Political Economy - Economics 410/510

February 14, 2014

Outline

- Outline
 - Corruption

- Outline
 - Corruption
 - Political Agency

- Outline
 - Corruption
 - Political Agency
 - Voting and Lobbying in a Democracy

- Outline
 - Corruption
 - Political Agency
 - Voting and Lobbying in a Democracy
 - Origins of Democracy

Outline

- Corruption
- Political Agency
- Voting and Lobbying in a Democracy
- Origins of Democracy
- Size and Number of Nations

Motivation for Course

 Conventional public economics concernes itself with economic failures, situations where the economy fails to produce a good outcome. It implicitly assumes that the government and it's agents are benevolent, that they seek to promote pareto efficiency and maximize social welfare.

Motivation for Course

- Conventional public economics concernes itself with economic failures, situations where the economy fails to produce a good outcome. It implicitly assumes that the government and it's agents are benevolent, that they seek to promote pareto efficiency and maximize social welfare.
- Here we consider political failures, what happens when the government and/or it's agents are self-interested.

• Definition: Corruption is an act whereby a public office is used illegally for personal gain.

- Definition: Corruption is an act whereby a public office is used illegally for personal gain.
- Preconditions

- Definition: Corruption is an act whereby a public office is used illegally for personal gain.
- Preconditions
 - Discretionary power: A public official must possess the authority to design or administer regulations and policies in a discretionary manner - Ability.

- Definition: Corruption is an act whereby a public office is used illegally for personal gain.
- Preconditions
 - Discretionary power: A public official must possess the authority to design or administer regulations and policies in a discretionary manner - Ability.
 - Economic rents: the discretionary power must allow extraction of (existing) rents or creations of rents that can be extracted -Opportunity.

- Definition: Corruption is an act whereby a public office is used illegally for personal gain.
- Preconditions
 - Discretionary power: A public official must possess the authority to design or administer regulations and policies in a discretionary manner - Ability.
 - Economic rents: the discretionary power must allow extraction of (existing) rents or creations of rents that can be extracted -Opportunity.
 - Weak institutions: the incentives embodied in political, administrative, and legal institutions must be such that officials are left with an incentive to exploit their discretionary power to extract or create rents - Incentive.

• Examples - Corruption without Theft

- Examples Corruption without Theft
 - Official price P

- Examples Corruption without Theft
 - Official price P
 - Official pays government P which is his marginal cost

- Examples Corruption without Theft
 - Official price P
 - Official pays government P which is his marginal cost
 - Sets MC=MR

Source: Schleifer and Vishny, QJE 1993

- Examples Corruption without Theft
 - Official price P
 - Official pays government P which is his marginal cost
 - Sets MC=MR
 - Sets bribe as the maximum the demander will pay

• Examples - Corruption with Theft

Corruption with Theft

- Examples Corruption with Theft
 - Official price P

Corruption with Theft

- Examples Corruption with Theft
 - Official price P
 - Official pays government 0 which is his marginal cost

- Examples Corruption with Theft
 - Official price P
 - Official pays government 0 which is his marginal cost
 - Sets MC=MR

Corruption with Theft

Source: Schleifer and Vishny, QJE 1993

- Examples Corruption with Theft
 - Official price P
 - Official pays government 0 which is his marginal cost
 - Sets MC=MR
 - Sets bribe as the maximum the demander will pay

Source: Schleifer and Vishny, QJE 1993

Outline Introduction Corruption Efficient Corruption Agency Model The Grabbing Hand Self-Reinforcing Corruption

Corruption

• Types of Corruption

- Types of Corruption
 - Efficient corruption: Promotes efficiency by allowing agents in the private sector to correct pre-existing government failures.

- Types of Corruption
 - Efficient corruption: Promotes efficiency by allowing agents in the private sector to correct pre-existing government failures.
 - Benevolent principal: A benevolent principal delegates decision making power to a non-benevolent agent.

- Types of Corruption
 - Efficient corruption: Promotes efficiency by allowing agents in the private sector to correct pre-existing government failures.
 - Benevolent principal: A benevolent principal delegates decision making power to a non-benevolent agent.
 - Corruption with a non-benevolent principal: Non-benevolent government officials introduce inefficient policies in order to extract rents from the private sector.

- Types of Corruption
 - Efficient corruption: Promotes efficiency by allowing agents in the private sector to correct pre-existing government failures.
 - Benevolent principal: A benevolent principal delegates decision making power to a non-benevolent agent.
 - Corruption with a non-benevolent principal: Non-benevolent government officials introduce inefficient policies in order to extract rents from the private sector.
 - Self-reinforcing corruption: The rewards to corruption depend on the incidence of corruption due to strategic complementarity.

Outline Introduction Corruption Efficient Corruption Agency Model The Grabbing Hand Self-Reinforcing Corruption

Corruption

• Efficient Corruption

- Efficient Corruption
 - Idea of second-best if there is something wrong in the economy introducing another problem may offset it!

- Efficient Corruption
 - Idea of second-best if there is something wrong in the economy introducing another problem may offset it!
 - Example: Suppose that the initial "distortion" is the introduction of a license to undertake some productive activity and suppose the return to this activity varies across individuals.

