Political Economy - Political Agency

January 29, 2013

• Key Idea

- Key Idea
 - Politicians are the agents of voters

- Key Idea
 - Politicians are the agents of voters
 - Voters discipline politicians via the ballot box

- Key Idea
 - Politicians are the agents of voters
 - Voters discipline politicians via the ballot box
- Voters face two problems

- Key Idea
 - Politicians are the agents of voters
 - Voters discipline politicians via the ballot box
- Voters face two problems
 - Adverse selection unobservable type

- Key Idea
 - Politicians are the agents of voters
 - Voters discipline politicians via the ballot box
- Voters face two problems
 - Adverse selection unobservable type
 - Politicians may be of different types competence, objectives, honesty

- Key Idea
 - Politicians are the agents of voters
 - Voters discipline politicians via the ballot box
- Voters face two problems
 - Adverse selection unobservable type
 - Politicians may be of different types competence, objectives, honesty
 - Voters cannot perfectly observe a politicians type

- Key Idea
 - Politicians are the agents of voters
 - Voters discipline politicians via the ballot box
- Voters face two problems
 - Adverse selection unobservable type
 - Politicians may be of different types competence, objectives, honesty
 - Voters cannot perfectly observe a politicians type
 - Moral hazard unobservable action

- Key Idea
 - Politicians are the agents of voters
 - Voters discipline politicians via the ballot box
- Voters face two problems
 - Adverse selection unobservable type
 - Politicians may be of different types competence, objectives, honesty
 - Voters cannot perfectly observe a politicians type
 - Moral hazard unobservable action
 - Politicians actions may not be perfectly observable

- Key Idea
 - Politicians are the agents of voters
 - Voters discipline politicians via the ballot box
- Voters face two problems
 - Adverse selection unobservable type
 - Politicians may be of different types competence, objectives, honesty
 - Voters cannot perfectly observe a politicians type
 - Moral hazard unobservable action
 - Politicians actions may not be perfectly observable
 - Voters may not be able to perfectly deduce the actions that politicians took, but they can often observe something of the results

• Simple Model

- Simple Model
 - Two time periods $t \in \{1, 2\}$

- Simple Model
 - Two time periods $t \in \{1, 2\}$
 - Politician elected at the beginning of each period

- Simple Model
 - Two time periods $t \in \{1, 2\}$
 - Politician elected at the beginning of each period
 - ullet Politician if elected makes a single decision $e_t \in \{0,1\}$

- Simple Model
 - Two time periods $t \in \{1, 2\}$
 - Politician elected at the beginning of each period
 - ullet Politician if elected makes a single decision $e_t \in \{0,1\}$
 - ullet Payoffs to politician and voters depends on the state of the world $s_t \in \{0,1\}$

- Simple Model
 - Two time periods $t \in \{1, 2\}$
 - Politician elected at the beginning of each period
 - ullet Politician if elected makes a single decision $e_t \in \{0,1\}$
 - ullet Payoffs to politician and voters depends on the state of the world $s_t \in \{0,1\}$
 - Each state is equally likely to occur

- Simple Model
 - Two time periods $t \in \{1, 2\}$
 - Politician elected at the beginning of each period
 - ullet Politician if elected makes a single decision $e_t \in \{0,1\}$
 - ullet Payoffs to politician and voters depends on the state of the world $s_t \in \{0,1\}$
 - Each state is equally likely to occur
 - 2 types of politician

- Simple Model
 - Two time periods $t \in \{1, 2\}$
 - Politician elected at the beginning of each period
 - ullet Politician if elected makes a single decision $e_t \in \{0,1\}$
 - ullet Payoffs to politician and voters depends on the state of the world $s_t \in \{0,1\}$
 - Each state is equally likely to occur
 - 2 types of politician
 - Congruent share voters interests

- Simple Model
 - Two time periods $t \in \{1, 2\}$
 - Politician elected at the beginning of each period
 - ullet Politician if elected makes a single decision $e_t \in \{0,1\}$
 - ullet Payoffs to politician and voters depends on the state of the world $s_t \in \{0,1\}$
 - Each state is equally likely to occur
 - 2 types of politician
 - Congruent share voters interests
 - Dissonant have own agenda

- Simple Model
 - Two time periods $t \in \{1, 2\}$
 - Politician elected at the beginning of each period
 - ullet Politician if elected makes a single decision $e_t \in \{0,1\}$
 - ullet Payoffs to politician and voters depends on the state of the world $s_t \in \{0,1\}$
 - Each state is equally likely to occur
 - 2 types of politician
 - Congruent share voters interests
 - Dissonant have own agenda
 - State of the world only observed by the incumbent politician
 ⇒ Moral Hazard

- Simple Model
 - Two time periods $t \in \{1, 2\}$
 - Politician elected at the beginning of each period
 - ullet Politician if elected makes a single decision $e_t \in \{0,1\}$
 - ullet Payoffs to politician and voters depends on the state of the world $s_t \in \{0,1\}$
 - Each state is equally likely to occur
 - 2 types of politician
 - Congruent share voters interests
 - Dissonant have own agenda
 - State of the world only observed by the incumbent politician
 - ⇒ Moral Hazard
 - Politicians type only observed by the incumbent politician
 - ⇒ Adverse Selection

