Degree Requirements for the Graduate Program in Chemistry and Biochemistry 2015-16

University of Oregon
Contents

Ph.D. DEGREE REQUIREMENTS (examinations, advancement to candidacy, course requirements)
- Flow Chart ... 1
- Biochemistry Division ... 2
- Organic/Inorganic Division ... 2
- Physical Chemistry Division .. 4

Journal Clubs and Seminar Requirements .. 6
Teaching Requirements .. 6
Research Requirements ... 7
Review of Progress and Additional Requirements 7

Guidelines for Dismissing a Graduate Student
- Separation from a Research Group .. 8
- Dismissal from the Chemistry Program 9
- Additional Information .. 10

TRANSITIONAL MASTERS INTERNSHIP TO Ph.D. PROGRAM
- Rotations .. 10
- Fourth-term Review and Advancement to Candidacy 10
- Teaching ... 10
- Coursework .. 11

MASTER'S DEGREE REQUIREMENTS
- Course Requirements .. 11
- Master's Thesis .. 11

This manual is an overview of the Chemistry and Biochemistry Department's requirements for both the Ph.D. and the Master's degree programs. Students should consult the University of Oregon General Bulletin for further information on the policies and regulations of the University and Graduate School.

Rev 8-2015
Ph.D. Degree Flow Chart

Admission

Meet with new Student Advising Committee

Course Work | Divisional Seminars | Teaching

Cumulative Exams | Rotation

Pick Research Advisor

Fourth Term Review

Course Work | Divisional Seminars

Cumulative Exams | Research

Advancement to Candidacy

Research | Divisional Seminars

Annual Research Progress Reports

Thesis Defense
PH.D. DEGREE REQUIREMENTS
(intended for all Ph.D. students entering fall 2015)

Ph.D. degree requirements for all Chemistry and Biochemistry students include Cumulative Exams and an Advancement to Candidacy Exam. Specific requirements for each division are given below.

Biochemistry Division: (required for all graduate students)

Cumulative examinations: Cumulative exams are used to expose students to areas outside of their own area of research and to assess literature comprehension skills. Students in the Biochemistry division must complete four examinations (typically each term of their first academic year and the fall term of their second year). The exams need not be from the biochemistry division (i.e. exams from other divisions will count towards the requirement). The typical format of a cumulative exam is a series of questions based on readings from the current literature provided one week before the exam.

Advancement to Candidacy in the Biochemistry division requires successful completion of two components.

1. Qualifying examination. Students in the Biochemistry division must pass an advancement to candidacy examination. The exam is typically taken in the winter term of a student’s second year. A typical exam format requires formulating the student’s thesis project into a hypothesis driven proposal and includes both a written and an oral component. The precise format and timing of the exam will be provided to students by the end of their first academic year.

2. Satisfactory research progress. The student’s thesis committee will evaluate research progress during a fourth term review (see "Review of Progress and Additional Requirements" below) receiving input from both the advisor and the student. Additional thesis committee meetings can be called if the thesis committee or advisor deems it necessary.

Course requirements: Students must register for a minimum of nine graduate hours per term up to a maximum of sixteen. Students must complete at least six graded graduate courses (3 or 4 credits each) in Biochemistry or a related field. A student's advising committee may recommend or require specific courses deemed to be a necessary part of a student’s program of study. First year students typically take two courses, an advanced genetics course in the fall term, and an advanced biochemistry course in the winter term.

Organic/Inorganic Division (students may choose to follow either the guidelines associated with the year they entered the Ph.D. program or with the guidelines listed below)

Cumulative Examinations: Cumulative exams are intended to expose students to areas outside of their own area of research and to assess literature comprehension skills. Students in the Organic/Inorganic division must complete five examinations with a grade of B or better (typically each term of their first academic year and the fall and winter terms of their second year). The exams need not be from the Organic/Inorganic division (i.e. exams from other divisions will count towards the requirement). The typical format of a cumulative exam is a series of questions based on readings from the current literature provided one week before the exam.

Course Requirements: Students must register for a minimum of nine (9) graduate hours per
term up to a maximum of sixteen (16) total hours per term. The programs of first-year students will be worked out in consultation with faculty members at the time of entrance into the graduate program. The student, following discussions of degree and research objectives with the research supervisor, should select subsequent coursework. A student's advising committee may recommend or require specific courses deemed to be a necessary part of a student's program of study.

