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MacKinnon (1983) has presented yet another model for the forma-
tion of those enigmatic quartzofeldspathic, fysch-like rocks, which com-
prise most of the Southern Alps of New Zealand. His view that these rocks
(“Torlesse Supergroup,” as used by Suggate, 1978) were Jjuxtaposed by
transcurrent faulting against the coeval, volcaniclastic, Murihiku Super-
group represents a considerable advance over previous outrageous hypoth-
eses, in which the Torlésse Supergroup was envisaged as part of a lost
Pacifica continent (Nur and Ben-Avraham, 1977; Kamp, 1980) or part of
an isolated oceanic island arc (Howell, 1980). In addition to the arguments
advanced by MacKinnon (1983), the close similarity between Triassic
megafossil plants of Murihiku and Torlesse Supergroups, eastern Australia,

* Antarctica, Chile, and Argentina (Retallack, 1977, 1981, 1983b) is evi-
dence that all were part of the Gondwana supercontinent. MacKinnon’s
comparison of the Torlesse Supergroup with continental margin deposits
south of the Chugach Mountains of Alaska is also supported by numerous
sedimentological similarities between Middle Triassic fluvial conglomer-

-ates of the Torlesse Supergroup and gravels of the Alaskan coastal out-
wash plain (Retallack, 1979, 1983a). Although MacKinnon’s model has
much to recommend it, there are at least two main shortcomings.

First, there is no evidence for, and 4% reason to doubt the existence of,
a Triassic marginal sea like the modern Bering Sea behind the volcanic arc
that supplied the Murihiku Supergroup and associated volcaniclastic rocks
(MacKinnon, 1983, Fig. 10). There may have been such a sea during
Permian time. By the Triassic, however, the diversity of igneous and
metamorphic pebbles and minerals in sediments of the Murihiku Super-
group, as well as granitic basement in places (Watters in Suggate, 1978),
are indications that its source was much larger and more geologically
varied than most oceanic island arcs. No fully marine Triassic fossils or
rocks are known in eastern Australia south of Queensland or in western
Antarctica, near where this part of New Zealand is presumed to have been
attached during the Triassic. It is likely that the volcanic source of Triassic
nonmarine rocks in the Transantarctic Mountains (Elliott, 1975; Barrett,
1981) and eastern Australia (Day and others, 1974; Retallack and others,
1977) was part of the same-chain of volcanoes. In these regions, the
~volcanoes appear to have been on the continent, more like the present
Cascade Range of the northwestern United States than the Aleutian
Islands. ‘

Second, there are also reasons to doubt MacKinnon’s generalization
that the Torlesse Supergroup was deposited and then shuffled laterally,
always with younger rocks to the northeast. Such a view can be upheld
only by ignoring or reinterpreting Permian limestones with fusulinids and
corals in Northland. These are east of Cretaceous rocks customarily as-
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signed to the Torlesse Supergroup (Hay in Suggate, 197 8). The assignment
of these rocks to “Maitai, Murihiku, Caples, and Brook Street terranes” as
shown by MacKinnon (1983, Fig. 6) is an unconventional departure from
past mapping which MacKinnon fails to explain. MacKinnon’s view of
age relations in the Torlesse Supergroup is partly based on the question-
able assumption of a narrow stratigraphic range (“Lower Upper Triassic™)
for the fossil worm tube Terebellina (this is the correct name for Torlessia
according to Begg and others, 1983). Only in one place has Terebellina
been found associated with a shelly fauna (Begg and others, 1983). Tere-
bellina and shelly fossils also occur together at another locality, but in
separate parts of separate graded beds (Campbell and Pringle, 1982). The
usual separate occurrence of Terebellina and shelly fossils, the siliceous
composition of Terebellina tubes, and their association with trace fossils
such as Helminthoidea and Urohelminthoidea are all indications that Tere-
bellina lived in very deep water, probably below calcium carbonate com-
pensation depth (Stevens in Suggate, 1978). In my opinion, Terebelling is
an indicator of paleoenvironment, not geologic age. It could range
throughout the Middle and Late Triassic. There is little reason to suspect
that this enigmatic endemic fossil has biostratigraphic significance com-
parable to the cosmopolitan bivalves Daonella, Halobia, and Monotis,
which are used to establish age elsewhere in the Torlesse Supergroup. As
can be seen in MacKinnon’s (1983) Figures 2 and 5, in the South Island of
New Zealand, localities for these deep marine fossils are west, north, and
northeast of shallow marine and terrestrial Middie Triassic deposits, which
flank a large area of Permian and Carboniferous fossil localities. This
distribution represents, at the very least, a deep invagination of the simple
northeastward-younging arrangement proposed by MacKinnon. Consider-
ing sedimentological evidence for a mountainous source very close at hand
to some of the Middle Triassic fossil plant localities (near Mount Potts and
Otematata; Retallack, 1979, 1983a), the Permian and Carboniferous part
of the Torlesse Supergroup appears to have been a landmass during Mid-
die Triassic and perhaps also later times. Lateral shuffling of the Torlesse
Supergroup according to MacKinnon’s model may have entailed partial
dislocation and rotation of this continental fragment. It may have been
flanked on several sides by marine embayments, analogous to San Fran-
cisco Bay or the Gulf of California.

