CASE STUDY HOMEOSTATIC FACADE BY DECKER YEADON, NEW YORK, 2011

Environmental Design Challenge Develop a self-reactive system for buildings to control solar heat gain and reduce energy consumption in climates with large temperature difference.

SCOPING

Design Question: How might we have the building control heat by itself responding to the environment **Biologized Question:** How does nature regulate internal heat? How does nature regulate temperature?

Retrieved from: archdaily.com

What it is

Prototype for an expanding, contracting architectural skin.
A double-skin glass facade system that opens and closes itself in response to the internal temperature of the building.

Latest green-building technology

What it does

Electively regulating temperature throughout a building's interior.
Material itself expands and contracts responding to sunlight condition to regulate heat gain.

- Reduce energy consumption and its associated emissions.

Its Advantage

- No computer programing or physical adjustments required.

Low energy consumption

Superior precision, regulation can be highly localized.

(Brow, B,. & Swac, M., p.138) (Laba, S., fastcodesign.com)

"How they can utilize the most cutting edge material technologies in design applications, offering innovative solutions."

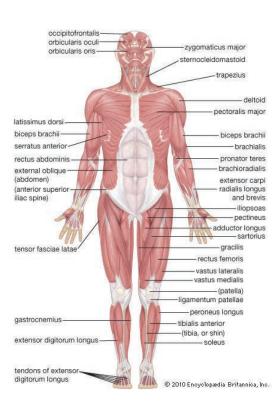
(Minn. K., archdaily.com)

STEPS IN THE PROCESS

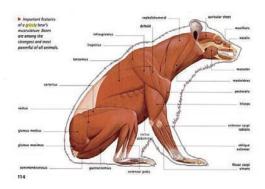
URBAN HIGH-RISE WITH EXCESS HEAT GAIN FROM DAYLIGHT DURING CERTAIN TIME OF DAYS

SOLAR CONTROL ON BUILDING ENVELOPES RESPOND-ING TO DAYLIGHT CONDITIONS

HOMEOSTASIS REGULATE THEIR INTERNAL CONDITIONS


ANIMAL MUSCULATURE EXPAND AND CONTRACT TO REGULATE TEMPERATURE SUCH AS SWEATING

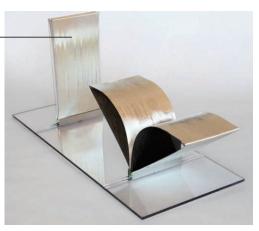
Retrieved from: asknature.org


NATURAL ORGANISM ARCHITECT EMULATE

Homeostasis in organisms allows them to regulate their internal conditions such as temperature.

(asknature.org)

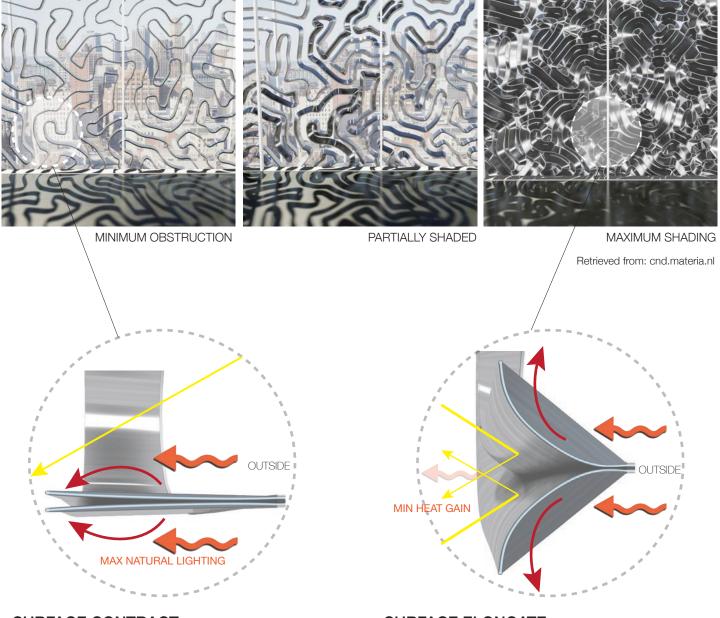
Retrieved from: weebly.com


How the Organism Was used As A MODEL

Dielectric Elastomers (DE), clad in silver electrodes.

Electroactive Polymer (EAP) that expand under electrical current.

Provide roller at top edge of core for fluid movements


(Brow, B,. & Swac, M., p.138)

Retrieved from: cnd.materia.nl

INTERIOR ELEVATION PHASES

RESPONDING TO DIFFERENT HEAT-GAIN CONDITIONS

SURFACE CONTRACT MINIMIZE OBSTRUCTION AND ALLOWS MAXIMUM OF NATURAL LIGHTING TO COME INTO THE SPACE SURFACE ELONGATE CREATES MAXIMUM SHADING TO PREVENT DIRECT HEAT GAIN AND REFLECT INTERIOR ILLUMINATION

FALL 2017 / ARCH 410 BIOMIMICRY & PARAMETRIC DESIGN / INSPIRATION PRESENTATION / INSTRUCTOR: NANCY CHENG / FANGZI HE