- Efficient Corruption
 - Idea of second-best if there is something wrong in the economy introducing another problem may offset it!
 - Example: Suppose that the initial "distortion" is the introduction of a license to undertake some productive activity and suppose the return to this activity varies across individuals.
 - Individuals must queue to get licenses

- Efficient Corruption
 - Idea of second-best if there is something wrong in the economy introducing another problem may offset it!
 - Example: Suppose that the initial "distortion" is the introduction of a license to undertake some productive activity and suppose the return to this activity varies across individuals.
 - Individuals must queue to get licenses
 - But may jump the queue by paying bribes

- Efficient Corruption
 - Idea of second-best if there is something wrong in the economy introducing another problem may offset it!
 - Example: Suppose that the initial "distortion" is the introduction of a license to undertake some productive activity and suppose the return to this activity varies across individuals.
 - Individuals must queue to get licenses
 - But may jump the queue by paying bribes
 - Those that can afford the highest bribes get served first

- Efficient Corruption
 - Idea of second-best if there is something wrong in the economy introducing another problem may offset it!
 - Example: Suppose that the initial "distortion" is the introduction of a license to undertake some productive activity and suppose the return to this activity varies across individuals.
 - Individuals must queue to get licenses
 - But may jump the queue by paying bribes
 - Those that can afford the highest bribes get served first
 - But they can afford the highest bribes because they use the licenses most productively

- Efficient Corruption
 - Idea of second-best if there is something wrong in the economy introducing another problem may offset it!
 - Example: Suppose that the initial "distortion" is the introduction of a license to undertake some productive activity and suppose the return to this activity varies across individuals.
 - Individuals must queue to get licenses
 - But may jump the queue by paying bribes
 - Those that can afford the highest bribes get served first
 - But they can afford the highest bribes because they use the licenses most productively
 - This is efficient

- Efficient Corruption
 - Idea of second-best if there is something wrong in the economy introducing another problem may offset it!
 - Example: Suppose that the initial "distortion" is the introduction of a license to undertake some productive activity and suppose the return to this activity varies across individuals.
 - Individuals must queue to get licenses
 - But may jump the queue by paying bribes
 - Those that can afford the highest bribes get served first
 - But they can afford the highest bribes because they use the licenses most productively
 - This is efficient
 - But the first-best is still to eliminate the licenses!

• Benevolent principal

- Benevolent principal
 - Political decision makers often delegate authority to a bureaucracy

- Benevolent principal
 - Political decision makers often delegate authority to a bureaucracy
 - The politicians may be honest but the bureaucracy corrupt

- Benevolent principal
 - Political decision makers often delegate authority to a bureaucracy
 - The politicians may be honest but the bureaucracy corrupt
 - The politicians then design institutions so as to give the correct incentives to self-interested bureaucrats

- Benevolent principal
 - Political decision makers often delegate authority to a bureaucracy
 - The politicians may be honest but the bureaucracy corrupt
 - The politicians then design institutions so as to give the correct incentives to self-interested bureaucrats
 - Typically this won't involve zero corruption!

• Benevolent principal - An Agency Model

- Benevolent principal An Agency Model
 - Model consists of

- Benevolent principal An Agency Model
 - Model consists of
 - Government honest and benevolent

- Benevolent principal An Agency Model
 - Model consists of
 - Government honest and benevolent
 - Tax collector self interested and possibly corrupt

- Benevolent principal An Agency Model
 - Model consists of
 - Government honest and benevolent
 - Tax collector self interested and possibly corrupt
 - Firm self interested and possibly corrupt

• Benevolent principal - An Agency Model

- Benevolent principal An Agency Model
 - Firm

- Benevolent principal An Agency Model
 - Firm
 - Makes positive profit, $\pi > 0$ with probability h, otherwise earns $\pi = 0$ with probability 1 h

- Benevolent principal An Agency Model
 - Firm
 - Makes positive profit, $\pi > 0$ with probability h, otherwise earns $\pi = 0$ with probability 1 h
 - Is liable for taxes $t=\pi$ (100%) if $\pi>0$

- Benevolent principal An Agency Model
 - Firm
 - Makes positive profit, $\pi > 0$ with probability h, otherwise earns $\pi = 0$ with probability 1 h
 - Is liable for taxes $t=\pi$ (100%) if $\pi>0$
 - May pay a bribe of b to a tax collector to avoid paying taxes

- Benevolent principal An Agency Model
 - Firm
 - Makes positive profit, $\pi > 0$ with probability h, otherwise earns $\pi = 0$ with probability 1 h
 - Is liable for taxes $t=\pi$ (100%) if $\pi>0$
 - May pay a bribe of b to a tax collector to avoid paying taxes
 - Gets detected paying a bribe by the government with probability p and then incurs a penalty of $g \ge 0$

• Benevolent principal - An Agency Model

- Benevolent principal An Agency Model
 - Tax Collector

- Benevolent principal An Agency Model
 - Tax Collector
 - Observes whether or not the firm makes positive profit

- Benevolent principal An Agency Model
 - Tax Collector
 - Observes whether or not the firm makes positive profit
 - Decides whether or not to report the firm as liable for taxation

- Benevolent principal An Agency Model
 - Tax Collector
 - Observes whether or not the firm makes positive profit
 - Decides whether or not to report the firm as liable for taxation
 - May accept a bribe of kb from the firm to keep their tax liability secret