First-year students typically take two graduate level chemistry courses plus additional hours to meet the minimum of nine required graduate hours. Formal coursework requirements consist of at least six (6) graded graduate courses (3 or 4 credits each) at the 500 or 600 level. At least four of these courses must be in chemistry; two may be in an obviously related field.

Reading and Independent Study Courses (e.g. CH 605) may qualify as one or more of the required six courses with approval by the students committee and if the courses are taken for a grade at a load of at least 4 credits.

A minimum of 18 credit hours is required in Dissertation (CH 603) for the Ph.D. degree. Credit for Research and Thesis is recorded on a P/NP basis. During the term the thesis is defended, the student must be registered for at least 3 hours of Dissertation (CH 603). Graduate students must maintain a cumulative grade point average of 3.00 in all graduate courses taken during the degree program. Students must be registered for at least 3 credit hours during the term in which they are advanced to candidacy.

Advancement to Candidacy: Students in the Organic/Inorganic Division typically have their advancement to candidacy examination during the sixth (6) regular term of their graduate career (excluding summers).

The purpose of the Advancement to Candidacy examination is to assess the student's general understanding of chemistry and the scientific method, and the student's ability to successfully carry out research at the doctoral level. These criteria are evaluated in the context of the student's presentation of one original research proposal and a research report/proposal. The original research proposal probes the student's ability to propose research ideas outside of his/her immediate thesis area and to defend those ideas. The research report/proposal allows an evaluation of the student's research to date, the student's ability to place his/her research in the context of the field and the student's understanding of the future direction of the research that will ultimately constitute the basis of his/her thesis.

In order to Advance to Candidacy in the Organic/Inorganic Division, a student must:

1. Have passed five Cumulative exams with B or better grade,
2. Have taken six graded graduate courses with at least a 3.0 GPA,
3. Prepare an original research proposal and a research report (see below), and
4. Orally defend the original research proposal and research report in an Advancement to Candidacy Exam.

The original research proposal is a written document that describes: (1) an interesting original research problem, and (2) how the student proposes to investigate the problem. The purpose is to demonstrate ability to select significant research questions and to suggest reasonable scientific approaches for solving the problems. Generally, it is appropriate to include an introduction, background, proposed research, and significance sections as well as a bibliography. Typical proposals are ~6 pages, single-spaced, including figures, excluding references. The ideas in the proposal are to be the student's own. Therefore, it is not permissible to ask for or to receive help from any faculty member. Short discussions with a faculty member relating to the appropriateness of the topic are permitted, as are brief
discussions about whether the topic is in-field or out-of-field. In fact, students should consult with several committee members about the general suitability of the topic while the proposal is still in the formative stage (i.e. before committing significant time to the topic). At least four weeks in advance of the exam date, a student should submit a written abstract of the proposed topic to his or her committee chair. While it is not appropriate to discuss the proposal in any detail with faculty, students are encouraged to talk to other students to get their opinions of the proposed ideas. Likewise, students are encouraged to have other students read and critique the proposals.

The research report/proposal summarizes in detail a student’s research accomplishments while working in the mentor’s research group, and future directions and possible extensions of this research area. The purpose is to assess both the student's depth of knowledge in the field and research progress. Since it is expected that students will have worked closely with their advisor on the research work accomplished and future directions of the work, students are encouraged to discuss the content of the research report/proposal with their mentor and other faculty. Manuscripts submitted or in preparation can be submitted in lieu of a formal research report if authorized in advance by the committee. A brief document (2-3 pages) outlining future directions should be included with the manuscript.

The Advancement to Candidacy oral defense is to test the student's ability to think on one's feet when confronted with probing questions and to demonstrate specific, as well as general, chemical knowledge. In both the written and oral presentations of the proposals, the student should stress the question or questions to be examined and indicate clearly how a successful completion of the proposed research would answer the question or questions posed. Students are advised to prepare a 15-20 minute talk on each proposal (i.e. the original research proposal and the research report/proposal). Numerous questions from the committee will lengthen the presentation beyond the twenty minutes prepared time. Generally, two hours are required for a discussion of both proposals.

