Bi 213 General Biology III: Populations
Information and Syllabus for Summer 2015
August 10 - September 3

Tobias Policha (Lecturer) tpolicha@uoregon.edu; Office hour: Tuesday 11am-12pm
Nicholas Depatie (GTF) ndepatie@uoregon.edu; Office hour: TBA
Mary Wood (GTF) maw@uoregon.edu; Office hour: TBA
Arleigh Hitchcock (Lab Assistant) arleigh@uoregon.edu; Office hour: TBA
Julia Metzler (Lab Assistant) jmetzler@uoregon.edu; Office hour: TBA

Office Hours and Tutor Sessions will be held in 129 Huestis.

Course Overview
In this third term of the general biology sequence we build on concepts learned in Bi 211 and Bi 212 to study processes and patterns that occur between different organisms and with organisms and their environments. Major areas of study include processes of evolution, evolutionary patterns, population genetics, population growth, species interactions and biodiversity, and factors affecting ecosystem productivity.

The course is designed primarily for students who are science majors, but is open to any student with knowledge of math (Math 95 or greater), chemistry (Chem 211 or higher), and genetics (Bi 211). Students who complete Bi 211 through 214 and have taken organic chemistry are eligible to take any of the 300-level biology courses. Biology majors must complete either this sequence (Bi 211 to 214) or the Foundations sequence (Bi 251 to 253).

Course Goals
There are three major kinds of goals in the general biology sequence. This session we emphasize:

Concepts - You will gain some basic knowledge about the fundamental concepts of ecology and evolution that will help you better understand Earth's biological history, how living organisms function and how human actions influence other life on the planet.

Skills - It is important for all citizens to be scientifically literate, whether or not they are practicing scientists. Part of literacy is the ability to find information, evaluate the information and communicate or act on that information. We will practice these skills in
this course and will work on the ability to analyze and understand quantitative information (such as graphs).

Science - To learn to be a better scientist you will read papers from various sources and discuss not only the findings, but how the science was conducted. You will practice being a scientist by learning to form and test hypotheses, by doing experiments, by making observations, and by using models and simulations. You will gain an understanding of how ecologists and evolutionary biologists work. In particular, we hope you will come to appreciate that science is not just a body of facts, but a way of learning about the world.

Course Format

Lectures
(Monday, Tuesday, Wednesday and Thursday 9:00-10:50 in 240C McKenzie)
You should do the assigned readings before coming to the lectures. During some of the lectures there will be activities that will help you to learn difficult concepts; these will often be done collaboratively with two or three students discussing the problem together for a few minutes before discussing the problem as a whole class. Your active participation in lecture will help you to better understand the material and prepare you for exams.

Lab/Discussion
(Tuesday and Thursday 12:00-1:50 OR 2:00-3:50 in 112 OR 129 Huestis)
We consider the labs to be an integral part of the course. We have tried to design active learning experiences that will broaden your understanding of what the science of biology is all about. There will be labs dealing with population genetics, plant diversity, phylogenetics, and behavior. Lab handouts will usually be turned in at the end of each lab or at the beginning of class the following day (we will announce this during each lab). Part of the grade will be based on participation in lab. Some labs cannot be made up because they involve special material or equipment. Labs that involve computer exercises may possibly be made up during office hours only if arrangements are made in advance of the lab.

Problem Sets
There are four problem sets due during the session. The problem sets will be posted to Canvas. They will be graded on a 5-point scale. We will collect these at the beginning of lecture on the day that each is due (see schedule for specific due dates). The solutions to the problem sets will be available on Canvas. We will be prepared during office hours to help you work through the problem sets.
No late homework accepted.

Field Trip
Each student will take a field trip with the class to Fall Creek to investigate succession of woody plants. The material covered on the trip is an integral part of the course. The field trip will take place on Friday August 21st and Saturday August 22nd (each student
will only go on one of the days). We will depart campus at 10 a.m. and return no later than 6 p.m.

Clickers (Personal Response Systems)
Clickers will be used in class to encourage participation and to provide valuable feedback to instructors and students. You will need to register your clicker on the course Canvas site. Points may be earned two different ways: (1) 1 point will be awarded for responding to at least half of the questions in a lecture whether the question is answered correctly or not; (2) 1 point for incorrect answers to each question, 2 points for correct answers. The total for the clicker portion of your grade will be based on 85% of the total possible points.