These, and other North American analogs offered here, have as many
problems in detail as the Alaskan analog proposed by MacKinnon (1983).
Both the modern northwestern American and early Mesozoic southeastern
Gondwanan coasts included both fold ranges and chains of volcanoes for
much of their early history. Both appear to have been modified substan-
tially by transcurrent movement of fragments of continental crust. Never-
theless, the early Mesozoic coast of Gondwana is not exactly matched by
any modern coast, and its detailed paleogeography remains to be
established.
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The points brought forth by Retallack are critical to my interpreta-
tions (MacKinnon, 1983). 1 therefore welcome this opportunity to
respond.

Retallack argues that there is no reason to believe that a marginal sea
existed behind the Brook Street terrane volcanic arc; he further argues that
this arc was probably part of a continental margin. In contrast, I contend
that there is convincing evidence that the Brook Street terrane was an
island arc, and, therefore, there must have been a marginal sea or some
large body of water behind it. I give the following evidence to support this
(see also MacKinnon, 1983, p. 980, paragraph 4):

1. Large areas of the Brook Street terrane are dominated by frag-
mented material deposited by turbidites and associated depositional mech-
anisms (Houghton, 1981; Williams, 1978). Marine fossils are present in
some areas, and pillow lavas are common. The evidence clearly shows that
most Brook Street terrane sedimentary and flow rocks were deposited in a
marine environment.

2. There are no older continental-type rocks as roof pendants or
country rock within the Brook Street terrane. These would be expected in
a continental arc. B

3. Sandstone composition of Maitai, Murihiku, and Caples rocks,
thought to have been derived from the Brook Street terrane by most
workers, strongly indicates an island-arc source. Percentage of QFL quartz
(Q) is consistently <20%, and the ratio of volcanic lithics to total lithics
(Lv/L) is 20.90. In contrast, sandstones derived from continental volcanic
arcs generally have a more varied source, are more quartzose, and have a
much higher percentage of nonvolcanic rock fragments. For example,
marine sands derived from the modern Cascade Range, which Retallack
suggests as a possible analog, have %Q values ranging from 20% to 50%
(Kulm and Fowler, 1974). Further comparisons between sandstones de-
rived from island-arc versus continental-arc sources are given by numerous
authors (for example, Dickinson and Suczek, 1979).

Retallack argues that the rock suite in the Murihiku terrane is too
diverse to have been derived from an island-arc source. To support this,
Retallack cites the presence of granitic rocks in the New Zealand terranes.
However, granitic rocks are present in many modern island arcs and are
present in the Brook Street terrane (Challis and Lauder, 1977).

The closest modern analog for the Brook Street terrane that I am
aware of is the Aleutian arc. Rock types and their relative proportions,
including the strong dominance of fragmental material, are very similar in
both the Brook Street terrane (MacKinnon, 1980, 1983; Challis and
Lauder, 1977; Houghton, 1981; Williams, 1978) and the Aleutian arc
(Marlow and others, 1973; Gates and others, 1971). '

Retallack objects to part of my northward-younging model because
he contends that in Northland, Cretaceous rocks “customarily assigned to
the Torlesse Supergroup” lie west of Permian Torlesse rocks. The Creta-
ceous rocks to which he refers were at one time lumped with Torlesse
rocks to the east. However, most current workers now view these rocks as
part of the volcanogenic suite because they contain predominantly volcan-
ogenic rather than quartzofeldspathic sandstones (Sporli, 1978, his
Waipapa terrane).

Retallack also questions my view that the Torlessia zone was depos-
ited sometime between the Middle Triassic Daonella zone and the Upper
Triassic Monotis zone. I emphasized that this view is not based on bio-
stratigraphic grounds. Rather, I cited evidence of geographic distribu-
tion, fossil association, and sandstone compositional differences between
the various zones to support my contention (MacKinnon, 1983, p. 969,
paragraphs 10 and 11). :

Retallack contends that Torlessia-Tithia ( Terebellina) are paleoen-
vironmental indicators rather than age indicators, implying that they may
represent an age-equivalent facies of another fossil zone. However, I
pointed out that almost all of the Torlesse, including the Torlessia zone,
was deposited in a deep-marine environment and that, in general, theré are
no consistent lithofacies differences between the various fossil zones.