Physical Chemistry Division *(students may choose to follow either the guidelines associated with the year they entered the PhD program or with the guidelines listed below)*

Cumulative examinations: Cumulative exams are used to expose students to areas outside of their own area of research and to assess literature comprehension skills. Students in the Physical Chemistry division must complete four examinations (typically each term of their first academic year and the fall term of their second year) with an average grade equal to or higher than a B grade to count towards the total of four exams. The exams need not be from the physical chemistry division (i.e. exams from other divisions will count towards the requirement). The typical format of a cumulative exam is a series of questions based on readings from the current literature provided one week before the exam.

Advancement to candidacy in the Physical Chemistry division has three components.

1. **Cumulative Examinations.** The students in the Physical Chemistry division must pass four examinations with an average grade equal or higher than B.

2. **Satisfactory research progress.** The Student’s thesis committee will evaluate research progress during a fourth term review (see "Review of Progress and Additional Requirements" below) receiving input from both the advisor and the student. Additional thesis committee meetings can be called if the thesis committee or advisor deems it necessary.

3. **Advancement to Candidacy Examination.** Students in the Physical Chemistry division
must pass an advancement to candidacy examination. The exam is typically taken in the winter term of a student’s second year and not later than the spring term. The purpose of the examination is to assess the student's general understanding of physical chemistry and the student's ability to successfully carry out research at the doctoral level. These criteria are evaluated in the context of the student's presentation of a research proposal. The proposal and the examination should demonstrate that the student has a sufficient understanding of the relevance of her or his research project in the larger context of the related current research. The student needs to have a vision of the novel scientific directions in which the project could develop in the course of the thesis, as well as of the possible long-term scientific implications of the research performed. A short written proposal will be due one week before the examination.

Research presentation: In the third year the student is required to present a short talk on her or his research as a divisional or departmental seminar or as a (contributed) talk to a national or regional conference. If the talk is presented as a division or departmental seminar it will substitute the student Annual Review of Academic Progress.

Course Requirements: Students must register for a minimum of nine (9) graduate hours per term up to a maximum of sixteen (16) total hours per term. The programs of first-year students will be worked out in consultation with faculty members at the time of entrance into the graduate program. The subsequent program of coursework should be selected by the student following discussions of degree and research objectives with the research supervisor. A student's advising committee may recommend or require specific courses deemed to be a necessary part of a student's program of study.

First-year students typically take two graduate level chemistry courses plus additional hours to meet the minimum of nine required graduate hours per term. Formal coursework requirements consist of at least six (6) graded graduate courses (3 or 4 credits each) at the 500 or 600 level. At least four of these courses must be in chemistry; two may be in an obviously related field.

Reading and Independent Study Courses (e.g. CH 605) may qualify as one or more of the required six courses with approval by the students committee and if the courses are taken for a grade at a load of at least 4 credits.

A minimum of 18 credit hours is required in Dissertation (CH 603) for the Ph.D. degree. Credit for Research and Thesis is recorded on a P/NP basis. During the term the thesis is defended, the student must be registered for at least 3 hours of Dissertation (CH 603). Graduate students must maintain a cumulative grade point average of 3.00 in all graduate courses taken during the degree program.
JOURNAL CLUBS AND SEMINAR REQUIREMENTS

Biochemistry Division

1. All Biochemistry Division graduate students are expected to sign up for, attend, and participate in the Institute of Molecular Biology Student Research Seminar Series. Beginning in the third year, students will be called upon to present a seminar on their ongoing thesis research. This provides an opportunity to present research results to a general audience. Typically, students will be scheduled for a presentation once a year.

2. To improve general seminar and lecture presentation skills, all Biochemistry Division graduate students are expected to sign up for, attend, and participate in the Institute of Molecular Biology Journal Club Series. Beginning in their second year, graduate students will be called upon to present a journal club seminar in this series. Typically, students will be scheduled to make presentations approximately once a year.

3. All Biochemistry Division graduate students are expected to sign up for and attend the weekly Institute of Molecular Biology Seminar Series, which features research seminars presented by invited speakers from other universities. These seminars should provide students with exposure to forefront research covering a wide range of topic areas from experts in their discipline.