- Benevolent principal An Agency Model
 - Tax Collector
 - Observes whether or not the firm makes positive profit
 - Decides whether or not to report the firm as liable for taxation
 - May accept a bribe of kb from the firm to keep their tax liability secret
 - Where $k \in (0,1]$ is the cost of secrecy (transactions cost)

- Benevolent principal An Agency Model
 - Tax Collector
 - Observes whether or not the firm makes positive profit
 - Decides whether or not to report the firm as liable for taxation
 - May accept a bribe of kb from the firm to keep their tax liability secret
 - Where $k \in (0,1]$ is the cost of secrecy (transactions cost)
 - Gets detected accepting a bribe by the government with probability p and then loses his job and incurs a penalty of f > 0

- Benevolent principal An Agency Model
 - Tax Collector
 - Observes whether or not the firm makes positive profit
 - Decides whether or not to report the firm as liable for taxation
 - May accept a bribe of kb from the firm to keep their tax liability secret
 - Where $k \in (0,1]$ is the cost of secrecy (transactions cost)
 - Gets detected accepting a bribe by the government with probability p and then loses his job and incurs a penalty of f > 0
 - Earns a wage of w as a tax collector and has an outside option of w₀

• Benevolent principal - An Agency Model

- Benevolent principal An Agency Model
 - Government designs the institutions by setting

- Benevolent principal An Agency Model
 - Government designs the institutions by setting
 - The wage rate, w

- Benevolent principal An Agency Model
 - Government designs the institutions by setting
 - The wage rate, w
 - The monitoring system, p

- Benevolent principal An Agency Model
 - Government designs the institutions by setting
 - The wage rate, w
 - The monitoring system, p
 - The legal system, f and g

Outline Introduction Corruption Efficient Corruption Agency Model The Grabbing Hand Self-Reinforcing Corruption

Corruption

• Benevolent principal - An Agency Model

- Benevolent principal An Agency Model
 - Firm's expected gain from corruption

$$\pi - pg$$
 (1)

- Benevolent principal An Agency Model
 - Firm's expected gain from corruption

$$\pi - pg$$
 (1)

• If tax collector can extract all rent from the firm

$$b = \max[k(\pi - pg), 0] \tag{2}$$

- Benevolent principal An Agency Model
 - Firm's expected gain from corruption

$$\pi - pg$$
 (1)

If tax collector can extract all rent from the firm

$$b = \max[k(\pi - pg), 0] \tag{2}$$

 Tax collector accepts bribe if the expected gain exceeds the payoff from honesty

$$(1-p)(w+b) + p(w_0 - f) > w$$

 $\implies (1-p)b + p(w_0 - w - f) > 0$ (3)

• Benevolent principal - An Agency Model

- Benevolent principal An Agency Model
 - Preventing Corruption with Efficiency Wages

- Benevolent principal An Agency Model
 - Preventing Corruption with Efficiency Wages
 - Make the wage rate sufficiently high such that the tax collector will not risk losing his job

- Benevolent principal An Agency Model
 - Preventing Corruption with Efficiency Wages
 - Make the wage rate sufficiently high such that the tax collector will not risk losing his job
 - From (3) with f = 0 we get

$$w^e = w_0 + \frac{(1-p)}{p}b \tag{4}$$

- Benevolent principal An Agency Model
 - Preventing Corruption with Efficiency Wages
 - Make the wage rate sufficiently high such that the tax collector will not risk losing his job
 - From (3) with f = 0 we get

$$w^e = w_0 + \frac{(1-p)}{p}b {4}$$

• So the excess of the efficiency wage over the market wage is

$$w^e - w_0 = \frac{(1-p)}{p}b {5}$$

- Benevolent principal An Agency Model
 - Preventing Corruption with Efficiency Wages
 - Make the wage rate sufficiently high such that the tax collector will not risk losing his job
 - From (3) with f = 0 we get

$$w^{e} = w_{0} + \frac{(1-p)}{p}b \tag{4}$$

So the excess of the efficiency wage over the market wage is

$$w^{e} - w_{0} = \frac{(1-p)}{p}b \tag{5}$$

 Which is the cost of using an efficiency wage, and is increasing in b and decreasing in p

• Benevolent principal - An Agency Model

- Benevolent principal An Agency Model
 - Preventing Corruption with Institutional Controls

- Benevolent principal An Agency Model
 - Preventing Corruption with Institutional Controls
 - Make the probability of the tax collector being caught sufficiently high such that they will choose honesty

- Benevolent principal An Agency Model
 - Preventing Corruption with Institutional Controls
 - Make the probability of the tax collector being caught sufficiently high such that they will choose honesty
 - From (3) we get

$$p^* \geq \frac{b}{b+f+w-w_0}$$
 with $b = k(\pi-pg)$ (6)

- Benevolent principal An Agency Model
 - Preventing Corruption with Institutional Controls
 - Make the probability of the tax collector being caught sufficiently high such that they will choose honesty
 - From (3) we get

$$p^* \geq \frac{b}{b+f+w-w_0}$$

with $b = k(\pi-pg)$ (6)

