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The nature of former vegetation at the well known middle Miocene fossil site near Fort
Ternan, Kenya, has been considered recently by both Kappelman (1991) and Cerling et al.
(1991). The use of carbonate and organic matter isotopic composition of paleosols as
paleoenvironmental indicators by Cerling ef a/. is a new and exciting development for
paleoecology and paleopedology. In this case, however, woodland vegetation at Fort Ternan
has been interpreted from the isotopic composition of sparry calcite cement and organic
residues remaining from an episode of early burial cementation and decay, rather than on the
micrite and organic matter of the original soil.

The depth function of isotopic values within the Fort Ternan profiles is uniform as in
diagenetically altered paleosols (Lander, 1990), rather than showing less negative 8°C of
carbonate toward the surface and more negative §'°C of organic matter toward the surface,
asin some modern soils (Cerling et al. 1989; Ambrose & Sikes, 1991). The carbon and oxygen
isotopic values of carbonate also fall within a well marked mode for carbonatite tuffs in the
compilation of isotopic values by Dienes (1989; whose values for oxygen can be converted by
the formula §'®Ogy 5y = 1:03068.5'80ppp + 30-86, according to Friedman & O’Neil, 1977).
Also, the carbon in both carbonate and organic matter of the paleosols is unusually light
(very negative) compared to that in modern soils (Cerling ¢t al., 1991). These are mere
warning signals rather than fatal flaws, because Cerling et al. (1991) argue (1) that these soils
were so productive that diffusion of atmospheric carbon dioxide was overwhelmed by soil
respiration, (2) that these communities were stable for a long period of time and had a more
closed canopy than modern soils studied, and (3) that igneous petrologists have overlooked
the degree of soil alteration in their isotopic analyses of carbonatite tuffs. These qualifications
place their interpretation near one extreme of the range previously proposed for Fort Ternan
(Table 1).

Stronger doubts about the isotopic results come from the petrographic character of the
samples analysed by Cerling et al. (1991). Some of the samples have pedogenic micrite with
displacive and replacive textures, as well as a generation of pore-filling sparry calcite that fills
undeformed root holes, soil cracks and the hollow culms of fossil grasses in such a way as to
suggest it formed shortly after burial (specimens FT-R2, 6,9, 12, 13, 14, 76, 77; photomicro-
graphs of Retallack, 19914, Figures 2.14 & 2.15). Other specimens low in the paleosol profiles
(pedogenic C horizons) have much more sparry calcite than pedogenic micrite (samples
FT-R10,11, 15, 16, 18, 78). Other isotopically analysed samples from the base of lahars and
nephelinitic sandstones showing no sign of soil formation have only the sparry cement formed
early during burial (samples FT-R1, 74; photomicrographs of Retallack, 19915, Figure 3.2).
Surprisingly, all these petrographically and genetically diverse samples have nearly identical
carbon isotopic composition of carbonates, presumably dominated by the conspicuous
sparry cement. The source of the sparry calcite is not known. It could have come from
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groundwater of the nearby volcanic slopes that were presumably forested or from renewed
inputs of carbonatite tuff. I suspect, however, that it came from decay of small amounts
of organic matter in the buried soil whose porosity was rapidly declining as cementation
proceeded. These conditions could yield the observed isotopic composition according to the
models of Cerling (1991). Such a diagenetic origin may also explain the soil-like difference of
about 15%o between carbon in carbonate and co-existing organic matter in these paleosols.
Walkley-Black analyses of total organic carbon in these paleosols were no more than 0-17
weight percent (Retallack, 19914, Appendix 5), whereas comparable soils of the Serengeti
Plains of Tanzania have organic carbon contents up to 9%, (de Wit, 1978; Jager, 1982) and
forested soils of Kenya have values up to 5-64%, (Thorp et al., 1960). Loss of about an order of
magnitude of organic matter in paleosols compared with well drained surface soils is common
(Stevenson, 1969) and is probably due to decomposition soon after burial (Retallack,
19914,5). These effects, together with coalification, can appreciably alter the composition of
organic matter in paleosols compared with soils (Schnitzer et al., 1990). Scarce altered
remnants of organic matter in these buried soils are what were analysed by Cerling e/ al.
(1991). Although this first attempt at a bulk isotopic analysis of the Fort Ternan paleosols was
confounded by pervasive burial cementation, more sophisticated approaches to the isotopic
systematics of different phases of carbonate and organic matter in these paleosols can be
envisaged for the future.

