Amir Nezamdoost – SLL Young Lighter of the Year and Richard Kelley Grant

Amir Nezamdoost, UO Architecture PhD and ESBL graduate research fellow, was selected as a finalist for the prestigious SLL Young Lighter of the Year 2017 competition. Nezamdoost is one of three young researchers shortlisted for the international award – the finalists’ presentations and announcement of the winner to follow at the LUX Awards at ExCel in London in November.

For more information on the competition: SLL Young Lighter 2017

 

Additionally, Nezamdoost received the Richard Kelley Grant for 2016 – an award established by the New York Section

of the Illuminating Engineering Society in 1980. “The purpose is to recognize and encourage creative thought and activity in the use of light. Award(s) are granted to the person(s) who preserve and carry forth Richard Kelly’s ideals, enthusiasm and reverence for light.” – IESNYC

For more information on the Richard Kelly Grant: IESNYC

Congratulations to Amir for success in his lighting research!

 

Festschrift

The Energy Studies in Buildings Laboratory is proud to announce the release of Transforming Architecture: A Festchrift in Honor of Professor G.Z. “Charlie” Brown. The German term Festschrift translates as “festival of writing” and celebrates Charlie’s career and the ideas that he has put forth to transform design and combat climate change. The book includes chapters by Charlie’s friends and colleagues.

To find out more, visit the Festschrift page.

To buy the book, click here to order online!

Click here to order online!

 

HERC Recap: Artist Morgan Maiolie

How do you illustrate the microbiome of bacterial, fungal and viral communities to architects, engineers and building equipment manufacturers?  You commission an artist! During the events of Health and Energy Research Consortium, Morgan Maiolie was busy with a brush set to canvas. Associate Professor, and director Van Den Wymelenberg notes “We really wanted to find a way to bring the microbiome to life for the diverse consortium guests, so we decided to invite an artist to complete a live painting that responded to the research presentations.  Morgan Maiolie did an excellent job understanding and translating our scientific findings into her painting.  She made the microbiome vibrant and tangible!”

Morgan describes her inspiration, “The team of research scientists at the Biology and Built Environment Center and Energy Studies in Buildings Laboratory have illuminated the world of living, breathing bacteria swirling in the air around us and this piece visualizes that invisible world.  The researchers made me aware of the key role building design plays in shaping our indoor microbiome. Buildings can act as filters, petri dishes, and wind tunnels.  I wanted the painting to conceptually reveal how bacteria might move into and through a building based on its architecture, systems, and inhabitation.”

 

To learn more about Maolie and her work, please visit her website: maiolie.com.

This post is part of a blog series sharing information covered at the Health Energy Research Consortium in Portland, OR May 4-5, 2017. 

HERC Recap: Daylight Exposure & Microbial Communities Indoors

The microbiome and its relevance to healthy environments was of critical interest at the Health Energy Research Consortium.  Ashkaan Fahimipour, presented BioBE‘s recent investigations in microbial communities and exposure to daylight.

Humans spend most of their time indoors, exposed to bacterial communities found in dust. Understanding what determines the structure of these communities may therefore have relevance for human health. Light exposure in particular is a critical building design consideration and is known to alter growth and mortality rates of many bacterial populations, but the effects of light on the structure of entire dust communities are unclear.

We performed a controlled microcosm experiment designed to parse the effects of filtered solar radiation on the structure of dust microbial communities.

We report that exposure to light per se has marked effects on community diversity, composition and viability, while variation in light dosage or particular wavelengths experienced are associated with nuanced changes in community structure. Our results suggest that architects and lighting professionals designing rooms with more or less access to daylight may play a role in shaping bacterial communities associated with indoor dust.

This post is part of a blog series sharing information covered at the Health Energy Research Consortium in Portland, OR May 4-5, 2017. 

HERC Recap: TallWood Design Institute

Judith Sheine, University of Oregon Professor and Head of the Department of Architecture, and Iain Macdonald, Associate Director of the TallWood Design Institute, introduced their approach to healthy and efficient mass timber buildings: the TallWood Design Institute.  This joint initiative of OSU’s Colleges of Forestry and Engineering and UO’s School of Architecture & Allied Arts seeks to promote the use of innovative wood products and building components produced in the state of Oregon.

The Institute’s mission is to increase the ability of Oregon’s manufactured wood products industries to compete in emerging markets for the high value wood products that are perfectly suited to the timber we grow and the stewardship ethic of our State and to support Oregon’s growing reputation as a center of expertise for sustainable building design. We are working to grow the mass timber manufacturing base in Oregon and to eliminate barriers and stimulate demand for buildings utilizing mass timber products and building systems.

With funding from the state and federal governments, we have currently underway $1.9 million in mass timber research projects on seismic and fire resistant performance, vibration, acoustic and energy characteristics, as well as life cycle and biome analysis. We are performing testing and peer review of mass timber structural components and systems to prototype and refine new products and partnering with product manufacturers and state building officials to allow these products and systems to be permitted for construction. The Institute is also providing educational programs at the two universities as well as workforce training and engaging in the design of demonstration projects in Oregon.