• Which is increasing in b, and w_0 and decreasing in w and f

- Benevolent principal An Agency Model
 - Preventing Corruption with Institutional Controls
 - Make the probability of the tax collector being caught sufficiently high such that they will choose honesty
 - From (3) we get

$$p^* \geq \frac{b}{b+f+w-w_0}$$
 with $b = k(\pi-pg)$ (6)

- Which is increasing in b, and w_0 and decreasing in w and f
- The problem here may be that it is costly to detect corruption

• Benevolent principal - An Agency Model

- Benevolent principal An Agency Model
 - Preventing Corruption with Legal Penalties

- Benevolent principal An Agency Model
 - Preventing Corruption with Legal Penalties
 - Make the fines sufficiently high such that the tax collector will choose honesty

- Benevolent principal An Agency Model
 - Preventing Corruption with Legal Penalties
 - Make the fines sufficiently high such that the tax collector will choose honesty
 - From (3) we get

$$f^* \ge \frac{(1-p)}{p}b + w_0 - w \tag{7}$$

- Benevolent principal An Agency Model
 - Preventing Corruption with Legal Penalties
 - Make the fines sufficiently high such that the tax collector will choose honesty
 - From (3) we get

$$f^* \ge \frac{(1-p)}{p}b + w_0 - w \tag{7}$$

• Which is increasing in b, and w_0 and decreasing in w and p

- Benevolent principal An Agency Model
 - Preventing Corruption with Legal Penalties
 - Make the fines sufficiently high such that the tax collector will choose honesty
 - From (3) we get

$$f^* \ge \frac{(1-p)}{p}b + w_0 - w \tag{7}$$

- Which is increasing in b, and w_0 and decreasing in w and p
- Or from (3) and using $b = k(\pi pg)$

$$g^* \ge \frac{(1-p)k\pi + p(w_0 - w) - pf}{(1-p)kp}$$
 (8)

- Benevolent principal An Agency Model
 - Preventing Corruption with Legal Penalties
 - Make the fines sufficiently high such that the tax collector will choose honesty
 - From (3) we get

$$f^* \ge \frac{(1-p)}{p}b + w_0 - w \tag{7}$$

- Which is increasing in b, and w_0 and decreasing in w and p
- Or from (3) and using $b = k(\pi pg)$

$$g^* \ge \frac{(1-p)k\pi + p(w_0 - w) - pf}{(1-p)kp} \tag{8}$$

 This works well provided that there is no possibility of errors, and provided that the agent cannot adjust their degree of corruption.

• Benevolent principal - Optimal institutional design

- Benevolent principal Optimal institutional design
 - If institutions were designed optimally would corruption persist

- Benevolent principal Optimal institutional design
 - If institutions were designed optimally would corruption persist
 - Yes! at least in many circumstances

- Benevolent principal Optimal institutional design
 - If institutions were designed optimally would corruption persist
 - Yes! at least in many circumstances
 - There is a trade off between the benefits of reducing corruption and the costs of designing the institutions to eliminate it

• Non-benevolent principal - "The Grabbing Hand"

- Non-benevolent principal "The Grabbing Hand"
 - Both the government and bureaucracy are potentially corrupt

- Non-benevolent principal "The Grabbing Hand"
 - Both the government and bureaucracy are potentially corrupt
 - Corruption is only constrained by existent economic and political institutions

- Non-benevolent principal "The Grabbing Hand"
 - Both the government and bureaucracy are potentially corrupt
 - Corruption is only constrained by existent economic and political institutions
 - Examples: Marcos in the Philippines, Amin in Uganda, Ghadaffi in Libya, Russia after the fall off communism

Non-benevolent principal

- Non-benevolent principal
 - Key Point: When both the government and bureaucracy are potentially corrupt, distortions are introduced into the economy to create opportunities for corruption

- Non-benevolent principal
 - Key Point: When both the government and bureaucracy are potentially corrupt, distortions are introduced into the economy to create opportunities for corruption
 - Individuals higher in the hierarchy will potentially be directly corrupt and attempt to extract the corruption rents from those lower in the hierarchy

• Non-benevolent principal - A model of corrupt licensing

- Non-benevolent principal A model of corrupt licensing
 - Suppose that there are no distortions in the economy except those induced by the government

- Non-benevolent principal A model of corrupt licensing
 - Suppose that there are no distortions in the economy except those induced by the government
 - Government then requires that a license is needed to set up a new firm

• Non-benevolent principal - A model of corrupt licensing

- Non-benevolent principal A model of corrupt licensing
 - \bullet λ number of licenses issued

- Non-benevolent principal A model of corrupt licensing
 - \bullet λ number of licenses issued
 - $b(\lambda)$ value of a license if λ have already been issued

- Non-benevolent principal A model of corrupt licensing
 - \bullet λ number of licenses issued
 - $b(\lambda)$ value of a license if λ have already been issued
 - $b' = \frac{\partial b}{\partial \lambda} < 0$ the value of licenses is diminishing

- Non-benevolent principal A model of corrupt licensing
 - \bullet λ number of licenses issued
 - ullet $b(\lambda)$ value of a license if λ have already been issued
 - $b' = \frac{\partial b}{\partial \lambda} < 0$ the value of licenses is diminishing
 - λ_H number of firms that would enter under perfect competition