• Simple Model - Payoffs

- Simple Model Payoffs
 - Voters Payoffs

- Simple Model Payoffs
 - Voters Payoffs
 - Δ if $e_t = s_t$

- Simple Model Payoffs
 - Voters Payoffs
 - Δ if $e_t = s_t$
 - 0 otherwise
 - \Rightarrow Only get a payoff if politician makes the "right decision"

- Simple Model Payoffs
 - Voters Payoffs
 - Δ if $e_t = s_t$
 - 0 otherwise
 - ⇒ Only get a payoff if politician makes the "right decision"
 - Politicians Payoffs

- Simple Model Payoffs
 - Voters Payoffs
 - Δ if $e_t = s_t$
 - 0 otherwise
 - ⇒ Only get a payoff if politician makes the "right decision"
 - Politicians Payoffs
 - All politicians experience an "ego-rent" of E

- Simple Model Payoffs
 - Voters Payoffs
 - Δ if $e_t = s_t$
 - 0 otherwise
 - \Rightarrow Only get a payoff if politician makes the "right decision"
 - Politicians Payoffs
 - All politicians experience an "ego-rent" of E
 - Congruent Politicians Payoffs

- Simple Model Payoffs
 - Voters Payoffs
 - Δ if $e_t = s_t$
 - 0 otherwise
 - \Rightarrow Only get a payoff if politician makes the "right decision"
 - Politicians Payoffs
 - All politicians experience an "ego-rent" of E
 - Congruent Politicians Payoffs
 - Share voters objectives always choose $e_t = s_t$

- Simple Model Payoffs
 - Voters Payoffs
 - Δ if $e_t = s_t$
 - 0 otherwise
 - \Rightarrow Only get a payoff if politician makes the "right decision"
 - Politicians Payoffs
 - All politicians experience an "ego-rent" of E
 - Congruent Politicians Payoffs
 - Share voters objectives always choose $e_t = s_t$
 - So payoff is $E + \Delta$

Political Agency

• Simple Model - Payoffs

- Simple Model Payoffs
 - Dissonant Politicians Payoffs

- Simple Model Payoffs
 - Dissonant Politicians Payoffs
 - If $e_t \neq s_t$

- Simple Model Payoffs
 - Dissonant Politicians Payoffs
 - If $e_t \neq s_t$
 - Get random private benefit (dissonance rents) $r_t \in [0, R]$

- Simple Model Payoffs
 - Dissonant Politicians Payoffs
 - If $e_t \neq s_t$
 - Get random private benefit (dissonance rents) $r_t \in [0, R]$
 - r_t drawn independently from a stationary distribution with c.d.f. of G(r)

- Simple Model Payoffs
 - Dissonant Politicians Payoffs
 - If $e_t \neq s_t$
 - Get random private benefit (dissonance rents) $r_t \in [0, R]$
 - ullet r_t drawn independently from a stationary distribution with c.d.f. of G(r)
 - \bullet μ mean of r

- Simple Model Payoffs
 - Dissonant Politicians Payoffs
 - If $e_t \neq s_t$
 - Get random private benefit (dissonance rents) $r_t \in [0, R]$
 - ullet r_t drawn independently from a stationary distribution with c.d.f. of G(r)
 - \bullet μ mean of r
 - \bullet β discount rate common to all agents

- Simple Model Payoffs
 - Dissonant Politicians Payoffs
 - If $e_t \neq s_t$
 - Get random private benefit (dissonance rents) $r_t \in [0, R]$
 - ullet r_t drawn independently from a stationary distribution with c.d.f. of G(r)
 - \bullet μ mean of r
 - β discount rate common to all agents
 - Receive $E + r_t$ in t

- Simple Model Payoffs
 - Dissonant Politicians Payoffs
 - If $e_t \neq s_t$
 - Get random private benefit (dissonance rents) $r_t \in [0, R]$
 - r_t drawn independently from a stationary distribution with c.d.f. of G(r)
 - \bullet μ mean of r
 - β discount rate common to all agents
 - Receive $E + r_t$ in t
 - Assume $R > \beta(\mu + E)$ guarantees that dissonant politicians do **not** do what voters want some of the time

- Simple Model Payoffs
 - Dissonant Politicians Payoffs
 - If $e_t \neq s_t$
 - Get random private benefit (dissonance rents) $r_t \in [0, R]$
 - r_t drawn independently from a stationary distribution with c.d.f. of G(r)
 - \bullet μ mean of r
 - ullet eta discount rate common to all agents
 - Receive $E + r_t$ in t
 - Assume $R > \beta(\mu + E)$ guarantees that dissonant politicians do **not** do what voters want some of the time
 - Let $e_t(s, i)$ with $s \in \{0, 1\}$ and $i \in \{c, d\}$ denote the politicians action in t

Political Agency

• Simple Model - Timing in period 1

- Simple Model Timing in period 1
 - Nature plays first and chooses

- Simple Model Timing in period 1
 - Nature plays first and chooses
 - ullet State of the world s_1 observed only by politician

- Simple Model Timing in period 1
 - Nature plays first and chooses
 - State of the world s_1 observed only by politician
 - ullet Type of politician i_1 observed only by politician

