Blog

Kevin Van Den Wymelenberg Launches Campus Impact Course

ESBL director Kevin Van Den Wymelenberg has launched a course through University of Oregon Allied Arts and Architecture entitled “Campus Impact: Comfort + Energy.” This course, open to both graduate and undergraduate students, offers the unique opportunity to collaborate with staff from the University of Oregon Campus Planning Design and Construction in a number of projects to improve the level of building performance and human comfort on campus.

“The University of Oregon Campus Planning and Facilities Management (UO Facilities) staff has agreed to support this class through substantive investment of human resources.  Together withUO Facilities, we have developed a suite of project categories and defined specific projects forstudent team analysis.  The focus will be placed on the studentbased team research and detailed analysis and evaluation of the sustainable design systems and building performance in quantitative terms; and qualitatively through interviews, transcriptions, and comfort questionnaires. We will submit our work to peer reviewed journals and conference proceedings and will present our results and manuscripts to UO Facilities.”

-Van Dem Wymelenberg

 

International VELUX Award: Automated Blinds Study

Congratulations to Amir Nezamdoost (UO architecture PhD student) and research assistant Alen Mahic for winning the Regional Award for The Americas in the International VELUX Award for Students of Architecture competition, presented recently at the World Architecture Festival in Berlin.

The team’s research estimates an annual savings of 390,000 kBtu, or $7,800 using automated blind controls over manual controls in a high-rise building in Boise, Idaho. The advantage over the automated controls is that manual blinds tend to remain closed longer throughout the day than automated blinds, which retract to take advantage of natural daylight.

The non-energy benefits, or annual productivity savings, equate to $274,500 per year, Nezamdoost said.

“There are numerous additional benefits such as increased occupant comfort, health, and productivity. Savings can be significant—assuming an increase in productivity of employees due to improved indoor environmental quality from increased availability of daylight and views, decreased discomfort due to glare and direct sunlight, and decreased time spent to manually adjust blinds.”

Watch this video about the team’s research, which shows how the automated blinds maximize light and views in an office building to enhance productivity and save energy.

International VELUX Award: Automated Blinds Study from veluxusa on Vimeo.

Since first appearing in 2004, the International VELUX Award has grown into the largest global student award within architecture, with outreach to more than 350 schools of architecture in 60 countries and a collection of 4,000 projects submitted since the first award in 2004.

“The award has a special focus on architecture for health and well-being. We want to encourage students to take up the challenges faced by cities and societies, where daylight and architecture can foster change through better and healthier living environments,” said Per Arnold Andersen of the VELUX Group.

 

Courtesy A&AA Communications

Mhuireach Awarded A&AA Dissertation Fellowship 2017-2018

Congratulations to Gwynne Mhuireach for winning a Dissertation Fellowship from the School of Architecture & Allied Arts at the University of Oregon!  Her working dissertation title is: Toward a Mechanistic Understanding of Relationships Between Airborne Microbial Communities and Urban Vegetation: Implications for Urban Planning and Human Well-being.  Mhuireach holds an M.Architecture (2012) from the University of Oregon and a B.S. in Biology (Ecology and Evolution Track, 1999) form the University of Washington. She is presently a Graduate Research Fellow at the Energy Studies in Buildings Laboratory and BioBE Center at University of Oregon.  Her anticipated graduation is June 2018.

Recent publication: Urban greenness influences airborne bacterial community composition

Dissertation Abstract: Variation in exposure to environmental microbial communities has been implicated in the etiology of allergies, asthma and other immune-related disorders. In particular, exposure to a high diversity of microbes during early life, for example through living in highly vegetated environments like farms or forests, may have specific health benefits, including immune system development and stimulation. In the face of rapidly growing cities and potential reductions in urban green space, it is vital to clarify whether and how microbial community composition is related to vegetation. The purpose of my proposed research is to identify plausible but under-explored mechanisms through which urban vegetation may influence public health. Specifically, I am investigating how airborne microbial communities vary with the amount, structural diversity, and/or species composition of green space for 50 sites in Eugene, Oregon. My approach combines geographic information systems (GIS) and remote sensing data with passive air sampling and culture-independent microbial sequencing.

Committee members:

  • Dr. Bart Johnson, Professor of Landscape Architecture (Major Advisor & Committee Chair)
  • Dr. Jessica Green, Professor of Biology (Co-Advisor)
  • Roxi Thoren, Associate Professor of Landscape Architecture (Core Member)
  • Dr. Deb Johnson-Shelton, Education/Health Researcher, Oregon Research Institute (Core Member)
  • G.Z. Brown, Professor of Architecture (Institutional Representative)

Health + Energy Research Consortium

The Biology and the Built Environment Center (BioBE) and Energy Studies in Buildings Laboratory (ESBL) at the University of Oregon, are pleased to announce the launch of the the Health + Energy Research Consortium!  On May 4-5, 2017, in Portland Oregon, we begin our journey to dramatically reduce energy consumption and maximize human health by conducting research that transforms the design, construction and operation of built environments. This collaboration between innovative industry professionals and academic researchers in the disciplines of architecture, biology, chemistry, engineering, and urban design provides sharp focus to a research agenda that will accelerate the impact of key scientific discoveries.  The Health + Energy Research Consortium builds upon the momentum of ESBL and BioBE to create a new, dynamic, and flexible mechanism for the university to engage with industry in joint research and development ventures – providing intellectual space for the meeting of a wide array of disciplines that play integral roles in fostering improved energy efficiency and health outcomes in the built environment.

At the May 4-5 launch event , we will present the vision for the Consortium, solicit feedback about the proposed research agenda, explain and discuss the financial commitments and value proposition associated with Consortium membership, and discuss synergies with potential member organizations’ goals and objectives.  If you are interested in helping us align the Consortium research vision with the challenges that face our built environment and your industry sector, please contact BioBE Director, Kevin Van Den Wymelenberg.

We would like to acknowledge the generous support for the Health + Energy Research Consortium from the Alfred P. Sloan Foundation.  Registration is required, but the event is available at no charge.