- Non-benevolent principal A model of corrupt licensing
 - \bullet λ number of licenses issued
 - ullet $b(\lambda)$ value of a license if λ have already been issued
 - $b' = \frac{\partial b}{\partial \lambda} < 0$ the value of licenses is diminishing
 - λ_H number of firms that would enter under perfect competition
 - $b(\lambda_H) = 0$

• Non-benevolent principal - A model of corrupt licensing

- Non-benevolent principal A model of corrupt licensing
 - Corrupt monopolistic official wishes to maximize bribe income

$$Max \lambda b(\lambda)$$
 (9)

- Non-benevolent principal A model of corrupt licensing
 - Corrupt monopolistic official wishes to maximize bribe income

$$Max \lambda b(\lambda)$$
 (9)

First order condition

$$b(\lambda) + \lambda b'(\lambda) = 0$$

Hence
$$b(\lambda) + \lambda b'(\lambda) = 0$$
 So
$$b(\lambda) = -\lambda b'(\lambda) > 0 = b(\lambda_H)$$

$$\Longrightarrow \qquad \lambda < \lambda_H$$

- Non-benevolent principal A model of corrupt licensing
 - Corrupt monopolistic official wishes to maximize bribe income

$$Max \lambda b(\lambda)$$
 (9)

First order condition

$$b(\lambda) + \lambda b'(\lambda) = 0$$

Hence
$$b(\lambda) + \lambda b'(\lambda) = 0$$

So $b(\lambda) = -\lambda b'(\lambda) > 0 = b(\lambda_H)$
 $\Rightarrow \lambda < \lambda_H$

 Licenses only have value if they restrict entry below the competitive level

• Non-benevolent principal - Competition in corruption

- Non-benevolent principal Competition in corruption
 - We might ask if different corrupt government officials compete for corruption rents will the outcome be more efficient?

- Non-benevolent principal Competition in corruption
 - We might ask if different corrupt government officials compete for corruption rents will the outcome be more efficient?
 - The answer is "it depends"

• Non-benevolent principal - Competition in corruption

- Non-benevolent principal Competition in corruption
 - Let there be two types of licenses i = 1, 2

- Non-benevolent principal Competition in corruption
 - Let there be two types of licenses i = 1, 2
 - The value of holding a license of type i is $b_i(\lambda_1, \lambda_2)$

- Non-benevolent principal Competition in corruption
 - Let there be two types of licenses i = 1, 2
 - The value of holding a license of type i is $b_i(\lambda_1, \lambda_2)$
 - For a comparison first assume both licenses are issued by one official, who maximizes the sum of the bribes they receive

$$Max \sum_{i} \lambda_{i}^{m} b_{i}(\lambda_{1}^{m}, \lambda_{2}^{m})$$
 (10)

$$\begin{aligned} \text{FOC's} \qquad & \lambda_1{}^m \left(\frac{\partial b_1}{\partial \lambda_1{}^m} \right) + b_1 (\lambda_1{}^m, \lambda_2{}^m) + \lambda_2{}^m \left(\frac{\partial b_2}{\partial \lambda_1{}^m} \right) = 0 \\ & \lambda_1{}^m \left(\frac{\partial b_1}{\partial \lambda_2{}^m} \right) + b_2 (\lambda_1{}^m, \lambda_2{}^m) + \lambda_2{}^m \left(\frac{\partial b_2}{\partial \lambda_2{}^m} \right) = 0 \end{aligned}$$

• Non-benevolent principal - Competition in corruption

- Non-benevolent principal Competition in corruption
 - Now suppose the licenses are issued by separate competing officials who each maximize the bribe they receive

FOC's
$$\lambda_{1}{}^{c}b_{i}(\lambda_{1}{}^{c},\lambda_{2}{}^{c})$$
(11)
$$\lambda_{1}{}^{c}\left(\frac{\partial b_{1}}{\partial \lambda_{1}{}^{c}}\right) + b_{1}(\lambda_{1}{}^{c},\lambda_{2}{}^{c}) = 0$$
$$\lambda_{2}{}^{c}\left(\frac{\partial b_{2}}{\partial \lambda_{2}^{c}}\right) + b_{2}(\lambda_{1}{}^{c},\lambda_{2}{}^{c}) = 0$$

Outline Introduction Corruption Efficient Corruption Agency Model The Grabbing Hand Self-Reinforcing Corruption

Corruption

• Non-benevolent principal - Competition in corruption

- Non-benevolent principal Competition in corruption
 - From the FOC's

$$\lambda_{1}^{m} \left(\frac{\partial b_{1}}{\partial \lambda_{1}^{m}} \right) + b_{1} (\lambda_{1}^{m}, \lambda_{2}^{m}) + \lambda_{2}^{m} \left(\frac{\partial b_{2}}{\partial \lambda_{1}^{m}} \right) = 0$$
$$\lambda_{1}^{c} \left(\frac{\partial b_{1}}{\partial \lambda_{1}^{c}} \right) + b_{1} (\lambda_{1}^{c}, \lambda_{2}^{c}) = 0$$

- Non-benevolent principal Competition in corruption
 - From the FOC's

$$\lambda_{1}^{m} \left(\frac{\partial b_{1}}{\partial \lambda_{1}^{m}} \right) + b_{1} (\lambda_{1}^{m}, \lambda_{2}^{m}) + \lambda_{2}^{m} \left(\frac{\partial b_{2}}{\partial \lambda_{1}^{m}} \right) = 0$$
$$\lambda_{1}^{c} \left(\frac{\partial b_{1}}{\partial \lambda_{1}^{c}} \right) + b_{1} (\lambda_{1}^{c}, \lambda_{2}^{c}) = 0$$