Unlike isotopic analysis of paleosols, fossils have been used to interpret paleoenvironments
since the last century. Kappelman’s (1991) study of the functional morphology of antelope
femoral heads, like some other paleozoological studies at Fort Ternan (Andrews & Evans,
1979; Andrews et al., 1979; Evans et al., 1981; Pickford, 1985) concluded that the vegetation
there was woodland. Taphonomic studies of mammals at Fort Ternan have revealed paleo-
gullys and other elements of the paleoenvironmental mosaic (Shipman et al., 1981; Shipman,
1986), but most published paleontological studies of fossil mammals and snails from there
could not have detected this mosaic because they were based on collections pooled from
different kinds of what can be termed Chogo paleosols (Retallack, 19915).

A more serious logical flaw in such functional morphological studies is the assumption that
antelope of a kind now best suited to woodland necessarily lived in woodland. Various studies
(Vrba, 1980; Kappelman, 1984, 1991; Thomas, 1984) demonstrate that antelope ancestors
were adapted to woodland and forest and that grassland-adapted antelope had not yet
evolved by the middle Miocene. Hence middle Miocene antelope fossils could not indicate
grasslands even if grasslands were present. Evolution of grassland adaptations was initiated
during middle Miocene time, presumably in response to somewhat more open vegetation,
and this led to a mammalian fauna discernibly more like the modern East African one
(Pickford, 1981).

The fossil snails at Fort Ternan can be interpreted similarly. Even today snails are
most diverse in forested regions, with subsets of genera extending into wooded grasslands
and deserts (Van Bruggen, 1978; Heller, 1984). Fort Ternan snails are similar to modern
woodland forms but very different and less diverse than from the early Miocene in
southwestern Kenya (Pickford, 1985, 1986, 1987).

While adaptations in fossil faunas may have lagged slightly behind paleoenvironmental
change, which is better assessed by independent means, the fossils do provide indispensable
evidence of early co-evolution of grasses and grazers. Furthermore, the information that
could be gleaned from fossils at Fort Ternan is far from exhausted. The cenogram approach
for comparing size variation of fossil mammalian faunas could be productively employed
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at Fort Ternan, as by Legendre (1986) for European mammalian faunas at the Eocene—
Oligocene boundary. Faunas with a size distribution suggestive of forest were replaced by
faunas more like those of dry open rangeland, an interpretation compatible with evidence
from fossil soils (Meyer ez al., 1980; Freytet & Plaziat, 1982), but not with the taxonomy nor
functional morphology of these European mammals. Similar approaches to East African
fossil faunas could also prove revealing.

Just as with functional morphology or taxonomic comparisons of antelope, it can be
assumed that features and kinds of paleosols were formed in similar environments to similar
features and kinds of modern soils. Paleosols are in theory more direct reflections of environ-
ment than fossil organisms, because they are uncompromised by a hidden agenda in the form
of a genome. In addition, much is now known about soil-forming factors (Birkeland, 1984)
and soils of the Old World tropics (F.A.O., 19774,5; Murthy et al., 1982; Sombroek et al.,
1982) and this facilitates the testing of hypotheses concerning paleosols. None of the Miocene
paleosols at Fort Ternan are like the thick, non-calcareous, humic Andepts under the present
Mau Escarpment forests (Mbuvi & Njeri, 1977), contrary to Andrews & Walker (1976). Also
different are the thick red soils in Precambrian basement under dry woodland and wooded
shrubland, locally called “nyika”, as in Tsavo West National Park, Kenya (Sombroek et al.,
1982), suggested as an analog on the basis of fossil snails by Pickford (1987). If these soils
are thicker and better developed than the paleosols of Fort Ternan, desert soils around
the carbonatite-nephelinite volcano Oldoinyo Lengai, Tanzania, are much less deeply
weathered and richerin salts and zeolites (Anderson, 1963; Hay, 1989). The middle Miocene
paleosols at Fort Ternan are most like those of the Serengeti Plain of Tanzania, both in
their classification and in paleoenvironmentally significant features such as the thickness of
their mollic epipedons and depth and morphology of calcic horizons (particularly profiles
NaNo-A no. 26, NaLag no. 46 and Barsek no. 44 of de Wit, 1978). In addition, the Fort
Ternan deposits are no longer thought to be an isolated fault block, but form a mappable
horizon over at least 9-6 krn (Pickford, 1984, 1986; Retallack, 19915). Lateral variation in
paleosols can be seen between several badlands exposures and is especially well documented
in the large fossil quarry (Andrews & Walker, 1976; Retallack, 19915). These interpretations
of'a middle Miocene grassland mosaic are developed at length elsewhere (Retallack, 19915).