- Simple Model Timing in period 1
 - Nature plays first and chooses
 - State of the world s_1 observed only by politician
 - ullet Type of politician i_1 observed only by politician
 - ullet Dissonance rent r_1 observed only by politician if dissonant

- Simple Model Timing in period 1
 - Nature plays first and chooses
 - State of the world s_1 observed only by politician
 - ullet Type of politician i_1 observed only by politician
 - ullet Dissonance rent r_1 observed only by politician if dissonant
 - Incumbent politician plays second and chooses

- Simple Model Timing in period 1
 - Nature plays first and chooses
 - State of the world s_1 observed only by politician
 - Type of politician i₁ observed only by politician
 - ullet Dissonance rent r_1 observed only by politician if dissonant
 - Incumbent politician plays second and chooses
 - Action $e_1 \in \{0,1\}$ observed only by politician

- Simple Model Timing in period 1
 - Nature plays first and chooses
 - State of the world s_1 observed only by politician
 - ullet Type of politician i_1 observed only by politician
 - ullet Dissonance rent r_1 observed only by politician if dissonant
 - Incumbent politician plays second and chooses
 - Action $e_1 \in \{0,1\}$ observed only by politician
 - Voters play last observe their payoffs and choose either

- Simple Model Timing in period 1
 - Nature plays first and chooses
 - State of the world s_1 observed only by politician
 - Type of politician i₁ observed only by politician
 - ullet Dissonance rent r_1 observed only by politician if dissonant
 - Incumbent politician plays second and chooses
 - Action $e_1 \in \{0,1\}$ observed only by politician
 - Voters play last observe their payoffs and choose either
 - To reelect the incumbent politician

- Simple Model Timing in period 1
 - Nature plays first and chooses
 - State of the world s_1 observed only by politician
 - ullet Type of politician i_1 observed only by politician
 - ullet Dissonance rent r_1 observed only by politician if dissonant
 - Incumbent politician plays second and chooses
 - Action $e_1 \in \{0,1\}$ observed only by politician
 - Voters play last observe their payoffs and choose either
 - To reelect the incumbent politician
 - Replace the incumbent with random draw from the pool

• Simple Model - Timing in period 2

- Simple Model Timing in period 2
 - Nature plays first and chooses

- Simple Model Timing in period 2
 - Nature plays first and chooses
 - State of the world s_2

- Simple Model Timing in period 2
 - Nature plays first and chooses
 - State of the world s_2
 - ullet Type of politician i_2 if they are replaced

- Simple Model Timing in period 2
 - Nature plays first and chooses
 - State of the world s_2
 - \bullet Type of politician i_2 if they are replaced
 - Dissonance rent r_2

- Simple Model Timing in period 2
 - Nature plays first and chooses
 - State of the world s_2
 - ullet Type of politician i_2 if they are replaced
 - Dissonance rent r_2
 - Incumbent politician plays second and chooses

- Simple Model Timing in period 2
 - Nature plays first and chooses
 - State of the world s_2
 - ullet Type of politician i_2 if they are replaced
 - Dissonance rent r_2
 - Incumbent politician plays second and chooses
 - Action $e_2 \in \{0, 1\}$

- Simple Model Timing in period 2
 - Nature plays first and chooses
 - State of the world s_2
 - Type of politician i_2 if they are replaced
 - Dissonance rent r₂
 - Incumbent politician plays second and chooses
 - $\bullet \ \, \mathsf{Action} \,\, e_2 \in \{\mathsf{0},\mathsf{1}\}$
 - All agents realize their payoffs

- Simple Model Timing in period 2
 - Nature plays first and chooses
 - State of the world s_2
 - Type of politician i_2 if they are replaced
 - Dissonance rent r₂
 - Incumbent politician plays second and chooses
 - Action $e_2 \in \{0, 1\}$
 - All agents realize their payoffs
 - Game ends at the end of period 2

• Simple Model - Equilibrium

- Simple Model Equilibrium
 - Perfect Bayesian Equilibrium

- Simple Model Equilibrium
 - Perfect Bayesian Equilibrium
 - All politicians behave optimally given the reelection rule of voters

- Simple Model Equilibrium
 - Perfect Bayesian Equilibrium
 - All politicians behave optimally given the reelection rule of voters
 - Voters use Bayes Rule to update their beliefs

• Bayes Rule

- Bayes Rule
 - The probability that two events a and c occur together may be written

- Bayes Rule
 - The probability that two events a and c occur together may be written
 - p(a|c)p(c) or $p(c|a)p(a) \implies p(a|c)p(c) = p(c|a)p(a)$

- Bayes Rule
 - The probability that two events a and c occur together may be written
 - p(a|c)p(c) or $p(c|a)p(a) \implies p(a|c)p(c) = p(c|a)p(a)$
 - Rearranging $p(a|c) = \frac{p(c|a)p(a)}{p(c)}$

- Bayes Rule
 - The probability that two events a and c occur together may be written
 - p(a|c)p(c) or $p(c|a)p(a) \implies p(a|c)p(c) = p(c|a)p(a)$
 - Rearranging $p(a|c) = \frac{p(c|a)p(a)}{p(c)}$
 - Now suppose c can also occur with b so

