
Syllabus

BIO
Department of 
Biology

+ Bi 410/510: Introduction to Programming for Biologists

Winter 2018

Biologists who collect and analyze data often develop a complicated “workflow” that involves several differ-
ent steps. In order to get data from one program to another, scientists find themselves reading through large
text files, copying and pasting between documents, and often reformatting the data for the next application.
That’s not only tedious, it’s error-prone. These operations should be automated as much as possible.

This class is a hands-on introduction to the practical skills required to automate data analysis workflows.
We’ll start by learning to use a command line interface, where users type out the instructions that tell the
computer which program to run and where to save the output files. Next we’ll see how to save commands
in a simple script, so the same operations can be performed automatically.

The course continues with basic concepts in Python programming: breaking complex tasks into manageable
pieces, reading and writing data files, and using iteration ("loops") and other control structures. Python is
also a great scripting language, and we’ll see how to write Python scripts so we can develop fully automated
computational workflows.

We will also see how to find code libraries and use software written by others, in particular modules written
specifically for biology applications. If time permits, there will be projects using databases and Python
libraries for statistical analysis and data visualization.

Course Information:

Instructor: John Conery
conery@uoregon.edu

GTF: Alex Gutierrez
agutier4@uoregon.edu

Office Hours: times and locations will be posted on Canvas

Lectures: MW 4:00 – 5:20, 252 Straub

Lab: F 2:00-3:50, 129 Huestis

Textbook: Practical Computing for Biologists, by Steven Haddock and Casey Dunn,
http://practicalcomputing.org.

Prerequisites: None (no prior computer programming experience is necessary)



Grading

Grades will be based on the total number of points earned during the term. There are three ways to earn
points:

• short programming projects that introduce computing skills and give students a chance to practice
using those skills

• a series of self-paced milestone exams that can be taken in lab sessions

• short in-class exercises, some of which may involve pre-class reading assignments

Programming Projects (16 Points)

There will be eight short projects, assigned (approximately) one per week, starting with the first week.

For these projects students are encouraged to work in small groups of two or three people. We will check
each project when it is submitted. If the work is satisfactory, each person in the group will earn 2 points. If
the work is not satisfactory the group can revise and resubmit a new version, correcting any issues identified
by the graders.

There is no due date for projects, but some projects are prerequisites for a milestone exam and must be
completed before a student takes the exam (see the table below).

Milestone Exams (30 Points)

Milestone exams are designed to test how well a student knows the main concepts:

• text files and data formats

• shell commands (Unix command line interface)

• basic Python expressions and commands

• working with lists in Python

• reading and writing files with Python

• writing scripts with Python

• an advanced topic TBD (e.g. data analysis or data visualization)

Exams will be administered during lab. The first hour of the weekly lab period (Fridays from 2:00 to 4:00)
will be a general discussion and work session. In the second hour students can take a milestone exam if they
want, or continue working on their own or with group members on other projects. Exams must be completed
on one of the department laptops in the Huestis lab (room 129).

The exams are entirely self-paced – a student can take any exam at any point during the term, once they
have completed the corresponding programming project.

A student can repeat an exam, up to a maximum of three attempts, and we will use the highest score.

For more information about these exams see the FAQ section on the Canvas web page for this course.



In-Class Exercises (4 points)

Throughout the term there will be other opportunities to earn points by participating in group projects. Some
exercises will be based on reading assignments, others will be in-class group programming exercises.

Exercises will be announced ahead of time during class and posted on Canvas.

Final Exam Period

There will be no midterm exam or final exam. The final exam period for this term (2:45 to 4:45 on Tuesday
March 20) will be an open period where students can take any milestone exams they have not yet completed.

Final Grades

This table shows the number of points avaialable for each project and milestone exam:

Topic Unit Name Project Points Milestone Exam Points

Text Files text 2 1
Shell Commands shell 2 4
Intro to Python python 2 5
Data Structures lists 2 5
Reading and Writing Files io 2 5
Python Scripts scripts 2 5
Compute Severs remote 2 –
TBD advanced 2 5

Total 16 30

In-class exercises will be worth a total of 4 points, so the total number of points possible is 50: 16 from group
projects, 30 from milestone exams, and 4 from class exercises.

Letter grades will be assigned based on the number of points a student has earned throughout the term.

Score Grade Comment

15 D completed all group projects but did not pass any milestone exams, some participation in class
21 C− all projects, earned mininum score on all milestones, some participation
23 C
26 C+ all projects, working programs on half of the milestones, full participation
32 B−
38 B average 3 points on exams or maximum score on half of them
40 B+
42 A−
44 A average 4 points on exams
50 A+



Learning Outcomes

I = introduce
D = develop
M = master

(1) Know how to use a terminal emulator and command line interface [D/M]

(2) Know how to implement simple functions in Python [D]

(3) Understand basic data structures in Python, how they are used [D]

(4) Learn general techniques for developing, testing, and debugging software [I/D]

(5) Be able to find, install, and use Python modules [I]

(6) Know how to use an SQLite database to store project data [I]

(7) Know how to use R or Pandas (a Python module) for analyzing and plotting data [I]

Students should know about the command line interface for several reasons: it provides useful background
for writing Python programs that read and write files, it’s required for writing scripts (programs that control
other applications, e.g. as part of an analysis pipeline), and it’s necessary for running jobs via queuing
systems on high performance computers.

The “Python Literacy” goal for this course is learning about the fundamental data structures – strings, lists,
and associative arrays (called “dictionaries” in Python) – and how to use them. Students will write a few
simple programs that use these objects.

SQL and R are both valuable for biology projects. Time permitting, these languages will be introduced in the
middle of the term and used along with Python for projects in the second half.