• So if $\frac{\partial b_2}{\partial \lambda_1^m} > 0$, that is the licenses are complements

- Non-benevolent principal Competition in corruption
 - From the FOC's

$$\lambda_1^m \left(\frac{\partial b_1}{\partial \lambda_1^m} \right) + b_1(\lambda_1^m, \lambda_2^m) + \lambda_2^m \left(\frac{\partial b_2}{\partial \lambda_1^m} \right) = 0$$
$$\lambda_1^c \left(\frac{\partial b_1}{\partial \lambda_1^c} \right) + b_1(\lambda_1^c, \lambda_2^c) = 0$$

- So if $\frac{\partial b_2}{\partial \lambda_1^m} > 0$, that is the licenses are complements
- Then

$$\lambda_1^m \left(\frac{\partial b_1}{\partial \lambda_1^m} \right) + b_1(\lambda_1^m, \lambda_2^m) < \lambda_1^c \left(\frac{\partial b_1}{\partial \lambda_1^c} \right) + b_1(\lambda_1^c, \lambda_2^c)$$

- Non-benevolent principal Competition in corruption
 - From the FOC's

$$\lambda_{1}^{m} \left(\frac{\partial b_{1}}{\partial \lambda_{1}^{m}} \right) + b_{1} (\lambda_{1}^{m}, \lambda_{2}^{m}) + \lambda_{2}^{m} \left(\frac{\partial b_{2}}{\partial \lambda_{1}^{m}} \right) = 0$$
$$\lambda_{1}^{c} \left(\frac{\partial b_{1}}{\partial \lambda_{1}^{c}} \right) + b_{1} (\lambda_{1}^{c}, \lambda_{2}^{c}) = 0$$

- So if $\frac{\partial b_2}{\partial \lambda_1^m} > 0$, that is the licenses are complements
- Then

$$\lambda_1^{m} \left(\frac{\partial b_1}{\partial \lambda_1^{m}} \right) + b_1(\lambda_1^{m}, \lambda_2^{m}) < \lambda_1^{c} \left(\frac{\partial b_1}{\partial \lambda_1^{c}} \right) + b_1(\lambda_1^{c}, \lambda_2^{c})$$

• From which it can be shown ${\lambda_1}^c < {\lambda_1}^m$, competitive license issuers neglect the effects of the bribes of others, issue fewer licenses. Competition makes corruption worse

• Non-benevolent principal - The effects of heirarchys

- Non-benevolent principal The effects of heirarchys
 - A corrupt official that can extract a bribe would be willing to pay to get the job

- Non-benevolent principal The effects of heirarchys
 - A corrupt official that can extract a bribe would be willing to pay to get the job
 - A more senior official will accept a bribe from the junior official to give them the job

- Non-benevolent principal The effects of heirarchys
 - A corrupt official that can extract a bribe would be willing to pay to get the job
 - A more senior official will accept a bribe from the junior official to give them the job
 - A long chain of corruption is created at each stage of which societies resources are wasted in attempting to capture some of the corruption rents

- Non-benevolent principal The effects of heirarchys
 - A corrupt official that can extract a bribe would be willing to pay to get the job
 - A more senior official will accept a bribe from the junior official to give them the job
 - A long chain of corruption is created at each stage of which societies resources are wasted in attempting to capture some of the corruption rents
 - The effects of corruption are then amplified

• Political institutions and corruption

- Political institutions and corruption
 - Democratic institutions may help combat corruption

- Political institutions and corruption
 - Democratic institutions may help combat corruption
 - Competition for reelection may make politicians more accountable

Political institutions and corruption

- Political institutions and corruption
 - License example again

- Political institutions and corruption
 - License example again
 - ullet λ_L number of licenses politician wishes to issue

- Political institutions and corruption
 - License example again
 - \bullet λ_I number of licenses politician wishes to issue
 - \bullet λ_H number of licenses electorate want issued

- Political institutions and corruption
 - License example again
 - ullet λ_L number of licenses politician wishes to issue
 - \bullet λ_H number of licenses electorate want issued
 - $\lambda_H > \lambda_L$

- Political institutions and corruption
 - License example again
 - ullet λ_L number of licenses politician wishes to issue
 - \bullet λ_H number of licenses electorate want issued
 - $\lambda_H > \lambda_L$
 - An election every period in an infinite sequence

- Political institutions and corruption
 - License example again
 - \bullet λ_L number of licenses politician wishes to issue
 - \bullet λ_H number of licenses electorate want issued
 - $\lambda_H > \lambda_L$
 - An election every period in an infinite sequence
 - If $\lambda \geq \bar{\lambda}$ the politician is reelected, otherwise they are not

• Political institutions and corruption

- Political institutions and corruption
 - If the politician decides to comply they receive

$$\frac{B(\bar{\lambda})}{1-\beta} \tag{12}$$

where $\beta \in (0,1)$ is the discount rate and $B(\bar{\lambda}) = \bar{\lambda} b(\bar{\lambda})$

