Tertiary boundary was a fundamental reorganization of
Rocky Mountain mammal faunas, with marsupials (Didelphimorpha)
and other archaic orders (Aegialodonta, Cimolesta, Multituberculata,
“Symmetrodonta” and Eutriconodonta) never to regain their former
prominence.

Cretaceous–Tertiary (66 Ma) mammal community reorganization is
best explained by mass extinction (Sloan et al., 1986; Archibald, 1996),
which also terminated dinosaurs on land and ammonites at sea (Schulte
et al., 2010). This was also a time of CO2 greenhouse, as revealed by sto-
matal index of fossil Ginkgo and from increased paleoclimatic warmth
and humidity evident in paleosol chemical weathering (Retallack,
2009a). Other greenhouse spikes are recognized from similar data on

the spread of lateritic and bauxitic paleosols at 55, 49, 39, 35, 30, 19
and 16 Ma (Retallack, 2008a, 2009a,b, 2010a), and these greenhouse
events are indicated by marine alkenone proxies, despite marine-
nutrient calibration problems (Pagani, 2002; Pagani et al., 2011).
These greenhouse and associated paleoclimatic spikes contributed to
marked swings in mammalian community composition (Figs. 9–11).

The 17 Ma rise of artiodactyl diversity and 2 Ma diversification
of Macropodidae have been attributed to the advent and spread of
grassland ecosystems (Flannery, 2004; Janis, 2008). Independent ev-
idence of sod grasslands at this time comes from paleosols at Karungu

Fig. 9. Africanmammalian paleocommunity variation through time in taxa (A), size (B),
locomotion (C) and diet (D). Data is online at http://pages.uoregon.edu/dogsci/doku.
php?id=directory/faculty/greg/about.

Fig. 10. Australianmammalian paleocommunity variation through time in taxa (A), size (B),
locomotion (C) and diet (D). Data is online at http://pages.uoregon.edu/dogsci/doku.php?
id=directory/faculty/greg/about.
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(Forbes et al., 2004) and Maboko, Kenya (Retallack et al., 2002), and
Railroad Canyon, Idaho (Retallack, 2009b), Bone Creek, Oregon, and
Agate, Nebraska (Retallack, 2007b). Such paleosols have not yet
been found in Australia (Metzger and Retallack, 2010), but there
was a pronounced rise in abundance of pollen of daisies (Asteraceae)
and grasses (Poaceae) at about 2.5 Ma in western New South Wales
(Martin, 1989). Phytolith assemblages of Montana–Idaho have been
interpreted by Strömberg (2005) as evidence for an abrupt change
from forest to open grassland during the earliest Miocene (23 Ma),
and thus as evidence for delayed evolutionary response of artiodac-
tyls to vegetation change. However, paleosols at 22 Ma and earlier
in Oregon, Montana and Nebraska are shallow calcareous soils like
those of desert shrublands (Retallack, 2007b). The “forest” phytoliths
of Strömberg (2005) are similar to those in modern and Pleistocene
phytolith assemblages attributed to sagebrush and other desert shrubs
(Blinnikov et al., 2002; Blinnikov, 2005). The rise of artiodactyls was
thus not cued to clearing of forest, but sod thickening by grasses
which displaced shrubs and trees in semi-arid to subhumid regions
(Retallack, 2007b).

6.2. Size

Size distribution back in time varies dramatically in the Rocky
Mountains (Fig. 11B), Kenya (Fig. 9B: see also Nieto et al., 2005)
and Australia (Fig. 10B), with a profound mammalian size increase
following the Cretaceous–Tertiary boundary in the Rocky Mountains.
Cretaceous mammals of the Rocky Mountains are dominated by small
mammals (b1 kg), but small mammal spikes are found subsequently.
At the other end of the spectrum, horse to elephant sized animals
(>180 kg) were found back as far as the useful record (23.5 Ma) in
Kenya, but 55 Ma in the Rocky Mountains and 21 Ma in Australia.
Megaherbivores were diverse back to the beginning of the Kenyan
record (23.5 Ma), but did not diversify until 42 Ma in the Rocky
Mountains and 7.5 Ma in Australia.

