Signaling crosstalk

Figure 6.32 The Biology of Cancer (© Garland Science 2007)

Yeast Morphogenetic Transitions

MAP Kinase Cascade

The pheromone response pathway

pheromone

Ste2/3 + Gαβγ Ste20 Ste11/ Ste50 Ste7/ Ste5 Fus3 Ste12

Receptors and G-protein

MAP kinase cascade

Transcription factor

Signaling pathways share components

Scaffold proteins may help solve some of the specificity problem

Lamson et al. (Pryciak) Current Biology 16:618

Scaffolds also exist in mammalian cells

Figure 1. Scaffold proteins govern the selection of signal output upon Rac activation. PIX, a Rac-GEF, forms a molecular complex with the serine/threonine protein kinase Pak1. This facilitates the stimulation of Pak1 upon Rac activation, thereby, promoting the polymerization of actin, which results in rapid changes in the actin-based cytoskeleton and the formation of membrane ruffles known as lamellipodia. Two other guanine-nucleotide exchange factors for Rac (RacGEFs), Tiam1 and Ras-GRF1 (not shown), bind to the scaffold proteins JIP2 and JIP1, leading to the preferential activation of p38 and probably JNK by Rac, respectively, and the consequent phosphorylation of nuclear transcription factors that regulate gene expression. Arrows represent activation events either by direct binding or by phosphorylation as in the case of the kinases (orange) and transcription factors (brown).

Another example of scaffolds and specificity

Nature Reviews | Molecular Cell Biology

Two-Hybrid System to Detect Protein Interactions

Binding site

Reporter gene

Plasmids for expression of 2-hybrid constructs

Another depiction of a 2-hybrid experiment

D. Two fusion proteins with interacting Bait and Prey

Ste5 interacts with each member of the MAP Kinase cascade

Strain#		Units β-galactosidase Activity* B42 Fusion*					
	LexA Fusion*	B42	Ste5	Ste11	Ste7	Fus3	Kss1
I STES	Ste20	9	33	61	15	20	19
	Ste11	6	5262	103	9	29	2688
	Ste7	20	10699	26	59	1612	12790
	Fus3	43	677	1379	891	61	86
	Kas1	34	1931	2147	2750	110	
	Ste11N	5	681				
	Ste11C	5	4				
	Ste7N	8	6				
	Ste7C	18	2616				
	Bicoid	10	14	14	16	18	2
II sfe5.d	Ste11		4840	99	33	60	326
	Ste7		4714	45	48	4270	3110
	Fus3		751	593	1675	53	
	Kas1		688	2250	2907		
III fua3.4	Ste11		17250				
	Ste7		7840				
	Fus3		3200	2000	3750		
	Blooid		41				
6-204-21-2044	Chevil 1		10050				
10932 88202 .	80011		7460	- 6-1	1.1		
	5087	-	- 7400	1 1 1000	(700		
	Pusa .		1 0400	4000	4700		
	Bicold						
fus3⊿ ste11⊿	Ste11	× .	10620				
	Ste7		13260				
	Fus3		3700	1800	4250		
	Blooid		66			,	
fus3_d ste7_d	Ste11		11900				
	Ste7		1401				
	Fus3		1138	737	1800		
	Bicold		40				

Table 1. ß-galactosidase Activity Induced by Interactions between Ste5, Ste20, Ste11, Ste7, Fus3, and Kas1 in a Two-Hybrid System in Ste* and Ste* Strains.

2-Hybrid tests localize interaction sites on Ste5

Ste11, Ste7, Fus3, and Kss1 interact with different portions of Ste5

IP experiments reveal that Ste5 interacts with each member of the MAPK cascade

IP experiments, continued

Fus3 is activated by alpha-factor in a Ste5-dependent manner

Glycerol gradient centrifugation reveals a multi-protein complex

Quantitation of protein levels across gradient

Figure 1 Yeast mating and high-osmolarity MAPK pathways require scaffold proteins Ste5 and Pbs2.

Engineered protein-protein interactions can substitute for the native Ste5-Ste7 and Ste5-Ste11 interaction

PDZ domains are protein-protein interaction domains

* Indicates mutant binding sites on Ste5

Ste5 is tagged with HA epitope; IP with anti-HA, probe with anti-NOS

Artificial interactions demonstrated by mating test

Mating test: strain with Ste5 construct is leu-; test for mating to trp- cells of other mating type. Growth will be observed on minimal medium only if mating has occurred.

... and by quantitative mating tests and phosphorylation of Fus3

Can one engineer a new scaffold to direct a different output response?

The diverter scaffold works as designed

Diverter directs phosphorylation of Hog1

Diverter directs same change in gene expression as wildtype osmo-response

Figure 4 Mutational analysis of diverter scaffold requirements.

S Park et al. Science 2003;299:1061-1064

Growth on high salt in presence of $\alpha\mbox{-factor}$

Additional regulators of pheromone response A

Can a scaffold be engineered to alter kinetics of response to these regulators?

Recruited regulators attenuate or stimulate response

Recruited regulators change time course and dose response

Two MAPK targets for Ste7

What is role of Ste5 in activation of Fus3

A new role for Ste5

А

Ste5 is required for activation of Fus3 but not Kss1

Requirements for activation of Fus3 by Ste7

Definition of a minimal scaffold version of Ste5

Fus3 binding site on Ste5 is not required but docking sites on Ste7 are

The idea is, Ste7 tethers Fus3 to the Ste5 minimal scaffold

G

Minimal components and interactions

Ste7 tethers Ste5-ms to Fus3

Ste5 changes the Kcat of Ste7 for Fus3, not the Km

A Ste7EE + MAPK $\xrightarrow{k_1}$ Ste7EE • MAPK $\xrightarrow{k_{cat}}$ Ste7EE + MAPK-PP

Fus3 = - scaffold = + scaffold E^*S^{\dagger} E^*S^{\dagger} E^*S^{\dagger} E^*S^{\dagger} E^*S^{\dagger} E^*S^{\dagger}

Ste5 mutants with greater than 100-fold reduction in phosphorylation of Fus3 by Ste7

Mutants fall in two regions on Ste5 surface

The known Ste7 binding site

A region dubbed the coactivator loop

Ste5ms mutants affect different aspects of phosphorylation of Fus3 by Ste7

Mutant B affects Ste7 binding

Mutant C affects k-cat

2 possibilities for how Ste5 stimulates phosphorylation of Fus3 by Ste7

- 1. Ste5 makes Ste7 a better kinase
- 2. Ste5 make Fus3 a better substrate

Model