- Political institutions and corruption
 - If the politician decides to comply they receive

$$\frac{B(\bar{\lambda})}{1-\beta} \tag{12}$$

where $\beta \in (0,1)$ is the discount rate and $B(\bar{\lambda}) = \bar{\lambda} b(\bar{\lambda})$

 If the politician decides not to comply they receive the one-time payoff

$$B(\lambda_L) \tag{13}$$

- Political institutions and corruption
 - If the politician decides to comply they receive

$$\frac{B(\bar{\lambda})}{1-\beta} \tag{12}$$

where $\beta \in (0,1)$ is the discount rate and $B(\bar{\lambda}) = \bar{\lambda} b(\bar{\lambda})$

 If the politician decides not to comply they receive the one-time payoff

$$B(\lambda_L) \tag{13}$$

• So the highest $\bar{\lambda}$ that the politician will comply with, λ^* , is given by

$$B(\lambda^*) = (1 - \beta)B(\lambda_L) \tag{14}$$

$$\implies \lambda^* b(\lambda^*) = B(\lambda^*) < \lambda_I b(\lambda_I) = B(\lambda_I)$$

Outline Introduction Corruption Efficient Corruption Agency Model The Grabbing Hand Self-Reinforcing Corruption

Corruption

• Political institutions and corruption

- Political institutions and corruption
 - So $\lambda^* > \lambda_L$ if $B(\lambda)$ is decreasing in λ

- Political institutions and corruption
 - So $\lambda^* > \lambda_L$ if $B(\lambda)$ is decreasing in λ
 - Which requires $b(\lambda) + \lambda b'(\lambda) < 0$

- Political institutions and corruption
 - So $\lambda^* > \lambda_L$ if $B(\lambda)$ is decreasing in λ
 - Which requires $b(\lambda) + \lambda b'(\lambda) < 0$
 - Which requires $b(\lambda)$ be concave (not stated in Aidt's paper)

- Political institutions and corruption
 - So $\lambda^* > \lambda_L$ if $B(\lambda)$ is decreasing in λ
 - Which requires $b(\lambda) + \lambda b'(\lambda) < 0$
 - Which requires $b(\lambda)$ be concave (not stated in Aidt's paper)

• Then we can say that political competition reduces corruption

• Political institutions and corruption

- Political institutions and corruption
 - Separation of powers may help reduce corruption

- Political institutions and corruption
 - Separation of powers may help reduce corruption
 - One politician chooses the number of licenses another divides the bribes

- Political institutions and corruption
 - Separation of powers may help reduce corruption
 - One politician chooses the number of licenses another divides the bribes
 - Reduces the incentives of the first to restrict the number of licenses

- Political institutions and corruption
 - Separation of powers may help reduce corruption
 - One politician chooses the number of licenses another divides the bribes
 - Reduces the incentives of the first to restrict the number of licenses
 - Decentralize some powers to regional governments

- Political institutions and corruption
 - Separation of powers may help reduce corruption
 - One politician chooses the number of licenses another divides the bribes
 - Reduces the incentives of the first to restrict the number of licenses
 - Decentralize some powers to regional governments
 - Reduces the monopoly power of the central government

Outline Introduction Corruption Efficient Corruption Agency Model The Grabbing Hand Self-Reinforcing Corruption

Corruption

• Self-reinforcing Corruption

- Self-reinforcing Corruption
 - The expected returns to corruption may be higher when more individuals are corrupt

- Self-reinforcing Corruption
 - The expected returns to corruption may be higher when more individuals are corrupt
 - Multiple equilibria are possible some with high corruption and some with low corruption

- Self-reinforcing Corruption
 - The expected returns to corruption may be higher when more individuals are corrupt
 - Multiple equilibria are possible some with high corruption and some with low corruption
 - You are less likely to be caught the greater are the number of corrupt individuals

- Self-reinforcing Corruption
 - The expected returns to corruption may be higher when more individuals are corrupt
 - Multiple equilibria are possible some with high corruption and some with low corruption
 - You are less likely to be caught the greater are the number of corrupt individuals
 - You are more likely to get corruption opportunities the greater are the number of corrupt individuals

- Self-reinforcing Corruption
 - The expected returns to corruption may be higher when more individuals are corrupt
 - Multiple equilibria are possible some with high corruption and some with low corruption
 - You are less likely to be caught the greater are the number of corrupt individuals
 - You are more likely to get corruption opportunities the greater are the number of corrupt individuals
 - The alternatives to corrupt activity are less rewarding the greater are the number of corrupt individuals

- Self-reinforcing Corruption
 - The expected returns to corruption may be higher when more individuals are corrupt
 - Multiple equilibria are possible some with high corruption and some with low corruption
 - You are less likely to be caught the greater are the number of corrupt individuals
 - You are more likely to get corruption opportunities the greater are the number of corrupt individuals
 - The alternatives to corrupt activity are less rewarding the greater are the number of corrupt individuals
 - Countries can get stuck in high or low corruption equilibria dependent on history!