Rapid evolutionary radiation of large mammals following mass
extinction at the Cretaceous–Tertiary boundary explains changing
size proportions at 66 Ma (Sloan et al., 1986; Archibald, 1996). The
later advent of megaherbivores in the Rocky Mountains than Kenya,
reflects awell documented immigration of tropical Eurasianmammals

Fig. 11. North American Rocky Mountain mammalian paleocommunity variation through time in taxa (A), size (B), locomotion (C) and diet (D). Data is online at http://pages.
uoregon.edu/dogsci/doku.php?id=directory/faculty/greg/about.

122 G.J. Retallack / Palaeogeography, Palaeoclimatology, Palaeoecology 342–343 (2012) 111–129



Author's personal copy

at the end of the Paleocene (Gingerich, 2003), when a global green-
house spike enabled high latitude dispersal (Retallack, 2009a). Other
greenhouse events (Retallack, 2009a) introduced rhinos to North
America at 39 Ma (Lucas, 1992) and elephants at 19 Ma (Prothero
and Dold, 2008). Some endemic North American lineages evolved
large size independently (Alroy, 1998), and Australian megaherbivores
evolved in isolation (Murray and Vickers-Rich, 2004). This had conse-
quences for vegetation, because megaherbivores create open country
by systematic destruction of trees and other vegetation (Owen-Smith,
1988).

6.3. Locomotion

Ground mammals, small and large, dominate the fossil records of
Kenya, Rocky Mountains and Australia (Figs. 9C, 10C, 11C). Arboreal
mammals have low proportional diversity in Kenya back to the base
of the useful record (23.5 Ma), in the Rocky Mountains back to the
Cretaceous–Tertiary boundary (66 Ma), and in Australia since late
Pliocene (2.5 Ma). Arboreal mammals have been missing in Rocky
Mountains fossil localities since the mid-Oligocene (30 Ma). In con-
trast arboreal mammals were diverse during the late Cretaceous and
Paleogene (30–100 Ma) in the Rocky Mountains and during the
Neogene (2.5–25 Ma) in Australia.

The dominance of ground rather than arboreal mammals is com-
patible with the taphonomic nature of most of the fossil localities:
fragmentary jaws and teeth in highly calcareous paleosols (Bown,
1979; Retallack, 1991a, 1998). The shallow horizons of calcareous
nodules in these paleosols are evidence of dry climates (b1000 mm
mean annual precipitation) and open vegetation (Retallack, 2005).
There are strong taphonomic biases against preservation of arboreal
mammals of forest ecosystems, because forest soils are non-calcareous
and bones are dissolved in them (Retallack, 1998). Non-calcareous
forest paleosols are known from Kenya (Retallack, 1991a), Australia
(Retallack, 2008a) and the Rocky Mountains (Retallack, 2007b),
but none preserve adequate fossil mammal assemblages. Thus the
arboreal mammals preserved in these assemblages were from lowland
semi-arid to subhumid soils, more wooded than is the case in dry
Kenyan rift valleys, and intermontane valleys of the Rocky Mountains
today.

6.4. Diet

The most striking change in diet of the three regions is the advent
(18.3, 14.7, 9 Ma) and then expansion (15.5, 12.7, 7.5 Ma) of grazers
in Rocky Mountains, Kenya, and Australia, respectively (Figs. 9D,
10D, 11D). In each region, the past 2.5 Ma has seen expansion of
grazer diversity. Fungivores have been diverse in Australia back to
the beginning of its useful fossil record (25 Ma). Fungivorous multi-
tuberculates were diverse during the Cretaceous in the Rocky Moun-
tains, but persisted in reduced diversity from the earliest Paleocene to
middle Eocene (66–45 Ma). The earliest fossil mammals with grazing
wear in North America were late Hemingfordian (17 Ma) parahippine
horses, probably immigrant to the Rocky Mountains from Parahippus
leonensis in Florida (MacFadden et al., 1991; Janis, 2008; Mihlbachler
et al., 2011). The earliest likely grazers of Kenya were hypsodontine
bovids found at Maboko (14.7 Ma), and these were probably Eurasian
immigrants (Gentry, 1970).

The persistence of fungivores in Australia, but decline in the Rocky
Mountains and absence from Kenya can be explained by the fact that
truffles preferred by fungivores are mycorrhizae of mesic conifers and
angiosperms, and not known from grasslands and sagebrush (Maser
et al., 2009). During the Neogene in Kenya and the Rocky Mountains,
truffle-rich low woodlands may have been replaced in comparable
climatic belts by truffle-poor grasslands.