Isotopic analysis, vertebrate fossils and paleosols are all more or less indirect indicators of
ancient vegetation at Fort Ternan, and on this question the fossil plants themselves should
have the last word. Fruits and seeds from the Chogo clay eroded phase paleosol include taxa
indicative of Zambezian grassy riparian woodland (Shipman, 1977; Retallack, 19914, 1992),
compatible with other plant evidence of widespread Miocene open grassy woodland
(“miombo”, “nyika”) in Africa (Axelrod & Raven, 1978). The Chogo clay eroded phase
paleosol also contains poorly preserved stump casts, but they are small, more like those of
grassy woodland than of forest (Retallack, 19915, 1992). The fossil fruit and seed flora is small
(15 specimens) and lacks the very small propagules that are commonly retrieved by seiving
(Tiffney, 1985). New excavations could help here.

Fossil pollen were found in only a few of the paleosol samples at Fort Ternan. The type
Chogo clay only 7 m along the strike to the east of the Chogo clay eroded phase paleosol
contained mainly the pollen of grasses (549%,) and sedges (27%,), with a minor component of
palynomorphs of dry Afromontane forest, fellfield and marsh (Bonnefille, 1984). This small
(only 284 grains) and poorly preserved assemblage demonstrates that future studies may not
be in vain, and is especially remarkable considering the generally low preservation potential
of grass pollen (Hamilton, 1982).
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Figure I. Interpreted paleoenvironment, soils and vegetation of southwestern Kenya during middle
Miocene time some 14 million years ago (from Retallack, 19915).

Finally, there are common fossil grasses at Fort Ternan, both within the Chogo clay eroded
phase paleosol and above the Onuria clay paleosol, where grass fossils reach a density of
19,259/m® of rock (Retallack et al., 1990). The cuticles of the fossil grasses are well preserved
in places and can be identified (Dugas, 1989; Dugas & Retallack, in press) using the com-
puter identification key of Watson & Dallwitz (1989). So far, five distinctive species have
been recognized belonging to or related to genera of open grassy woodland on impoverished
soils (Cleistochloa, Stereochlaena), wooded grassland on clayey or rocky soils (Pogoneura,
Polevansia, Cyclostachya), and desert and coastal open grassland on alkaline and even salty soils
(Distichlis). The ratio of chloridoid/panicoid grasses and the percentage of chloridoids in this
fossil grass flora are most like modern African grass floras of wooded grassland (Retallack,
1992). Therelative density of phytoliths and stomates on three species of the fossil grasses with
adequate amounts of preserved cuticle compared with 44 species of modern East African
grasses all have dense phytoliths and sparse stomates found in grasses of open and wooded
grasslands (Retallack, 1992). Studies of fossil grasses have been hampered in the past by their
rarity (Thomasson, 1987), but this does not seem to be a problem at Fort Ternan or at several



368 G.J. RETALLACK

other sites in East African Miocene volcaniclastic rocks (Hamilton, 1968; Jacobs & Kabuye,
1987).

In conclusion, there is now paleobotanical evidence for a mosaic of wooded grassland
(type Chogo clay and Onuria paleosols), grassy woodland (Chogo clay eroded phase and
ferruginized nodule variant paleosols), early successional woodland (Dhero clay paleosols),
dry Afromontane forest, fellfield and marsh (from far travelled pollen) around the large
nephelinitic-carbonatitic stratovolcano at Fort Ternan during middle Miocene time
(Figure 1). This supports interpretations based on paleosols, and is not strongly contradicted
by evidence of fossil insects, snails or mammals, but is at variance with evidence of carbon
isotopic composition of paleosol carbonate and organic matter.
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