The exceptions to this are the rare and isolated shallow-marine and
terrestrial localities in the Torlesse. Most of these are of Middle Triassic
age, and one might argue that the deep-marine Torlessia zone and the
shallow marine-terrestrial Middle Triassic deposits are facies of the same
age. I would argue against this, however, because the composition of
Torlessia zone and Middle Triassic sandstones are distinctly different
(MacKinnon, 1983). These differences cannot be explained by simple
maturing of one from the other by paleoenvironmental control of sand-
stone composition. Instead, they must have come from sources with differ-
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ent compositions. The most likely conclusion, taking into account regional
relationships, is that they were derived at different times from an evolving
source terrane.
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Eocene biostratigraphy of South Carolina and its relationship to
Gulf Coastal Plain zonations and global changes of coastal onlap:

Discussion and reply

Discussion

DONALD J. COLQUHOUN  Department of Geology, University of South Caroling, Columbia, South Carolina 29208

T'am distressed in regard to a number of points raised in the article by
Powell and Baum (1982), largely because of extensive investigations in
much of the region which is discussed. Rather than discussing the text in
detail, I shall follow the proverb that a picture is worth a thousand words,
and examine specifically Figure 1. I find the data presented in Figure 1
largely long out of date, compared to more recent investigations, and the
interpretation in Figure 1 seriously deficient in structure, tectonic frame-
work, lithostratigraphy, and biostratigraphy.

With respect to structure, two faults are presented—the “Santee” and
the “Dorchester” with upthrown and downthrown blocks indicated. I
question the validity of these structures, because I find no evidence on any
subsurface correlations or surface outcroppings to indicate their presence.
I gather from lack of displacement on the figure that they are either vertical
(beds and fault plane) or have not been active since at least the middle
Eocene, but I also note that all contacts are approximate. I suggest that
putting in faults following theory but not observed fact is a rather danger-
ous game with respect to detailed knowledge of the Atlantic Coastal Plain.

With respect to tectonic framework, Figure 1 follows the old (1936)
Coastal Plain interpretation of Wythe Cooke’s Cooper and Hawthorne
Formations in a “bull’s-eye” interpretation of lithostratigraphic “biostrati-
graphic” units swinging from northwest toward southwest and generally
centered in Charleston County. In actual fact, however, other work (Col-
quhoun and Johnson, 1968, Fig. 5) indicates a subcrop line for the Paleo-

The article discussed appeared in the Bulletin, v. 93, p. 1099-1108.

Geological Society of America Bulletin, v. 95, p. 982-984, August 1984.

cene-Cretaceous contact and most of the other regional erosional
unconformities present through the Oligocene, extending toward the
northwest, from the Atlantic Ocean toward the Fall Line.

With regard to lithostratigraphy, I question the existence of an upper
Eocene “Cross Formation™ consisting of biosparrudite and biomicrudite
extending west from the limestone quarries near Harleyville in the center
of the area shown in Figure 1. In actual fact, both Pooser’s early (1965)
data as shown plus 20 or 30 holes drilled since then indicate that the unit
TCR as generally mapped is in fact a marl and occasionally a siltstone
(noncalcareous). Previous investigators (Ward and others, 1979) have
called this unit the “Cooper Formation,” feeling that to be a more appro-
priate designation than “Cooper Marl” which 1 employed in detailed
studies throughout the Eutawville-Harleyville area (Colquhoun and Dun-
can, 1966). Ward and others divided the Cooper Formation into two
members: the Harleyville and Parker’s Ferry, and they assigned a late
Eocene age. These members of the Cooper Formation are overlain by the
Oligocene Ashley member to the south. I also question the lithology of the
Caw Caw Member as a molluscan mold mudstone diatomite in western
Orangeburg and Calhoun Counties. That lithology comprises less than 1%
of the outcrop near Caw Caw Branch, which is largely a fine- to medium-
grained, well- to moderately well-sorted sand and is underlain by several
tens of feet of similar sediment in adjacent auger holes (No 38-23 Pooser,
1965, Orangeburg No. 92, and others).

With regard to biostratigraphy, it is quite obvious that Pooser (1965)
distinguished only middie Eocene from Oligocene ostracods. Indeed, he