Short-term spikes of browser diversity at 66, 55, 49, 39, 35, 30, 19 and
16Ma (Figs. 9–11) correspond with short-term climatic perturbations

of high CO2 andwarm-wet paleoclimate attributed to volcanic eruptions
and bolide impacts (Retallack, 2009a). These events are all seen in the
Rocky Mountain record (Fig. 11D), but some also are apparent from re-
cords of lower temporal resolution from Kenya (Fig. 9D) and Australia
(Fig. 10D). These were times of regional expansion, productivity, and di-
versification of woodland communities, as revealed by paleosol distribu-
tion, depth to Bk, and diversity (Retallack, 2007a, 2009a; Metzger and
Retallack, 2010). High productivity and CO2 levels postulated as explana-
tion for the last of these browser diversity spikes (Janis et al., 2000) have
been documented frompaleosols of that age (16 Ma) in Railroad Canyon,
Idaho (Retallack, 2009b).

7. Paleoclimatic records

Paleoclimatic implications of fossil mammal faunas can now be
assessed using mammalian climofunctions of Fig. 8, by comparison
with independent estimates of mean annual precipitation from the
depth to calcareous nodules (Bk horizon) in paleosols (Retallack,
2007a,b, 2009a; Metzger and Retallack, 2010). Paleoclimate inferred
from paleosol records in Fig 12 is matched well by some mammalian
climofunctions, but not others. Percent grazers, for example, fails to
predict precipitation at various times in the Neogene before grazers
appear, but just because this proxy goes off scale, does not mean
that precipitation was that of rainforest. Other proxies indicate
semiarid to subhumid climates at those times.

The paleosol records are from the same localities and regions as
the fossil faunas (Fig. 5), unlike climatic records such as the isotopic
composition of marine foraminifera, which is a proxy for both alpine
and polar ice volume and ocean paleotemperature (Zachos et al.,
2001). Studies of mammalian evolution that have used such isotopic
records (Alroy et al., 2000; Barnosky, 2001; Prothero, 2004; Hopkins,
2007) have found little correspondence with mammal evolution.
Marine isotopic records appear to be poor proxies for continental
climates, and the particular record most often used (Zachos et al.,
2001) has been statistically smoothed and is a regional composite of
Southern Ocean data for the Paleogene and North Atlantic data for the
Neogene, remote from the regions studied in this paper.

7.1. Australia

A record of mean annual precipitation in Australia of low temporal
resolution (Fig. 12B) is lower throughout the record than estimates
based on diversity of Australian Macropodidae and 45–180 kg mam-
mals, but within error for those mammalian climofunctions (Fig. 8).
Percent Australian grazers gives reasonable estimates of paleoclimate
only back to 7.5 Ma, when grazers first appear at Alcoota.

Paleosols and the two mammalian climofunctions that can be
applied throughout the record both agree that inland Australia had
semi-arid to subhumid paleoclimates back 26 Ma, and endured basal
Miocene aridity and a middle Miocene humid spike like other parts of
the world (Fig. 12A, C). Although middle Miocene and earlier faunas
of Australia have been compared with rainforest faunas (Travouillon
et al., 2009), this is not supported by the data and analysis presented
here.

7.2. Kenya

A paleoclimatic record of Kenya from paleosols (Fig. 12A) is well
supported by the proportional diversity of African artiodactyls and
mammals in the size range 45–180 kg, although these proxies fail
before 19 Ma. Percent African grazers agree with other proxies only
back to 12.7 Ma, which is 2 million years after the first grazers immi-
grated to Africa (Gentry, 1970).

As for Australia, the failure of some proxies, such as percent
grazers, to predict mean annual precipitation does not support the
notion of middle to early Miocene rainforest in Kenya. None of the
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estimated precipitation values reach those required for rainforest in
Africa (at least 1750 mm: White, 1983), although rainforest has been
used for vegetation of drier climates in Australia (Webb, 1968). Precip-
itation spikes at 8, 12, 16, and 18 Ma are comparable with those seen
in North America (Fig. 12C). Thus rainforest postulated for early Mio-
cene mammal faunas of Kenya (Andrews and Van Couvering, 1975;
Andrews, 1992) is not supported by data and analysis presented here.

