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‘ The decreasing 580 trend through the middle of PB
1n§1cates significantly cooler conditions that correlate
with oxygen stage 4. The strong Bt (Btt) in the lower
part of PA is within stage 3 at a time when the §'%0
indicates moderately warm conditions. In the upper
part of PA, the §*80 results indicate an overall cooling
trend to a near minimum condition that we correlate
with stage 2. The §'®0 values begin to rise in what we
think is the transition into the Holocene. However
rather than continuing to rise the trend reverses tc;
a minimum value, which is not understood at this time.

The 6"3C values of soil organic carbon indicate that

nearly a pure C3 forest existed several times based on
modern relationships of vegetation type with the §13C
content. The highest proportion of C3 forest (greater
than 92%) occurred twice after Geosol-1 during the
early parts of stage 3 and Substage 5b, while a mixture
of C3 trees and C4 grasses (50~80% C3) existed during
all other stages. The maximum proportion of C4
grasses (50%) appears to have occurred during a cool-
ing phase of stage 3 and not during the coldest parts of
the record.

In summary, the 6'%0 values from pedogenic car-
bonates in the lower part of the Liujiapo Section show
a good correlation with the oxygen stage 5 deep sea
record, but a complex relation with the pedostrati-
graphic units of the same age. The key paleosol, S1, the
first major paleosol observed at other localities on the
Loess Plateau, is older than at least one major paleosol
(PA) that occurs in the Malan Loess (L1) at Luijiapo.
Pf:dogenic features and isotope trends indicate that
climatic conditions here were measurably different
tha.n at other parts of the Loess Plateau during the late
Ple1§tocene. The stable C and O isotopes indicate that
the intermediate to warmer climatic conditions appear
to coincide with a habitat dominated by trees, and that
the cooler conditions are associated with a mixed
grass—tree habitat. The large variations in the isotope

trends are likely caused by the moisture factor and the
effec;ts it had on the paleosols of the Loess Plateau
during the last 130,000 years.
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PART IV — SHORT PAPERS

ADAPTING SOIL TAXONOMY FOR USE WITH PALEOSOLS

Gregory J. Retallack
Department of Geological Sciences, University of Oregon, Eugene, OR, U.S.A.

Soil classification is a fundamental aspect of soil
science, and now is finding application to the study of
paleosols (Retallack, 1990). One good reason for
attempting to classify paleosols in soil taxonomies is to
interpret their significance for paleoenvironments.
Applying soil taxonomy to paleosols enables one to
identify general cases and specific profiles:of modern
soils that can be compared in detail with a particular
paleosol. If a paleosol is very similar to a modern soil,.
then perhaps environments similar to those that
formed the soil can be inferred for the paleosol
(Retallack, 1990). Classification is also a way of navi-
gating the enormous published literature on soils. The
classifications of the U.S. Soil Conservation Service
(Soil Survey Staff, 1975), of UN.ES.C.O. (F.A.O,
1971-1981) and of the Australian C.SIR.O. (Stace
et al., 1968) are supported by a vast bank of soil profile
descriptions, often with chemical and petrographic
data. '

Unfortunately, the differentiating criteria of most
soil classifications are not directly applicable to buried
soils, and new criteria for delimitation of paleosols are
needed. Bulk chemical and petrographic criteria are
especially promising, because they can be shown to
differentiate effectively between surface soils (Fig. 1)
and have been increasingly reported from paleosols
(Retallack, 1991). In recent work (Retallack, unpub-
lished) with molecular weathering ratios from chemical
analyses of 126 modern North American soils reported
by Marbut (1935), a value higher than 2 for the ratio of
alumina/bases distinguishes Ultisols from Alfisols in
most cases. From another study (Retallack, 1993) on
the relationship between depth to calcic horizons and
mean annual rainfall, an uncompacted depth of 1m or
less to the calcic horizon may be a useful criterion for
defining Aridisols (Fig. 2). Even though the organic
matter of Mollisols is seldom preserved at anywhere
near original levels in paleosols, granular ped structure
and fine root networks can be preserved as evidence of
a mollic epipedon (Retallack, 1991). More could be
done with modern soils to find and quantify features
that are robust enough to be used to identify paleosols
within classifications of modern soils. Although per-

haps premature, a simplified set of criteria designed as

55

proxies for the U.S. Soil Taxonomy can already be
envisaged (Fig. 3).

There is precedent for such an approach in paleon-
tology, where proxy indicators are used to identify
fossils. For example, the paleontological definition of
mammals among the continuum of bones representing
the evolution of mammals from reptiles is taken at the
point when the dentary becomes the only bone of the
Jower jaw, or mandible. A zoological definition of
mammals in contrast would be based on their hair,
suckling or warm blood. A variety of lines of evidence
now indicate that many dinosaurs had hair or feathers
and were warm blooded (Benton, 1990). This example
is instructive because zoologists have reassessed their
concepts of mammals and reptiles from the perspective
of extinct groups of animals, including dinosaurs. This
would not have been achieved if classification of
the fossils had been eschewed or if alternative non-
biologically oriented classifications had been proposed.

From this perspective, classifications designed
specifically for paleosols (for example by Mack et al.,
1993) may simplify communication between paleosol
workers, but do not lead to comparative data on soils
useful for interpretation. Other approaches to the inter-
pretation of paleosols are feasible, such as descriptive

‘local classification analogous to mapping soil series

(Retallack, 1991), or interpretations using factor-
functions of the sort popularized by Hans Jenny
(Retallack, 1993). These independent approaches do
not diminish the value of using the vast store of experi-
ence with soils encapsulated in soil classifications. Soil
scientists have shown commendable flexibility in allow-
ing Soil Taxonomy to be modified and grow (Soil Survey
Staff, 1990). Now is the time to meld the unique per-
spective of geological sciences with the established ex-
perience of soil sciences for the benefit of both disciplines.
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FIG. 1. Differences in grain size distribution and molecular weathering ratios of bulk chemical composition for four typical profiles of surface soils
(data from Marbut, 1935). These petrographic and chemical measures can also be obtained from paleosols (Retallack, 1990, 1991).
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FIG. 2. The relationship between mean annual rainfall and depth of the calcic horizon in 381 surface soils from all continents including Antarctica,
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FIG. 3. A simplified key to order the US. soil taxonomy for use with paleosols, with emphasis on petrographic and bulk chemical criteria
(data from Retallack, 1988, 1990, 1993). Each order has a characteristic appearance in petrographic thin section (after Douglas and

Thompson, 1985).
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