LECTURE FOUR
DISTANCE ANALYSIS WITH VECTOR DATA
MEASUREMENTS
MEASUREMENT TECHNIQUES

• Vector operations deal with objects (points, lines and polygons) which are harder to manipulate than grid cells

• Measures such as area have to be calculated from coordinates of objects, instead of counting cells

• This entails a much more complex computational geometry
Pythagoras's theorem is used to calculate the Euclidean distance between two points.
\[
AB = \sqrt{(C - A)^2 + (C - B)^2}
\]

\[
AB = \sqrt{4^2 + 4^2}
\]

\[
AB = \sqrt{32}
\]

\[
AB = 5.7 \text{ units}
\]
PROXIMITY ANALYSIS

• Provides us with information of distance surrounding a specific feature

• We can ask questions regarding our actions/behaviour in relation to the location of objects in the real world

 • Land development: distance for establishing notifications

 • Environmental Protection: distance from habitats

 • Marketing: distance to market goods and services
DISTANCE

• Same principles as calculating length
• But....
NEAREST NEIGHBOR

<table>
<thead>
<tr>
<th>ID</th>
<th>NEAR</th>
<th>DIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>22</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td>11</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
BUFFER ANALYSIS

- The most common form of vector proximity analysis
- One or more zones are created around either points, lines or polygons to illustrate distance from feature
BUFFER ANALYSIS
BUFFER ANALYSIS