- Bayes Rule
 - The probability that two events a and c occur together may be written
 - p(a|c)p(c) or $p(c|a)p(a) \implies p(a|c)p(c) = p(c|a)p(a)$
 - Rearranging $p(a|c) = \frac{p(c|a)p(a)}{p(c)}$
 - Now suppose c can also occur with b so
 - \bullet p(c) = p(c|a)p(a) + p(c|b)p(b)

- Bayes Rule
 - The probability that two events a and c occur together may be written
 - p(a|c)p(c) or $p(c|a)p(a) \implies p(a|c)p(c) = p(c|a)p(a)$
 - Rearranging $p(a|c) = \frac{p(c|a)p(a)}{p(c)}$
 - Now suppose c can also occur with b so
 - \bullet p(c) = p(c|a)p(a) + p(c|b)p(b)
 - Combining these facts gives Bayes Rule

- Bayes Rule
 - The probability that two events a and c occur together may be written
 - p(a|c)p(c) or $p(c|a)p(a) \implies p(a|c)p(c) = p(c|a)p(a)$
 - Rearranging $p(a|c) = \frac{p(c|a)p(a)}{p(c)}$
 - Now suppose c can also occur with b so
 - Combining these facts gives Bayes Rule

Bayes Rule

- The probability that two events a and c occur together may be written
 - p(a|c)p(c) or $p(c|a)p(a) \implies p(a|c)p(c) = p(c|a)p(a)$
 - Rearranging $p(a|c) = \frac{p(c|a)p(a)}{p(c)}$
- Now suppose c can also occur with b so
- Combining these facts gives Bayes Rule
 - $p(a|c) = \frac{p(c|a)p(a)}{p(c|a)p(a)+p(c|b)p(b)}$
- Employing Bayes rule will allow the voters to make their best guess of a politicians type given their observations

Solving for the Equilibrium

- Solving for the Equilibrium
 - Start with period 2

- Solving for the Equilibrium
 - Start with period 2
 - There are no reelection concerns

- Solving for the Equilibrium
 - Start with period 2
 - There are no reelection concerns
 - Each politician takes their short term optimal action

- Solving for the Equilibrium
 - Start with period 2
 - There are no reelection concerns
 - Each politician takes their short term optimal action
 - Congruent chooses

- Solving for the Equilibrium
 - Start with period 2
 - There are no reelection concerns
 - Each politician takes their short term optimal action
 - Congruent chooses
 - $e_2(s, c) = s_2$

- Solving for the Equilibrium
 - Start with period 2
 - There are no reelection concerns
 - Each politician takes their short term optimal action
 - Congruent chooses
 - $e_2(s, c) = s_2$
 - Dissonant chooses

- Solving for the Equilibrium
 - Start with period 2
 - There are no reelection concerns
 - Each politician takes their short term optimal action
 - Congruent chooses

•
$$e_2(s, c) = s_2$$

- Dissonant chooses
 - $e_2(s,d) = (1-s_2)$

- Solving for the Equilibrium
 - Start with period 2
 - There are no reelection concerns
 - Each politician takes their short term optimal action
 - Congruent chooses

•
$$e_2(s, c) = s_2$$

- Dissonant chooses
 - $e_2(s,d) = (1-s_2)$
- All agents in the model can work this out

• Solving for the Equilibrium

- Solving for the Equilibrium
 - Now consider period 1

- Solving for the Equilibrium
 - Now consider period 1
 - A congruent politician will always do what voters want

- Solving for the Equilibrium
 - Now consider period 1
 - A congruent politician will always do what voters want
 - A dissonant politician may also do what voters want so as to get reelected for period 2

- Solving for the Equilibrium
 - Now consider period 1
 - A congruent politician will always do what voters want
 - A dissonant politician may also do what voters want so as to get reelected for period 2
 - Define

- Solving for the Equilibrium
 - Now consider period 1
 - A congruent politician will always do what voters want
 - A dissonant politician may also do what voters want so as to get reelected for period 2
 - Define
 - λ probability dissonant politician does what voters want in period 1 - Political Discipline

- Solving for the Equilibrium
 - Now consider period 1
 - A congruent politician will always do what voters want
 - A dissonant politician may also do what voters want so as to get reelected for period 2
 - Define
 - ullet λ probability dissonant politician does what voters want in period 1 Political Discipline
 - \bullet π probability a randomly drawn politician is congruent

- Solving for the Equilibrium
 - Now consider period 1
 - A congruent politician will always do what voters want
 - A dissonant politician may also do what voters want so as to get reelected for period 2
 - Define
 - λ probability dissonant politician does what voters want in period 1 - Political Discipline
 - ullet π probability a randomly drawn politician is congruent
 - ullet Π voters updated probability a politician is congruent after they observe a payoff of Δ in period 1

- Solving for the Equilibrium
 - Now consider period 1
 - A congruent politician will always do what voters want
 - A dissonant politician may also do what voters want so as to get reelected for period 2
 - Define
 - λ probability dissonant politician does what voters want in period 1 - Political Discipline
 - ullet π probability a randomly drawn politician is congruent
 - ullet Π voters updated probability a politician is congruent after they observe a payoff of Δ in period 1
 - If voters observe a payoff of 0 they know that the politician is dissonant