• Self-reinforcing Corruption - Tax collection example

- Self-reinforcing Corruption Tax collection example
 - Recall from our earlier model that a tax collector will be corrupt if

$$(1-p)(w+b) + p(w_0-f) > w$$

- Self-reinforcing Corruption Tax collection example
 - Recall from our earlier model that a tax collector will be corrupt if

$$(1-p)(w+b) + p(w_0-f) > w$$

• p - probability of being caught

- Self-reinforcing Corruption Tax collection example
 - Recall from our earlier model that a tax collector will be corrupt if

$$(1-p)(w+b) + p(w_0-f) > w$$

- p probability of being caught
- w wage

- Self-reinforcing Corruption Tax collection example
 - Recall from our earlier model that a tax collector will be corrupt if

$$(1-p)(w+b) + p(w_0-f) > w$$

- p probability of being caught
- w wage
- b bribe

- Self-reinforcing Corruption Tax collection example
 - Recall from our earlier model that a tax collector will be corrupt if

$$(1-p)(w+b) + p(w_0-f) > w$$

- p probability of being caught
- w wage
- b bribe
- w₀ wage if caught and fired

- Self-reinforcing Corruption Tax collection example
 - Recall from our earlier model that a tax collector will be corrupt if

$$(1-p)(w+b) + p(w_0-f) > w$$

- p probability of being caught
- w wage
- b bribe
- w₀ wage if caught and fired
- f fine if caught and fired

Outline Introduction Corruption Efficient Corruption Agency Model The Grabbing Hand Self-Reinforcing Corruption

Corruption

• Self-reinforcing Corruption - Tax collection example

- Self-reinforcing Corruption Tax collection example
 - We now further assume

- Self-reinforcing Corruption Tax collection example
 - We now further assume
 - ullet γ is the proportion of tax collectors who are not corrupt

- Self-reinforcing Corruption Tax collection example
 - We now further assume
 - ullet γ is the proportion of tax collectors who are not corrupt
 - \bullet $p(\gamma)$ the probability of being caught depends on how many tax collectors are corrupt

- Self-reinforcing Corruption Tax collection example
 - We now further assume
 - ullet γ is the proportion of tax collectors who are not corrupt
 - \bullet $p(\gamma)$ the probability of being caught depends on how many tax collectors are corrupt
 - $\frac{\partial p}{\partial \gamma} > 0$ corrupt tax collectors are more likely to be caught if there are fewer of them

- Self-reinforcing Corruption Tax collection example
 - We now further assume
 - ullet γ is the proportion of tax collectors who are not corrupt
 - ullet $p(\gamma)$ the probability of being caught depends on how many tax collectors are corrupt
 - $\frac{\partial p}{\partial \gamma} > 0$ corrupt tax collectors are more likely to be caught if there are fewer of them
 - c private cost of corruption

- Self-reinforcing Corruption Tax collection example
 - We now further assume
 - ullet γ is the proportion of tax collectors who are not corrupt
 - ullet $p(\gamma)$ the probability of being caught depends on how many tax collectors are corrupt
 - $\frac{\partial p}{\partial \gamma} > 0$ corrupt tax collectors are more likely to be caught if there are fewer of them
 - c private cost of corruption
 - So the corruption condition becomes

$$(1-p(\gamma))(w+b)+p(\gamma)(w_0-f)-c>w$$

- Self-reinforcing Corruption Tax collection example
 - We now further assume
 - \bullet γ is the proportion of tax collectors who are not corrupt
 - ullet $p(\gamma)$ the probability of being caught depends on how many tax collectors are corrupt
 - $\frac{\partial p}{\partial \gamma} > 0$ corrupt tax collectors are more likely to be caught if there are fewer of them
 - c private cost of corruption
 - So the corruption condition becomes

$$(1-p(\gamma))(w+b)+p(\gamma)(w_0-f)-c>w$$

• Now WOLOG let $w_0 = f = 0$ so

$$(1 - p(\gamma))(w + b) - c > w$$

Outline Introduction Corruption Efficient Corruption Agency Model The Grabbing Hand Self-Reinforcing Corruption

Corruption

- Self-reinforcing Corruption Tax collection example
 - We now further assume

- Self-reinforcing Corruption Tax collection example
 - We now further assume
 - c is distributed according the the cumulative density F(c)

- Self-reinforcing Corruption Tax collection example
 - We now further assume
 - c is distributed according the the cumulative density F(c)
 - The marginal density f(c) has the usual bell shape curve

- Self-reinforcing Corruption Tax collection example
 - Define c^* by

$$(1 - p(\gamma))(w + b) - c^* - w = 0$$

- Self-reinforcing Corruption Tax collection example
 - Define c^* by

$$(1 - p(\gamma))(w + b) - c^* - w = 0$$

Now

$$\gamma = 1 - F(c^*)$$

- Self-reinforcing Corruption Tax collection example
 - Define c^* by

$$(1 - p(\gamma))(w + b) - c^* - w = 0$$

Now

$$\gamma = 1 - F(c^*)$$

• Given these equations and that f(c) is bell shaped we can draw a diagram giving the equilibrium levels of corruption

Outline Introduction Corruption Efficient Corruption Agency Model The Grabbing Hand Self-Reinforcing Corruption

Corruption

- Self-reinforcing Corruption Tax collection example
 - Multiple equilibria diagram

Outline Introduction Corruption Efficient Corruption Agency Model The Grabbing Hand Self-Reinforcing Corruption

Corruption

- Self-reinforcing Corruption Tax collection example
 - Eliminating the high corruption equilibrium