Organic/Inorganic Division

1. Students in the Organic/Inorganic Division are required to give two formal seminars for the Ph.D. degree. A literature seminar is given in the Fall term of the second year. A seminar on the student's thesis research is given in the Spring term of the third year. All first-year students are expected to register for CH 623, the course for students giving a seminar. As part of this course, a series of "how to give a seminar" lectures will be given in the Fall term each year.

2. All Organic/Inorganic students are expected to register for and attend CH 607, "Organic/Inorganic Seminar."

Physical Chemistry Division

1. Enrollment in the physical chemistry journal club is required for all physical chemistry students in their first two years but is optional for more advanced students. First year students will give 10-15 minute talks to faculty and graduate students in the division at the end of each term-long research rotation.

2. All Physical chemistry students are expected to register for and attend CH 607, "Physical Chemistry Seminar."

TEACHING REQUIREMENTS

Candidates for an advanced degree are required to participate in the undergraduate teaching program in chemistry for a period of three terms sometime during their graduate career. This typically occurs during the first year of study. Non-English-speaking students are required to take the SPEAK test and to score 50 or higher before they may teach.
RESEARCH REQUIREMENTS
The Ph.D. program prepares a candidate for independent scientific research. Such preparation requires active experience with the research process.

Rotations
All graduate students are required to rotate through three different laboratories during the fall, winter, and spring terms of their first year. Research rotations give students an opportunity to work in three different research environments that both broadens the educational experience and provides a strong basis for the selection of a thesis advisor. Students are expected to discuss possible rotations with faculty before the beginning of each term.

At the end of each rotation period, students will present a 10-15 minute talk on the results of their research project to faculty and students.

Doctoral Research
The ultimate, and by far the most important, requirement for the Ph.D. degree is that the student pursues a research problem to a point where a thesis can be written. The thesis is expected to make a significant and original contribution to the understanding of some aspect of chemistry. After the thesis has been written, it is submitted to the student's thesis advisory committee for review. The candidate must then defend the thesis before the committee and be prepared to answer questions about the thesis and related subjects. Graduate School regulations stipulate that the residency requirement, advancement to candidacy, and the doctoral dissertation must be completed within a seven-year period from the initial date of enrolling, unless an "on-leave" status has been approved.

REVIEW OF PROGRESS AND ADDITIONAL REQUIREMENTS

Prior to Joining a Research Group
A student's progress during the first year will be assessed by quarterly rotation reports, which are submitted by the student's rotation supervisor; course grades; cumulative exams; and teaching evaluations. These are reviewed by the Department Head. Should a minor problem arise, the Department Head will meet with the student to assess the situation and offer advice. For more substantial issues, the Department Head will assemble a review committee of faculty to consult/advise the student and to make appropriate recommendations to the Department Head.

Fourth-Term Review
During the fourth term of residence (usually the fall term of the second year), graduate students are required to meet with their assigned thesis advisory committees. The purpose of the fourth-term review is to assess the student's early progress toward the Ph.D. degree. The review has three parts:

1. To review course requirements and progress
2. To review initial cumulative exam results
3. To review and discuss the student's ideas and progress towards a thesis

This review is not a pass/fail situation, but should be viewed as an opportunity to get better acquainted with your thesis committee and to discuss your research ideas and goals with them.
The student is expected to write a 3-5 page report summarizing ideas and plans for the thesis. Included in this report should be very specific plans for what the student will do first (and why), what the student will do second (and why), etc. This report should be presented to the committee one week before the scheduled review.

The student should also prepare a ten-minute talk describing the proposed work. This talk will be a framework for the discussion at the review.

All members of the committee should be invited to the meeting, but the outside member is not required to attend. Immediately following the review, students will be given an oral evaluation of their performance to date. In addition, a brief report summarizing the meeting and the committee's assessment of the student's progress will be forwarded for placement in the student's file. A copy of the report will be sent to the student. The Department will notify the students when it is time to schedule the exam.