- Solving for the Equilibrium
 - Now consider period 1
 - A congruent politician will always do what voters want
 - A dissonant politician may also do what voters want so as to get reelected for period 2
 - Define
 - λ probability dissonant politician does what voters want in period 1 - Political Discipline
 - ullet π probability a randomly drawn politician is congruent
 - ullet Π voters updated probability a politician is congruent after they observe a payoff of Δ in period 1
 - If voters observe a payoff of 0 they know that the politician is dissonant
 - Dissonant chooses

Solving for the Equilibrium

- Now consider period 1
 - A congruent politician will always do what voters want
 - A dissonant politician may also do what voters want so as to get reelected for period 2
- Define
 - \bullet λ probability dissonant politician does what voters want in period 1 - Political Discipline
 - \bullet π probability a randomly drawn politician is congruent
 - \bullet Π voters updated probability a politician is congruent after they observe a payoff of Δ in period 1
 - If voters observe a payoff of 0 they know that the politician is dissonant
- Dissonant chooses
 - $e_2(s,d) = (1-s_2)$

- Solving for the Equilibrium
 - Now consider period 1
 - A congruent politician will always do what voters want
 - A dissonant politician may also do what voters want so as to get reelected for period 2
 - Define
 - λ probability dissonant politician does what voters want in period 1 - Political Discipline
 - ullet π probability a randomly drawn politician is congruent
 - ullet Π voters updated probability a politician is congruent after they observe a payoff of Δ in period 1
 - If voters observe a payoff of 0 they know that the politician is dissonant
 - Dissonant chooses
 - $e_2(s,d) = (1-s_2)$
 - All agents in the model can work this out

• Solving for the Equilibrium

- Solving for the Equilibrium
 - Applying Bayes Rule if Δ is observed gives

$$p(c|\Delta) = \frac{p(\Delta|c)p(c)}{p(\Delta|c)p(c) + p(\Delta|d)p(d)}$$
$$= \frac{\pi}{\pi + \lambda(1 - \pi)} = \Pi \ge \pi$$

- Solving for the Equilibrium
 - Applying Bayes Rule if Δ is observed gives

$$p(c|\Delta) = \frac{p(\Delta|c)p(c)}{p(\Delta|c)p(c) + p(\Delta|d)p(d)}$$
$$= \frac{\pi}{\pi + \lambda(1 - \pi)} = \Pi \ge \pi$$

Dissonant politicians choice

- Solving for the Equilibrium
 - Applying Bayes Rule if Δ is observed gives

$$p(c|\Delta) = \frac{p(\Delta|c)p(c)}{p(\Delta|c)p(c) + p(\Delta|d)p(d)}$$
$$= \frac{\pi}{\pi + \lambda(1 - \pi)} = \Pi \ge \pi$$

- Dissonant politicians choice
 - Will choose $e_1(s, d) = s_1$ if

$$E + r_1 \le E + \beta(\mu + E)$$

$$\implies r_1 \le \beta(\mu + E)$$

- Solving for the Equilibrium
 - ullet Applying Bayes Rule if Δ is observed gives

$$p(c|\Delta) = \frac{p(\Delta|c)p(c)}{p(\Delta|c)p(c) + p(\Delta|d)p(d)}$$
$$= \frac{\pi}{\pi + \lambda(1 - \pi)} = \Pi \ge \pi$$

- Dissonant politicians choice
 - Will choose $e_1(s, d) = s_1$ if

$$E + r_1 \le E + \beta(\mu + E)$$

$$\implies r_1 \le \beta(\mu + E)$$

• Probablity of which (political discipline) is

$$\lambda = G(\beta(\mu + E))$$

• Equilibrium

- Equilibrium
 - In the Perfect Bayesian Equilibrium

- Equilibrium
 - In the Perfect Bayesian Equilibrium
 - ullet Congruent politicians always set e=s

- Equilibrium
 - In the Perfect Bayesian Equilibrium
 - ullet Congruent politicians always set e=s
 - ullet Dissonant politicians set $\emph{e}_2 = 1 \emph{s}_2$

- Equilibrium
 - In the Perfect Bayesian Equilibrium
 - Congruent politicians always set e = s
 - Dissonant politicians set $e_2 = 1 s_2$
 - Dissonant politicians set $e_1 = s_1$ if $r_1 \le \beta(\mu + E)$ which occurs with probability λ

Equilibrium

- In the Perfect Bayesian Equilibrium
 - Congruent politicians always set e = s
 - Dissonant politicians set $e_2 = 1 s_2$
 - Dissonant politicians set $e_1 = s_1$ if $r_1 \le \beta(\mu + E)$ which occurs with probability λ
 - Dissonant politicians set $e_1 = 1 s_1$ if $r_1 > \beta(\mu + E)$ which occurs with probability $1 - \lambda$

- Equilibrium
 - In the Perfect Bayesian Equilibrium
 - Congruent politicians always set e = s
 - Dissonant politicians set $e_2 = 1 s_2$
 - Dissonant politicians set $e_1 = s_1$ if $r_1 \le \beta(\mu + E)$ which occurs with probability λ
 - Dissonant politicians set $e_1 = 1 s_1$ if $r_1 > \beta(\mu + E)$ which occurs with probability 1λ
 - ullet All politicians that choose $e_1=s_1$ are reelected, those that do not are replaced