Issues Project
Working in groups of 2-3, you will do a class project culminating in an oral presentation given during one of the last two labs of the session. Projects will focus on a scientific issue pertaining to ecology or evolution. Projects, worth 20% of your grade, will consist of three parts: annotated bibliography (8%), presentation plan (2%) and a group oral presentation (10%, group grade). There will be no late presentations. Project guidelines, requirements, and suggested topics can be found in the course packet.

If you are retaking this course, you will not be allowed to resubmit issues project work from the previous time you took Bi213. The work you do this term must be original.

Exams
There will be two exams: a midterm and a final. The exams will cover material from all aspects of the course including lectures, labs, readings and problem sets. Your problem sets will help you to concentrate on the reading material that we think is particularly important as well as give you practice with the kind of questions you will see on the exams (many of the questions in the problem sets are from previous-years' exams.) Exams will be designed to probe a deep understanding of the concepts and principles discussed, and an ability to apply the concepts to novel situations rather than a memorization of detail. Exams cannot be made up. The final is scheduled for Thursday September 3 at 9:00am.

Midterm regrade policy - To be fair to all students, it is essential that all exams be graded according to the same criteria. If you wish to submit a midterm (not an option for the Final) for a regrade, you must use the following guidelines. First, refer to the exam key available on Canvas to see how closely your answer(s) match the key. If you still wish to have a midterm exam answer regraded, you must submit a written statement along with your original exam, explaining specifically why your answer merits a higher score by Monday the 24th. Keep in mind that we will regrade the entire exam and a regrade may result in a higher, lower, or unchanged score. Please do not abuse this system. We reserve the right to eliminate this option at our discretion.
Evaluation

<table>
<thead>
<tr>
<th>Component</th>
<th>% of Total Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labs</td>
<td>12</td>
</tr>
<tr>
<td>Field Trip</td>
<td>5</td>
</tr>
<tr>
<td>Problem Sets</td>
<td>4</td>
</tr>
<tr>
<td>Clicker Scores</td>
<td>4</td>
</tr>
<tr>
<td>Exam (Midterm)</td>
<td>25</td>
</tr>
<tr>
<td>Exam (Final)</td>
<td>30</td>
</tr>
<tr>
<td>Project</td>
<td>20</td>
</tr>
</tbody>
</table>

Lecture and Lab Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Lectures</th>
<th>Labs</th>
</tr>
</thead>
</table>
| 1 | 8/10 | L1: Mechanisms of evolution
- natural selection; Darwin's finches
L2: Population genetics
- Hardy-Weinberg; forces of evolution
L3: What is a species?
- species concepts
- speciation, isolating mechanisms
L4: Using phylogenetics to understand evolution
* Homework #1 due at beginning of lecture | Lab 1
Population genetics: Part I
Introduction to issues project
Lab 2
Population genetics: Part 2
* Topic choices for project due |
| | 8/11 | | |
| | 8/12 | | |
| | 8/13 | | |
| 2 | 8/17 | L5: Earth history and the origins of life - major events
- evolutionary trends in the plant kingdom
L6: Behavioral biology
* Homework #2 due at beginning of lecture | Lab 3
Plant diversity
(Bring your textbook to lab today)
* Annotated bibliography due
Lab 4
Phylogenetics & plant diversity
Plan for field trip |
<p>| | 8/18 | | |
| | 8/19 | L7: Population ecology I - growth models | |
| | 8/20 | Midterm exam (Lectures 1-6 & Labs 1-3) | |
| | 8/21 or 22 | Field trip to Fall Creek (10:00-6:00) | |</p>
<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Lectures</th>
<th>Labs</th>
</tr>
</thead>
</table>
| 3 | 8/24 | L8: Population ecology II
- regulation, human populations
* Presentation plan due by 9 a.m.
L9: Community ecology I
- introduction, species interactions
* Homework #3 due at beginning of lecture | **Lab 5**
Honey Bee Behavior
Prepare presentations |
| | 8/25 | L10: Community ecology II
- keystone species, ecological succession
* Presentation plan due at beginning of lecture | **Lab 6a**
Project presentations |
| | 8/26 | L11: Community ecology III
- biodiversity, conservation biology | |
| 4 | 8/31 | L12: Ecosystems I
- introduction, productivity
L13: Ecosystems II
- energy flow, introduction to nutrient cycles
* Homework #4 due at beginning of lecture | **Lab 6b**
Project presentations |
| | 9/1 | L14: Ecosystems III
- nutrient cycles, global change | |
| | 9/2 | **FINAL EXAM (cumulative)** | |
| | 9/3 | END OF TERM Enjoy your break! | |