7.3. U.S. Rocky Mountains

A paleoclimatic record from paleosols in the Rocky Mountain states
of Utah, Nevada and Montana (Retallack, 2009a) is matched well by
the climofunction derived from proportional diversity of Australian
mammals in the size range 45–180 kg, but only as far back as early
Paleocene (65 Ma: Fig. 12C). Other mammalian climofunctions fail in
intermittent spikes, and then fail completely further back than 48 Ma
(African 45–180 kg), 45 Ma (African artiodactyls), and 18.3 Ma (African
grazers).

The operational range of mammalian climofunctions is determined
by their training sets (Fig. 8), so their application to the RockyMountain
fossil record fails before evolution of suitable size ranges (65 Ma:
Alroy, 1998) and immigration of artiodactyls (55 Ma: Gingerich, 2003)
and grazers (17 Ma: MacFadden et al., 1991). The mammalian
climofunctions also fail on several short-term (b1 Ma) climatic spikes.
Some (but not all) of these spikes (66, 35, 8 Ma) correspond in time
with impact events, evident from iridium anomalies, craters and 3He
anomalies (Alroy, 2003; Farley et al., 2006; Schulte et al., 2010). Other
climatic spikes coincide with unusually large flood basalt eruptions
such as the Deccan Traps (66 Ma), Antrim Volcanics (55 Ma) and
Columbia River Basalts (16 Ma: Courtillot and Renne, 2003). These
were perturbations to long term climatic cooling during the Cenozoic
(Retallack et al., 2000; Retallack, 2001), which were recorded with
varied intensity by different mammalian traits measured for this study.

8. Ancient mallee-like mammal communities?

The concordance of mean annual precipitation from a transfer
function based on Australian mallee mammals and from paleosol
depth to nodules in the Rocky Mountains (Fig. 12C) suggests size
comparability of Paleogene fossil and modern mallee mammals.
Cretaceous mammals of the Rocky Mountains were smaller again
(Fig. 11B), but can also be considered in light of a mallee model. The
mid-Cretaceous fauna of the Mussentuchit Member of central Utah
(Kielan-Jaworowska et al., 2004) and the early Eocene fauna of the
Willwood Formation of northern Wyoming (Rose, 1990; Bown et al.,
1994) are especially instructive examples because the paleosols yield-
ing these faunas have been described in detail (Bown, 1979; Retallack,
1998, 2009a; Kraus and Riggins, 2007). Apart from burial reddening
and gleization expected in paleosols due to burial (Retallack, 1991b),
paleosols of the Mussentuchit Member and Willwood Formation
(Fig. 4K–M) are very similar to modern mallee soils of New South
Wales (Fig. 4A–J).

8.1. Paleogene

Individual mammal assemblages from the early Eocene (53–55 Ma)
Willwood Formation of Wyoming (Bown, et al., 1994) have no more
than three species larger than 45 kg: a browsing cimolestid (Coryphodon
radians) and condylarth (Phenacodus primaevus), and an omnivorous
procreodid (Anacodon ursidens). Arboreal insectivorous, frugivorous
and browsing primates were diverse, and many had the large orbits
of nocturnal mammals (Bown and Rose, 1984; Janis et al., 2008). There
were scansorial rodents and small carnivores, and modestly sized peris-
sodactyls and artiodactyls lack cursorial limb structure (Bakker, 1983;
Rose, 1990). The large ground bird Gastornis giganteus (formerly
Diatryma) of the Willwood Formation has been considered predatory,
but blunt beak and lack of talons now compare better with frugivorous
large ground birds (Murray and Vickers-Rich, 2004).