Quality of Government

- Quality of Government
 - Voters Expected Payoffs

- Quality of Government
 - Voters Expected Payoffs
 - Period 1

$$V_1(\lambda) = [\pi + (1-\pi)\lambda]\Delta$$

- Quality of Government
 - Voters Expected Payoffs
 - Period 1

$$V_1(\lambda) = [\pi + (1-\pi)\lambda]\Delta$$

• Period 2

$$V_2(\lambda) = \pi[1 + (1 - \pi)(1 - \lambda)]\Delta$$

- Quality of Government
 - Voters Expected Payoffs
 - Period 1

$$V_1(\lambda) = [\pi + (1-\pi)\lambda]\Delta$$

• Period 2

$$V_2(\lambda) = \pi[1 + (1 - \pi)(1 - \lambda)]\Delta$$

Discounted Voter Welfare

$$W(\lambda) = V_1(\lambda) + \beta V_2(\lambda)$$

= $[\pi + (1 - \pi)\lambda]\Delta + \beta \pi [1 + (1 - \pi)(1 - \lambda)]\Delta$

• Quality of Government

- Quality of Government
 - Discounted Voter Welfare

$$W(\lambda) = [\pi + (1-\pi)\lambda]\Delta + \beta\pi[1 + (1-\pi)(1-\lambda)]\Delta$$
 so
$$W_{\lambda} = (1-\pi)(1-\beta\pi)\Delta > 0$$

- Quality of Government
 - Discounted Voter Welfare

$$\begin{split} \mathcal{W}(\lambda) = & [\pi + (1-\pi)\lambda]\Delta + \beta\pi[1+(1-\pi)(1-\lambda)]\Delta\\ so \qquad & \mathcal{W}_{\lambda} = & (1-\pi)(1-\beta\pi)\Delta > 0 \end{split}$$

An increase in political discipline raises voter welfare

- Quality of Government
 - Discounted Voter Welfare

$$\begin{split} \mathcal{W}(\lambda) = & [\pi + (1-\pi)\lambda]\Delta + \beta\pi[1+(1-\pi)(1-\lambda)]\Delta \\ so \qquad & \mathcal{W}_{\lambda} = & (1-\pi)(1-\beta\pi)\Delta > 0 \end{split}$$

- An increase in political discipline raises voter welfare
 - Dissonant politicians are more likely to behave as voters wish in period 1

Quality of Government

SO

Discounted Voter Welfare

$$W(\lambda) = [\pi + (1 - \pi)\lambda]\Delta + \beta\pi[1 + (1 - \pi)(1 - \lambda)]\Delta$$

$$W_{\lambda} = (1 - \pi)(1 - \beta\pi)\Delta > 0$$

- An increase in political discipline raises voter welfare
 - Dissonant politicians are more likely to behave as voters wish in period 1
 - But more of them then survive to misbehave in period 2

Quality of Government

SO

Discounted Voter Welfare

$$W(\lambda) = [\pi + (1 - \pi)\lambda]\Delta + \beta\pi[1 + (1 - \pi)(1 - \lambda)]\Delta$$

$$W_{\lambda} = (1 - \pi)(1 - \beta\pi)\Delta > 0$$

- An increase in political discipline raises voter welfare
 - Dissonant politicians are more likely to behave as voters wish in period 1
 - But more of them then survive to misbehave in period 2
 - The first effect dominates

Introduction Model Equilibrium Results

Political Agency

• Quality of Government

- Quality of Government
 - Discounted Voter Welfare

$$W(\lambda) = [\pi + (1-\pi)\lambda]\Delta + \beta\pi[1 + (1-\pi)(1-\lambda)]\Delta$$

- Quality of Government
 - Discounted Voter Welfare

$$W(\lambda) = [\pi + (1-\pi)\lambda]\Delta + \beta\pi[1 + (1-\pi)(1-\lambda)]\Delta$$

Political Discipline

$$\lambda = G(\beta(\mu + E))$$

- Quality of Government
 - Discounted Voter Welfare

$$W(\lambda) = [\pi + (1-\pi)\lambda]\Delta + \beta\pi[1 + (1-\pi)(1-\lambda)]\Delta$$

Political Discipline

$$\lambda = G(\beta(\mu + E))$$

So by substitution

$$W(\pi, \mu, \beta, E) = [\pi + (1 - \pi)G(\beta(\mu + E))]\Delta + \beta\pi[1 + (1 - \pi)(1 - G(\beta(\mu + E)))]\Delta$$

Quality of Government

- Quality of Government
 - Discounted Voter Welfare

$$W(\pi, \mu, \beta, E) = \{ [\pi + (1 - \pi)G(\beta(\mu + E))] + \beta\pi[1 + (1 - \pi)(1 - G(\beta(\mu + E)))] \} \Delta$$

- Quality of Government
 - Discounted Voter Welfare

$$W(\pi, \mu, \beta, E) = \{ [\pi + (1 - \pi)G(\beta(\mu + E))] + \beta\pi[1 + (1 - \pi)(1 - G(\beta(\mu + E)))] \} \Delta$$

$$W_{\beta}(\pi, \mu, \beta, E) = \{G'(.)(\mu + E)[1 - \pi - \beta\pi] + [\pi + (1 - \pi)G(\beta(\mu + E))]\}\Delta$$