Annual Review of Academic Progress

Each year following advancement to candidacy students will be required to meet with their theses advisory committee during the winter term. For third year students, the annual review can coincide with the Spring term 3rd-year research presentation. The Department will notify the students when it is time to schedule the review. The students should contact all members of their committee and try to accommodate their schedules in arranging a meeting. It is not necessary for all members to attend each year, but a minimal group consisting of the student's thesis advisor, the committee chair, and one other member must be present. Students will be expected to write a brief report, usually 3 - 5 pages, summarizing research progress and plans for the coming year. Students are also encouraged to list other academic activities since the last Annual Review, such as courses taken for a grade, seminars presented and scientific meetings attended, at the beginning of the report.

In addition to the written report, students should be prepared to give a short talk (10 minutes) on their work, including a brief introduction, suitable for committee members who are not specialists in the immediate area of research.

Immediately following the review, students will be given an oral evaluation of their progress. In addition, a brief report summarizing the meeting and the committee's assessment of the student's progress will be forwarded to the Department for placement in the student's file. A copy of the report will be sent to the student. The Department Head will place any graduate students (with the exception of 3rd-year students who are being reviewed as part of their 3rd-year research presentation) for whom a report of the meeting has not been received by the end of the winter term on a list indicating that these students are not making satisfactory progress toward the degree. Possible sanctions include suspension of support.

GUIDELINES FOR DISMISSING A GRADUATE STUDENT

Separation from a Research Group

This category applies to cases in which separation of a student from a research group, but not dismissal from the graduate program, is considered. In these cases, it is assumed that the student has complied with (and continues to comply with) all Department and University requirements and that the student is making satisfactory progress toward the Ph.D.
Separation Prior to Advancement to Candidacy
At any time before advancement to candidacy, a student may be asked to leave a research group by the professor in charge. The student's committee should be informed of the impending action before the student is informed of the professor's decision. A meeting may be held at the request of the student, the advisor, or any member of the committee to clarify the situation, but no formal vote of the committee is required. The student will be expected to work as a teaching assistant to support himself or herself during this time.

Separation after Advancement to Candidacy
Students who have been advanced to candidacy, who comply with Department and University requirements, and who are making satisfactory research progress cannot be separated involuntarily from a research group. The student's committee must meet to arbitrate an agreeable solution to the conflict. In general, failure to follow proper safety protocols and repeated violations of safety procedures during research can result in dismissal from the program.

Dismissal from the Chemistry Program
This category applies to those students who have failed to meet Department or University requirements and to those students who are not making satisfactory progress toward the Ph.D.

Dismissal Prior to Advancement to Candidacy
In this case, the student's committee must meet. The committee has the authority to immediately terminate the student's enrollment in the graduate program, or it can warn the student by establishing the conditions under which the student may continue in the program. (The latter course of action is preferred.) If the student fails to comply with the conditions set forth by the committee, a second committee meeting with the student should be called to dismiss the student.

The full faculty must be informed at a faculty meeting before the dismissal is official. The full faculty may direct the committee to reconsider the dismissal, but no formal vote of the faculty is required for dismissal. Any dismissal from the program should follow ACS guidelines with regard to financial support, which is typically one additional term on a Department-supported TA-ship.

Dismissal at the 6th or 7th Term Review
There are three outcomes possible at the 6th or 7th term review. Students can pass unconditionally, they can be asked to rewrite selected parts of the proposals or to fulfill certain other obligations, or they can fail. Outright failure with subsequent dismissal from the program becomes official only after the full faculty is informed at a faculty meeting. Students for whom the decision is postponed and who fail to do the agreed-upon requirements can be dismissed at a subsequent committee meeting. As always, the dismissal becomes official only after the faculty is informed of the decision at a faculty meeting. In all cases, ACS guidelines should be followed with regard to financial support, which is typically one additional term on a Department-supported TA-ship.

Dismissal after Advancement to Candidacy
The student's committee must meet with the student to establish the conditions under which the student may continue in the program. A second meeting should be scheduled to review the student's compliance with the conditions set forth by the committee. Failure to comply can result in dismissal, as determined by the committee. The dismissal
becomes official only after the faculty is informed of the decision at a faculty meeting. In all cases, ACS guidelines should be followed with regard to financial support, which is typically one additional term on a Department-supported TA-ship.