Contact: tdi@oregonstate.edu

Twitter: @TallWoodDesign

 

This post is part of a blog series sharing information covered at the Health Energy Research Consortium in Portland, OR May 4-5, 2017. 

HERC Recap: Overlit Spaces and Blind Occlusion

“too much daylight” as well as “too little daylight” may affect the occupants’ physical well-being
One of the key topics discussed at the Health Energy Research Consortium was natural daylight and its relevance to healthy living and working environments. Amir Nezamdoost, UO architecture PhD and ESBL graduate research fellow, presented his current research on overlit spaces and the human factor associated with blinds operation.

Daylighting is a common energy-efficiency strategy that also boasts a myriad of other human benefits (Reinhart & Selkowitz, 2006; Van Den Wymelenberg, 2014). Successful daylighting design that saves energy and improves human satisfaction incorporates many technologies, spans several disciplines, and requires attention throughout the design process. Blinds are quite common in spaces designed for daylighting (HMG PIER Review, 2012; Nezamdoost & Van Den Wymelenberg, 2016, 2017), since almost any daylighting design will bring with it some period of low angle sunlight, causing intermittent glare and requiring mitigation.

Realization of daylight and energy modeling standpoints

Moreover, with the latest published version LEED (v4), a greater emphasis is now being placed on implementation of glare control devices in buildings to protect occupants from sunlight exposure and subsequent glare and thermal stress.

Blind position and operation affect the amount and distribution of daylight entering a building as well as all forms of thermal transfer through windows. Daylight-sensing lighting control holds the potential to save significant energy, however, realized savings are reduced if window blinds are closed. Blinds have the potential to reduce cooling energy and peak cooling demand, especially if located outside of the thermal envelope. Effective daylight-sensing lighting controls can also reduce cooling loads by minimizing waste heat from lights. However, these potential impacts cannot be determined without accurate manual blind models.

Blind movement study

Recent studies conducted by Nezamdoost and Van Den Wymelenberg, show that current manual blind use candidates are too active and behave like an automated shading system. Overall, in order to develop a reliable manual blind use pattern for future use in simulation broadly, and energy codes, and daylighting standards specifically, additional human factors and post occupancy research of manual blind use in real buildings is needed.

This post is part of a blog series sharing information covered at the Health Energy Research Consortium in Portland, OR May 4-5, 2017. 

 

Reinhart, C. & Selkowitz, S., (2006). Daylighting—Light, form, and people. Energy and Buildings, 38(7), pp.715–717.

Heschong Mahone Group (2012). Daylight Metrics – PIER Daylighting Plus Research Program, California Energy Commission.

Nezamdoost, A., & Van Den Wymelenberg, K. (2016). SENSITIVITY STUDY OF ANNUAL AND POINT-IN-TIME DAYLIGHT PERFORMANCE METRICS: A 24 SPACE MULTI-YEAR FIELD STUDY. IBPSA-USA Journal, 6(1).

Nezamdoost, A., & Van Den Wymelenberg, K. G. (2017). Revisiting the Daylit Area: Examining Daylighting Performance Using Subjective Human Evaluations and Simulated Compliance with the LEED Version 4 Daylight Credit. LEUKOS, 13(2), 107-123.

Van Den Wymelenberg, K. G. (2014) Visual Comfort, Discomfort Glare, and Occupant Fenestration Control: Developing a Research Agenda, LEUKOS: The Journal of the Illuminating Engineering Society of North America, 10:4,207-221

Dristi Manandhar responds to Nepal Earthquake

Dristi Manandhar is a second-year graduate architecture student at University of Oregon who has been working at the Energy Studies in Buildings Laboratory. But her inspiring story goes far beyond her experiences in the classroom.

On April 25, 2015, Manandhar was with her family at home in Kathmandu, Nepal when a 7.8 magnitude earthquake struck. Manandhar was fortunate to lead her parents and younger sister to safety outside. The earthquake resulted in more than 8,000 dead, 21,000 injured, 40 percent of the country’s infrastructure damaged and nearly 505,000 homes destroyed. Manandhar was fortunate to remain safe with her family and see her home only moderately damaged, despite the disastrous effects of the earthquake.

In response to the devastation around her, Manandhar joined the Nepal Engineering Association to assess more than 300 homes’ safety and structural integrity. Dismayed by how helpless she felt telling people that their homes were no longer safe, Manandhar changed her approach. She and six architecture alumni from her university joined forces to design an emergency shelter, using the name Aashraya, Sanskrit for shelter.

The Aashraya team with a finished emergency shelter

The team quickly designed with a dome-like shelter inspired by Eli Kretzmann’s Pakistan flood relief shelters. Aashraya shared the plans and was able to help create over 2,300 shelters in 45 days across Nepal. The domes are both economical and resilient to Nepal’s harsh weather conditions.

At University of Oregon, Manandhar has become the first Nepal Scholarship recipient and a member of the International Cultural Service Program, an international student group that connects students from around the world with community events and engagement opportunities. As a graduate architecture student, she has been researching sustainable design, particularly passive heating and cooling methods in buildings at the Energy Studies in Buildings Laboratory.