- Quality of Government
 - Discounted Voter Welfare

$$W(\pi, \mu, \beta, E) = \{ [\pi + (1 - \pi)G(\beta(\mu + E))] + \beta\pi[1 + (1 - \pi)(1 - G(\beta(\mu + E)))] \} \Delta$$

ullet Change in the Discount Rate - eta

$$W_{\beta}(\pi, \mu, \beta, E) = \{G'(.)(\mu + E)[1 - \pi - \beta\pi] + [\pi + (1 - \pi)G(\beta(\mu + E))]\}\Delta$$

• So a sufficient condition for $W_{\beta}(\pi, \mu, \beta, E) > 0$ is $[1 - \pi - \beta \pi] > 0$

- Quality of Government
 - Discounted Voter Welfare

$$W(\pi, \mu, \beta, E) = \{ [\pi + (1 - \pi)G(\beta(\mu + E))] + \beta\pi[1 + (1 - \pi)(1 - G(\beta(\mu + E)))] \} \Delta$$

$$W_{\beta}(\pi, \mu, \beta, E) = \{G'(.)(\mu + E)[1 - \pi - \beta\pi] + [\pi + (1 - \pi)G(\beta(\mu + E))]\}\Delta$$

- So a sufficient condition for $W_{\beta}(\pi, \mu, \beta, E) > 0$ is $[1 \pi \beta \pi] > 0$
 - ullet As eta increases dissonant politicians are more likely to behave correctly in the first period

- Quality of Government
 - Discounted Voter Welfare

$$W(\pi, \mu, \beta, E) = \{ [\pi + (1 - \pi)G(\beta(\mu + E))] + \beta\pi[1 + (1 - \pi)(1 - G(\beta(\mu + E)))] \} \Delta$$

$$W_{\beta}(\pi, \mu, \beta, E) = \{G'(.)(\mu + E)[1 - \pi - \beta\pi] + [\pi + (1 - \pi)G(\beta(\mu + E))]\Delta$$

- So a sufficient condition for $W_{\beta}(\pi, \mu, \beta, E) > 0$ is $[1 \pi \beta \pi] > 0$
 - As β increases dissonant politicians are more likely to behave correctly in the first period
 - \bullet If π small dissonant politicians are proportionately greater in number, therefore their good behavior is more valuable to voters

- Quality of Government
 - Discounted Voter Welfare

$$W(\pi, \mu, \beta, E) = \{ [\pi + (1 - \pi)G(\beta(\mu + E))] + \beta\pi[1 + (1 - \pi)(1 - G(\beta(\mu + E)))] \} \Delta$$

$$W_{\beta}(\pi, \mu, \beta, E) = \{G'(.)(\mu + E)[1 - \pi - \beta\pi] + [\pi + (1 - \pi)G(\beta(\mu + E))]\}\Delta$$

- So a sufficient condition for $W_{\beta}(\pi, \mu, \beta, E) > 0$ is $[1 \pi \beta \pi] > 0$
 - ullet As eta increases dissonant politicians are more likely to behave correctly in the first period
 - ullet If π small dissonant politicians are proportionately greater in number, therefore their good behavior is more valuable to voters
 - ullet If π is small we are less likely to replace a dissonant with a congruent in the second period so we are less concerned with detecting them and voting them out of office in period 1

Introduction Model Equilibrium Results

Political Agency

• Quality of Government

- Quality of Government
 - Discounted Voter Welfare

$$W(\pi, \mu, \beta, E) = \{ [\pi + (1 - \pi)G(\beta(\mu + E))] + \beta\pi[1 + (1 - \pi)(1 - G(\beta(\mu + E)))] \} \Delta$$

- Quality of Government
 - Discounted Voter Welfare

$$W(\pi, \mu, \beta, E) = \{ [\pi + (1 - \pi)G(\beta(\mu + E)) + \beta\pi[1 + (1 - \pi)(1 - G(\beta(\mu + E)))] \} \Delta$$

ullet Change in the Dissonant Politician's Payoffs - $\mu + E$

$$W_{\mu}(\pi, \mu, \beta, E) = W_{E}(\pi, \mu, \beta, E)$$

= $(1 - \pi)\beta G'(\beta(\mu + E))[1 - \beta\pi] > 0$

- Quality of Government
 - Discounted Voter Welfare

$$W(\pi, \mu, \beta, E) = \{ [\pi + (1 - \pi)G(\beta(\mu + E)) + \beta\pi[1 + (1 - \pi)(1 - G(\beta(\mu + E)))] \} \Delta$$

ullet Change in the Dissonant Politician's Payoffs - $\mu + E$

$$W_{\mu}(\pi, \mu, \beta, E) = W_{E}(\pi, \mu, \beta, E)$$

= $(1 - \pi)\beta G'(\beta(\mu + E))[1 - \beta\pi] > 0$

 Dissonants care more about being reelected therefore behave better in the first period

