Work away! Thanks sincerely for making our poster sessions tops!... BI 199 APWT Discussion 13^{...Lucky!!!}

- I. <u>Announcements</u> Poster Session Group I next Tuesday, May 20! Q? No Discussion this Thursday designed for time to work on posters! Hooray!!
- II. <u>Discussion</u> NSCA Strength & Conditioning Journal, Apr 2012, 34(2), 27-36.
 - A. Are deep squats a safe & viable exercise? B Schoenfeld & M Williams.
 - B. Exploring the front squat. SP Bird & S Casey.
- III. How Skeletal Muscles Work & Adapt
 - Please see resources on reserve in Science Lib
 - A. What is muscle made of?
 - **B.** How is muscle organized?
 - C. What do thick filaments look like?
 - D. What do thin filaments look like?
 - E. How do muscles contract?
 - F. How do muscles adapt? Hypertrophy, atrophy, fiber types

IV. <u>Questions/Discussion</u>?

Comments

Questions?

NSCA Articles Discussion

Broccoli Analogy?

Bare Zone

Rope Climb or Tug of War Grasp, then Regrasp!

Relaxation Phase

- 1. Excitation by nerve fiber
- 2. Conduction by T-tubules
- 3. Ca²⁺ release by SR

Contractile Phase

SOURCE: VPL + Diann N Laing, 1989

A. Malcolm Campbell Davidson College, Davidson, NC http://www.bio.davidson.edu/courses/movies.html

Musclcp.mov

Adaptations to Exercise? Body Levels of Organization? Which Body System?

Adaptations to Exercise?

Mode, Intensity, Duration, Frequency, Distribution of Training Sessions? Conditions of Environment? Individual?

Atrophy decrease in size & strength Hypertrophy increase in size & strength

Women & Hypertrophy?

What happens in muscles at cellular & subcellular levels?

Hypertrophy:IncreasedNumber of Myofibrils[]

Thick & Thin Filaments

Myosin & Actin Molecules

Characteristics of Skeletal Muscle Fibers

	TYPE OF FIBER		
 Characteristic	Slow Oxidative (Type I)	Fast Oxidative (Type IIa)	Fast Glycolytic (Type IIb)
Myosin-ATPase Activity	Low	High	High
Speed of Contraction	Slow	Fast	Fast
Resistance to Fatigue	High	Intermediate	Low
Aerobic Capacity	High	High	Low
Anaerobic Capacity	Low	Intermediate	High
Mitochondria	Many	Many	Few
Capillaries	Many	Many	Few
Myoglobin Content	High	High	Low
Color of Fibers	Red	Red	White
Glycogen Content	Low	Intermediate	High
L S 2012 tob 9.1 modified			

LS 2012 tab 8-1 modified > VP Lombardi 1989

Changes in Muscle Due to Endurance Training

- 1 Mitochondria, # & size
- Mitochondrial (aerobic) enzymes
- including those specific for fat burning
- Vascularization of muscles (better blood flow)
- Stores of fat in muscles accompanied by
- Triglycerides/fats in bloodstream
- † Enzymes: activation, transport,
- breakdown (β -oxidation) of fatty acids
- Myoglobin (enhances O₂ transport)
- Resting energy levels which inhibit
 - sugar breakdown
- Aerobic capacity of all three fiber types.

Changes in Muscle Due to Strength Training

Size of larger fast vs smaller slow fibers CP as well as creatine phosphokinase (CPK) which enhances short-term power output ¹ Key enzymes which help store and dissolve sugar including glycogen phosphorylase (GPP) & phosphofructokinase (PFK) I Mitochondrial # relative to muscle tissue Vascularization relative to muscle tissue Splitting of fast fibers? Hyperplasia? With growth hormone (GH), and rogenicanabolic steroids (AAS)?

Which end of continuum?

Which energy nutrient/s?

+ Which specific muscles?

Discussion

Comments

Questions?