After the past two years away, Manandhar will graduate from the UO in Spring 2017 and plans to return home to pick up where she left off.

Read the full story by Chakris Kussalanant.

2017 AIA Design & Health Research Consortium Convening

On March 21-22, the BioBE Center team took to Detroit to present “Biology & Buildings: How Indoor Environments Affect Human Health” to the American Institute of Architects Design & Health Research Consortium.  We were encouraged to see the diversity of research blooming at our fellow ACSA schools of architecture. For example, Joseph Kennedy from the NewSchool of Architecture & Design presented fascinating work on natural building materials in a panel discussion with members of the BioBE team. Bita Kash from Texas A&M University presented excellent work on integrating health and design, discussing ideas of fundamental adjacencies in the design process. Every panel was excellent, and the broad concern for integration of empirical methods to design evaluation was wonderful to see.

Most interesting was to learn from leading architecture firms about how they integrate research into their design practices and how they have developed funding models to support this research.  Upali Nanda (@upalinanda) of HKS Architects (Houston) talked about the importance of pooling research resources and openly sharing new knowledge in order to more rapidly progress the field and avoid redundancy.  Jeri Brittin, Director of Research at HDR Architects (Omaha) eloquently described how the research design process shares similarities with the building design process and how she has effectively used this analogy to explain the value of a rigorous research design process to firm decision makers.  Robert Phinney (@rsphinney), Sustainable Design Director at Page Architects (Washington DC), described the uphill climb that many firms face when trying to meaningfully integrate original research into the building design practice, stressing that measurable outcomes and financial metrics dominate the discourse.  What was most encouraging was that all three firm leaders described the immense value to their firms and clients of maintaining a tight relationship with university research and how rewarding it can be to work with academics to leverage their technical skills to help overcome the “pain points” facing their practice.  We couldn’t agree more!

Some of our most rewarding research has been closely linked with practical industry needs. However, there are some challenges that we face in the academy when integrating our work with industry objective.  First and foremost, is to ensure academic integrity when creating the research design to avoid real or perceived biases associated with industry engaged research.  Without this, the research has no value to industry or to science.  Other important considerations is to be nimble enough to complete the research at the “speed of business” and to work out possible concerns with intellectual property.  All of these, and other concerns, can be, and have been overcome.  The result in an opportunity to bring the leading scientific processes and utmost rigor to important problems that face society.  Industry partners can help to focus academic research and help it gain traction to make greater impact more rapidly.  It is for these reasons that we have launched a new industry engagement model here at the University of Oregon.

 

Original post: BioBE, May 3, 2017

Kevin Van Den Wymelenberg Launches Campus Impact Course

ESBL director Kevin Van Den Wymelenberg has launched a course through University of Oregon Allied Arts and Architecture entitled “Campus Impact: Comfort + Energy.” This course, open to both graduate and undergraduate students, offers the unique opportunity to collaborate with staff from the University of Oregon Campus Planning Design and Construction in a number of projects to improve the level of building performance and human comfort on campus.

“The University of Oregon Campus Planning and Facilities Management (UO Facilities) staff has agreed to support this class through substantive investment of human resources.  Together withUO Facilities, we have developed a suite of project categories and defined specific projects forstudent team analysis.  The focus will be placed on the studentbased team research and detailed analysis and evaluation of the sustainable design systems and building performance in quantitative terms; and qualitatively through interviews, transcriptions, and comfort questionnaires. We will submit our work to peer reviewed journals and conference proceedings and will present our results and manuscripts to UO Facilities.”

-Van Dem Wymelenberg

 

International VELUX Award: Automated Blinds Study

Congratulations to Amir Nezamdoost (UO architecture PhD student) and research assistant Alen Mahic for winning the Regional Award for The Americas in the International VELUX Award for Students of Architecture competition, presented recently at the World Architecture Festival in Berlin.

The team’s research estimates an annual savings of 390,000 kBtu, or $7,800 using automated blind controls over manual controls in a high-rise building in Boise, Idaho. The advantage over the automated controls is that manual blinds tend to remain closed longer throughout the day than automated blinds, which retract to take advantage of natural daylight.

The non-energy benefits, or annual productivity savings, equate to $274,500 per year, Nezamdoost said.

“There are numerous additional benefits such as increased occupant comfort, health, and productivity. Savings can be significant—assuming an increase in productivity of employees due to improved indoor environmental quality from increased availability of daylight and views, decreased discomfort due to glare and direct sunlight, and decreased time spent to manually adjust blinds.”

Watch this video about the team’s research, which shows how the automated blinds maximize light and views in an office building to enhance productivity and save energy.

International VELUX Award: Automated Blinds Study from veluxusa on Vimeo.

Since first appearing in 2004, the International VELUX Award has grown into the largest global student award within architecture, with outreach to more than 350 schools of architecture in 60 countries and a collection of 4,000 projects submitted since the first award in 2004.

“The award has a special focus on architecture for health and well-being. We want to encourage students to take up the challenges faced by cities and societies, where daylight and architecture can foster change through better and healthier living environments,” said Per Arnold Andersen of the VELUX Group.

 

Courtesy A&AA Communications