Fig. 12. Paleoprecipitation from depth to Bk of paleosols (heavy black line and flanking standard error) for Kenya (A: from Retallack, 2007a), inland Australia (B: from Metzger and
Retallack, 2010), and Rocky Mountains, U.S.A (C: from Retallack, 2009a), compared with estimates based on fossil mammals (gray). Percent grazing species fails as an indicator
before 12 Ma in Kenya, 7 Ma in Australia, and 20 Ma in Rocky Mountains. Other mammalian climofunctions work well for Kenya and Australia, but Australian percent mammals
in the size range 45–180 kg is the best predictor for the Rocky Mountains back to 65 Ma.
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Paleocene and Eocene mammal faunas of Wyoming, Montana
and Utah have commonly been regarded as transitional between
Mesozoic small mammals and large ungulates of the Asian immigrant
White River chronofauna of the late Eocene (beginning 40 Ma: Alroy,
1998). The Paleocene and Eocene have been regarded as times of
dramatic evolutionary radiation of mammals following dinosaur
extinction (Maas and Krause, 1994), and this view is supported by
fossil evidence for end-Cretaceous rise of crown-groups of Placentalia
(Asher et al., 2005; Wible et al., 2007). Evidence from species-level
molecular phylogeny of modern mammals found little effect of the
end-Cretaceous extinctions, and identified two spikes in diversifica-
tion rate at 93 and 19 Ma (Bininda-Emonds et al., 2007), related to
rise of weedy angiosperms and grasslands respectively. My study
similarly suggests that late Cretaceous and Paleocene–Eocene faunas
were adapted to woody angiospermous vegetation of semi-arid to
subhumid regions that was displaced by grassland ecosystems in
the northern hemisphere, but not in Australia, where semi-arid low
woodland lingers as mallee.

8.2. Mesozoic

The mammal fauna of the mid-Cretaceous (98 Ma) Mussentuchit
Member of the Cedar Mountain Formation is represented by at least
28 small species of ground-dwelling fungivorous multituberculates,
ground-dwelling insectivorus eutriconodonts, arboreal insectivorous
aegialodonts and didelphomorphs, and one moderately large (1.8 kg),
scansorial eutriconodont carnivore (Kielan-Jaworowska et al., 2004).
Some of these creatures hadmonotreme ormarsupial reproductive sys-
tems and physiologies (Lou, 2007). The same beds also yield fish, frogs,
salamanders, turtles, lizards, snakes, crocodilians and a dinosaur fauna
of graviportal sauropods and nodosaurs, and bipedal herbivores and
carnivores (Cifelli et al., 1999).

9. Extinct woody plant communities

Extinct semi-arid to subhumid vegetation of Africa and North
America may have had structural similarities with mallee, but the
termmallee is inappropriate for such floristically different vegetation.
Australian mallee Eucalyptus can be traced back to the middle Mio-
cene from pollen records in New South Wales (Martin, 1989) and
early Miocene from paleosols and megafossils in South Australia and
Northern Territory (Metzger and Retallack, 2010). This fossil record
reflects northward drift of Australia from cooler climates with lower
evapotranspiration, higher effective humidity, and mixed conifer–
angiosperm temperate woodland during the Eocene and Paleocene
(Truswell and Harris, 1982; Retallack, 2008a). Climatic warming due
to continental drift was partly undone by global climatic fluctuations
including Plio-Pleistocene cooling (Metzger and Retallack, 2010).
Unlike Australian mallee vegetation, comparable semi-arid woodlands
of Africa and North America were supplanted by grassland ecosystems,
and little is known of the floristic composition and other details of
the extinct communities replaced by grasslands.

9.1. Africa

The extinct low woodland of semi-arid to subhumid regions of
Africa has been called pori, from a Hadza word for bush (Retallack,
2007a), and the best available reference paleosol is the type Tek
pedotype in the early Miocene (18 Ma) Hiwegi Formation on Rusinga
Island Kenya (Retallack et al., 1995). The tuffaceous volcanic parent
material of this paleosol would have been more fertile than quartzose
mallee soils. This paleosol yielded common pits (mineralized endo-
carps) of hackberry (Celtis rusingensis), and the soil profile and associat-
ed roots and twigs are evidence that its vegetation had few spines and
thorns, and moderate stature (12±2.3 m tall from Eq. (2)). Hackberry
is evidence that this woodland was at least semideciduous. Other

paleosols (Okoto pedotype) in the Hiwegi Formation have a more di-
verse fossil flora of fruits and seeds, which grew in streamside galleries.
The floristic affinities of fossils on Okoto paleosols are Zambezian, with
legumes, palms and extant genera such as Berchemia, Cnestis, and
Lannea. Somali–Masai wooded grassland taxa, such as Acacia or grasses
(Collinson et al., 2009), appear at geologically younger sites of Maboko,
Kaimagool and Fort Ternan (Wynn and Retallack, 2001; Retallack et al.,
2002).