- Quality of Government
 - Discounted Voter Welfare

$$W(\pi, \mu, \beta, E) = \{ [\pi + (1 - \pi)G(\beta(\mu + E)) + \beta\pi[1 + (1 - \pi)(1 - G(\beta(\mu + E)))] \} \Delta$$

ullet Change in the Dissonant Politician's Payoffs - $\mu + E$

$$W_{\mu}(\pi, \mu, \beta, E) = W_{E}(\pi, \mu, \beta, E)$$

= $(1 - \pi)\beta G'(\beta(\mu + E))[1 - \beta\pi] > 0$

- Dissonants care more about being reelected therefore behave better in the first period
- More dissonance survive to the second period where they misbehave

- Quality of Government
 - Discounted Voter Welfare

$$W(\pi, \mu, \beta, E) = \{ [\pi + (1 - \pi)G(\beta(\mu + E)) + \beta\pi[1 + (1 - \pi)(1 - G(\beta(\mu + E)))] \} \Delta$$

ullet Change in the Dissonant Politician's Payoffs - $\mu + E$

$$W_{\mu}(\pi, \mu, \beta, E) = W_{E}(\pi, \mu, \beta, E)$$

= $(1 - \pi)\beta G'(\beta(\mu + E))[1 - \beta\pi] > 0$

- Dissonants care more about being reelected therefore behave better in the first period
- More dissonance survive to the second period where they misbehave
- The first effect dominates

Introduction Model Equilibrium Results

Political Agency

• Quality of Government

- Quality of Government
 - Discounted Voter Welfare

$$W(\pi, \mu, \beta, E) = \{ [\pi + (1 - \pi)G(\beta(\mu + E))] + \beta\pi[1 + (1 - \pi)(1 - G(\beta(\mu + E)))] \} \Delta$$

- Quality of Government
 - Discounted Voter Welfare

$$W(\pi, \mu, \beta, E) = \{ [\pi + (1 - \pi)G(\beta(\mu + E))] + \beta\pi[1 + (1 - \pi)(1 - G(\beta(\mu + E)))] \} \Delta$$

ullet Change in the Proportion of Congruent Politicians - π

$$W_{\pi}(\pi, \mu, \beta, E) = \{ (1 - G(\beta(\mu + E)) + \beta[1 + (1 - G(\beta(\mu + E))[1 - 2\pi]) \} \Delta > 0$$

- Quality of Government
 - Discounted Voter Welfare

$$W(\pi, \mu, \beta, E) = \{ [\pi + (1 - \pi)G(\beta(\mu + E))] + \beta\pi[1 + (1 - \pi)(1 - G(\beta(\mu + E)))] \} \Delta$$

ullet Change in the Proportion of Congruent Politicians - π

$$W_{\pi}(\pi, \mu, \beta, E) = \{ (1 - G(\beta(\mu + E)) + \beta[1 + (1 - G(\beta(\mu + E))[1 - 2\pi]] \} \Delta > 0$$

Raises voter welfare

- Quality of Government
 - Discounted Voter Welfare

$$W(\pi, \mu, \beta, E) = \{ [\pi + (1 - \pi)G(\beta(\mu + E))] + \beta\pi[1 + (1 - \pi)(1 - G(\beta(\mu + E)))] \} \Delta$$

ullet Change in the Proportion of Congruent Politicians - π

$$W_{\pi}(\pi, \mu, \beta, E) = \{ (1 - G(\beta(\mu + E)) + \beta[1 + (1 - G(\beta(\mu + E))[1 - 2\pi]] \} \Delta > 0$$

- Raises voter welfare
 - More likely to get a congruent politician in period 1

- Quality of Government
 - Discounted Voter Welfare

$$W(\pi, \mu, \beta, E) = \{ [\pi + (1 - \pi)G(\beta(\mu + E))] + \beta\pi[1 + (1 - \pi)(1 - G(\beta(\mu + E)))] \} \Delta$$

ullet Change in the Proportion of Congruent Politicians - π

$$W_{\pi}(\pi, \mu, \beta, E) = \{ (1 - G(\beta(\mu + E)) + \beta[1 + (1 - G(\beta(\mu + E))[1 - 2\pi])] \} \Delta > 0$$

- Raises voter welfare
 - More likely to get a congruent politician in period 1
 - More likely to get a congruent politician in period 2 to replace a dissonant politician that is not reelected

• Quality of Government

- Quality of Government
 - Term Limits

- Quality of Government
 - Term Limits
 - Suppose politicians are term limited to one period in office

- Quality of Government
 - Term Limits
 - Suppose politicians are term limited to one period in office
 - That period is then their last period

- Quality of Government
 - Term Limits
 - Suppose politicians are term limited to one period in office
 - That period is then their last period
 - No political discipline $\lambda = 0$

- Quality of Government
 - Term Limits
 - Suppose politicians are term limited to one period in office
 - That period is then their last period
 - No political discipline $\lambda = 0$
 - Dissonant politicians always choose $e_1(s,d) = (1-s_1)$

- Quality of Government
 - Term Limits
 - Suppose politicians are term limited to one period in office
 - That period is then their last period
 - No political discipline $\lambda = 0$
 - Dissonant politicians always choose $e_1(s, d) = (1 s_1)$
 - Reduces voter welfare