Course Materials

Textbook
The text, Biological Science, by S. Freeman, 3rd, 4th or 5th edition, should be used as a general reference. The readings (see separate document) include background material useful for preparing for lecture and for studying for exams. We don't expect you to remember all the details in the text. A good strategy would be to skim over the entire chapter first, concentrating on the major concepts, then to read more carefully the specific pages that are assigned. See the ‘Preface to Students’ right before Chapter 1 for a good introduction to using the text.

Articles
Several articles from scientific journals will be assigned throughout the session. They are included on the readings list below and will be announced in class. The articles will be available for download from Canvas.
Course Packet
This packet contains handouts you will need during the session including lecture handouts, lab handouts, and the issues project instructions.

Calculator
You will need a scientific calculator capable of doing natural logarithms and square roots for use on problem sets, in lab, and on exams. NO CELL PHONES.

Journal Articles
These articles will be used in lectures, homework problem sets and exams. They are listed in the order in which you will read them. See the reading list for specific dates. They will be available on the Bi213 course Canvas site.

Natural Selection and Population Genetics

Earth History

Behavior

Conservation Biology

Ecosystems

Accessible Education Center
The University of Oregon is working to create inclusive learning environments (more info at http://aec.uoregon.edu). Please notify us if there are any aspects of the instruction or design of this course that result in barriers to your participation. If you have a documented disability and anticipate needing accommodations in this course, please talk to your instructors during the first 2 days of classes. Please request that the Accessible Education Center Counselor send a letter verifying your need. Please call 541-346-1155, email uoaec@uoregon.edu, or drop by 164 Oregon Hall to schedule an appointment.
Professional Conduct
We will work hard to make this course valuable to your learning. We welcome suggestions from you at anytime about things you think could be done to improve the course. In return, we ask that you arrive to lab and lecture on time and stay until class is over without making unnecessary noise that could distract your classmates. Please do not use and put away your personal computers, cell phones, tablets or other electronic devices during lecture or lab. Computers are not a very good way for taking notes in biology courses and they are distracting to other students.

Cheating devalues the reputation of our institution, its faculty, its students, and your academic degree. Academic misconduct is particularly unfair for students who do their work with integrity and honor. The University Student Conduct Code (available at http://uodos.uoregon.edu/StudentConductandCommunityStandards/tabid/68/Default.aspx) defines academic misconduct. Students are prohibited from committing or attempting to commit any act that constitutes academic misconduct. By way of example, students should not give or receive (or attempt to give or receive) unauthorized help on assignments or examinations without express permission from the instructor. Students should properly acknowledge and document all sources of information (e.g. quotations, paraphrases, ideas) and use only the sources and resources authorized by the instructor. If there is any question about whether an act constitutes academic misconduct, it is the students’ obligation to clarify the question with the instructor before committing or attempting to commit the act. Additional information about a common form of academic misconduct, plagiarism, is available at http://library.uoregon.edu/guides/plagiarism/students/index.html.

We want you to learn and to do well in the course, but we will not tolerate academic dishonesty. Sanctions for academic dishonesty will be a lowering of the final grade or failure. If you find yourself in trouble, or if you are aware of academic dishonesty occurring, please talk to one of the instructors.

Personal crises happen --if you are having difficulties that interfere with your ability to do well in the class, please tell one of the instructors as soon as possible. We may be able to refer you to someone for help or to make special arrangements if the need is real and if you have done your best to deal with the situation in a timely manner. There is a crisis center on campus that you should not hesitate to call if you, or a friend, are in need of assistance. Their phone number is (541) 346-4488. Finally, we promise to respect you as students and as individuals, and ask that you return that respect to the staff and to your classmates.

Non-discrimination Policy
The University of Oregon affirms the right of all individuals to equal opportunity in education and employment, without regard to race, color, religion, sex, gender, age, handicap, national origin, sexual orientation, or any other extraneous consideration not directly and substantively related to effective performance.