Dismissal with a Ph.D.
This category applies to students who have been told by their research advisors to finish their research and write a Ph.D. thesis by a certain date. Typically, the deadline is accompanied by notification that financial support will be terminated should time beyond the deadline be required. The student's committee must be notified if a research advisor plans to set a deadline for receipt of a Ph.D. thesis. At a meeting with the advisor and the student both present, the committee should work to set a realistic date for receipt of the thesis. The student must be notified in writing of the date set by the committee. The committee must meet a second time to review the student's progress and to approve the termination of financial support.

Additional Information
Upon matriculation, beginning students will be asked which divisional degree program (Biochemistry, Organic/Inorganic, or Physical chemistry) they wish to follow. At any subsequent time during their course of study, students may transfer from one program to another by simply making up any deficiencies in requirements for the specific program to which the transfer is being made. While the official thesis advisor must be a member of the Department, the thesis research may be carried out with a faculty member from another science department and/or institute, assuming that satisfactory arrangements can be made with the individuals concerned. Such interdisciplinary research programs are strongly encouraged.

TRANSITIONAL MASTERS INTERNSHIP TO PH.D. PROGRAM
Students transitioning from the industrial master's internship program to the Ph.D. program are expected to follow the guidelines indicated above for the traditional Ph.D. program with the following differences.

Rotations
Students are encouraged to do at least two rotations through faculty laboratories before joining a research group; however, students may petition to join a laboratory after only one rotation. Students are expected to contact prospective rotation advisor prior to transitioning to the PhD program. During rotations, students will be supported either by research stipends from a faculty member’s grants or as Departmental GTFs, depending on availability of TA positions during this period. The method of student rotation support will be determined by the prospective rotation advisor.

Fourth-term review and Advancement to Candidacy
Students are expected to complete a “4th term” review 6 months after officially joining a research group. Students are expected to complete their advancement to candidacy exams within 12 months after joining a research group. The 6 and 12-month durations are similar to the traditional Ph.D. student guidelines for the 4th term and advancement to candidacy reviews. The review dates, however, are not tied to the traditional academic calendar to accommodate different possible start dates by students returning from their internships.

Teaching
Graduate students returning from industrial internships would typically complete their teaching requirements by serving as GTFs in the summer master’s immersion courses, teaching at least one quarter during their graduate careers. It is anticipated that most
students will teach the equivalent of at least three quarters via a combination of summer course and/or unfilled Department GTF positions.

Coursework

Coursework completed as part of the industrial masters program will count toward the Ph.D. coursework requirement described above. The students’ research advisor may recommend additional coursework. Students are expected to participate in the divisional seminar series and journal clubs including standard 2nd year and 3rd year Departmental presentations. Students must also participate in Departmental 2nd year literature and 3rd year research talks. The specific timing of these talks may vary from student to student due the variations in start date. Students should discuss with their research advisor to schedule these talks.

MASTER'S DEGREE REQUIREMENTS

The preceding material has been prepared with the expectation that most entering graduate students plan to attain a Ph.D. degree in chemistry. Students who have been admitted to candidacy for the Ph.D. degree without a master's degree do not ordinarily elect to receive a master's degree; however, they may petition to receive an M.A. or M.S. degree if they wish. In addition, for any of a wide variety of reasons there may be some students who wish to complete their graduate training in chemistry with an M.A. or M.S. degree. Following is a summary of Departmental and Graduate School requirements for a master's degree. Students are advised to consult the Graduate School for a complete description of University requirements.

Course Requirements

All work applied toward a master's degree must be completed within seven years, including transferred credits, thesis and all examinations. Students must complete no fewer than 45 credits in courses approved for graduate credit with a grade point average of 3.00 or better in all graded courses. Of this work, 30 hours must be in the Department, 24 must be taken as graded credits, and nine hours must be in courses numbered 600-699. If a thesis is presented as part of the master's degree program, a minimum of nine credit hours in Thesis (CH 503) must be completed.

Master's Thesis

Master's degree candidates are strongly advised to undertake a research problem and write a thesis. The specifications for this thesis should represent a research effort on a problem of significance. The thesis is prepared for review by a faculty committee and is presented orally as a seminar topic. Students must register for a minimum of nine credit hours in Thesis (CH 503) when this option is chosen as part of the degree program.