9.2. North America

The extinct low woodland of semi-arid to subhumid regions of
North America is here termed cunhaka, from a Lakota Sioux word
(cuη'haka) for a “brush of bushes” (Buechel and Manhart, 1970). A
suitable reference paleosol and fauna for this vegetation is the Zizi
paleosol in the early Eocene (54 Ma) Willwood Formation near
Powell, Wyoming (Winkler, 1983; Retallack, 1998). These paleosols
had smectite clays from volcanic tuff more fertile than quartzose
mallee soils. Also these paleosols yield endocarps of hackberry (Celtis
hatcheri), indicating vegetation at least semideciduous. Their shallow
Bk horizon (35 cm) indicates woodlands about 8 m tall (from Eq. (2)).
Fossil plants from the Willwood Formation (Wilf, 2000; Wing et al.,
2005) represent bald cypress swamps (in Histosols) and clayey
paleosols (Alfisols) of the terminal Paleocene greenhouse warm–wet
spike (Kraus and Riggins, 2007), when vegetation was distinct from
the shallow-calcic Zizi and Luluta paleosols of the rest of the Willwood
Formation (Retallack, 1998). Nevertheless, regional pollen floras of the
Willwood Formation (Wing et al., 2005) and megafossils in lake beds
of the middle Eocene Green River Formation (MacGinitie, 1969) are
evidence for legumes, Juglandales and Betulales in Eocene cunhaka
woodlands.

10. Conclusions

The small stature, common arboreal and nocturnal mammals of the
Cretaceous and Paleogene are distinct from the range of ecomorphs
common in grassland ecosystems. They are not necessarily evidence of
rainforest communities, although there are cases of rainforestmammals
preserved in volcaniclastic deposits (Eocene of Clarno: Hanson, 1996),
sinkholes (Eocene of Messel: Schaal and Ziegler, 1992) and caves
(Miocene of Riversleigh: Archer et al., 1991). In cases where mammals
are preserved in calcareous paleosols (Bown, 1979; Retallack, 1991a),
a more appropriate comparison of both paleosols and mammal faunas
is with Australian mallee. Mallee-like mammal faunas and soils identi-
fied in this paper include the following: mid-Cretaceous (98 Ma)
Mussentuchit Member of Cedar Mountain Formation in Utah (Fig. 4M:
Cifelli et al., 1999; Retallack, 2009a), early Eocene (54 Ma) Willwood
Formation in Wyoming (Fig. 4K–L: Bown, 1979; Bown et al., 1994;
Retallack, 1998; Kraus and Riggins, 2007), early Miocene (18 Ma)
Hiwegi Formation on Rusinga Island Kenya (Retallack et al., 1995;
Peppe et al., 2009), and early Miocene (22 Ma) Ulta Formation near
Kangaroo Well, Northern Territory, Australia, and middle Miocene
(16 Ma) uppermost Etadunna Formation at Lake Palankarinna, South
Australia (Metzger and Retallack, 2010). These were not rainforest
mammal faunas, and do not demand extremehydrological and paleocli-
matic changes in the past compared with the present (Herold et al.,
2011).

African and North American dry woodlands were ecologically
comparable with Australian mallee, but floristically distinct, and so
named pori and cunhaka woodlands, respectively, from indigenous
languages for bush (Buechel and Manhart, 1970; Retallack, 2007b).
Although the fossil flora of such communities is poorly preserved
and thus incompletely known, deciduous hackberries and legumes
of pori and cunhaka were distinct from evergreen Eucalyptus of mal-
lee. Such floristic differences in part reflect different paleogeographic
histories, but also the greater fertility of tuffaceous paleosols of pori

125G.J. Retallack / Palaeogeography, Palaeoclimatology, Palaeoecology 342–343 (2012) 111–129



Author's personal copy

(Retallack, 1991a) and cunhaka (Retallack, 1998), compared with
quartzose paleosols of mallee (Metzger and Retallack, 2010). Living
mallee and extinct pori and cunhaka woodland played an important
role in mammal evolution.
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