

- I. <u>Announcements</u> Anatomy & Physiology Lab today! Motivation to Study! Remember to complete p 3-7 dietary record in LM < Lab 3 next wk! Estimating serving sizes. Q?</p>
- II. Cell Physiology... Lysomes, Peroxisomes, Mitochondria
- III. Anaerobic vs Aerobic Metabolism Metabolism
  - LS ch 2 pp 26-33, fig 2-15, 2-9, 2-10, 2-11, 2-12 +...
  - A. Anaerobic: Cytosol ATP-PC immediate vs. Glycolysis
- B. Aerobic: Mitochondria citric acid cycle, electron transport
- IV. Introduction to Genetics LS pp 20-1 + Appendix C
  - A. What's a gene? Where? p A-18, fig C-2, C-3
  - B. Why are genes important? p A-18
  - C. What's DNA & what does it look like? pp A-18 thru A-20
  - D. How does information flow in the cell? fig C-6
  - E. How does DNA differ from RNA? pp A-20 thru A-22
  - F. Genetic code? pp A-22, A-23
  - G. How are proteins made? Class skit! fig C-7, C-9

#### Biology can help you with all phases of your life! In fact, it is the science of life!

55 One-in-a-million 57 Messenger 58 Answer to the algebra problem

#### **FUN & GAMES: CROSSWORD**

| 1  | 2  | 3  | 4  | 5  |    | 6  | 7  | 8  | 9  |    | 10 | 11 | 12 | 13 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 14 |    | +  | 1  |    |    | 15 |    |    |    |    | 16 | 1  | 1  | t  |
| 17 |    | t  |    | -  | 18 |    |    |    |    | 19 |    | 1  | -  | +  |
|    |    |    | 20 | 1  | -  |    | 21 | 1  |    |    |    | 22 | -  | T  |
| 23 | 24 | 25 |    | T  | 1  | 26 |    | 27 | T  |    | 28 |    | 1  | t  |
| 29 |    | T  | T  |    | 30 |    | 31 |    | -  |    | 32 | T  |    | t  |
| 33 |    |    |    | 34 |    | 1  | -  |    |    | 35 |    |    |    | ì  |
|    | 36 |    | 37 |    | T  | T  | 1  | 38 | 39 |    |    |    | 40 |    |
|    |    | 41 | 1  |    |    |    | 42 | -  |    |    |    | 43 |    | 44 |
| 45 | 46 |    |    |    | 47 | 48 |    |    |    |    | 49 |    | T  | t  |
| 50 |    |    |    | 51 |    | 1  |    | 52 | T  | 53 |    |    | 1  |    |
| 54 | T  | 1  |    | 55 | 1  |    | 56 |    | 57 | -  |    |    |    |    |
| 58 |    |    | 59 |    |    |    | -  | 60 |    |    |    | 61 | 62 | 63 |
| 64 | -  |    |    |    | 65 |    | 1  |    |    | 66 |    |    |    |    |
| 67 | -  | -  | +  |    | 68 | 1  | -  | -  |    | 69 | -  | 1  | -  | +  |

#### ACROSS

1 Goose egg

6 "Major" beast

10 Porter's regretful Miss

14 From Basra, say 15 Time to stuff

stockings

16 (sigh)

17 Start of an algebra problem

20 Toby filler

21 To (perfectly) 22 Heating option

23 Least fresh

27 Throw one's support behind

29 "\_\_\_ nervel"

30 Poet with a "fanatic's heart'

32 Passage preventers. often

33 Ouébec assent

34 Jettison

35 Outgoing flight stat 36 The rest of the

algebra problem

41 Kitty

42 °L' c'est moi"

43 Atternative to Yahoo!

45 It has feathers and flies 47 Black Sabbath's genre

49 Benchmarks: Abbr. OThink tank types

Like stir-frv

5. Meditation Sour 55 One-in-a-million

57 Messenger

58 Answer to the algebra problem

be Steaming

65 Causes of some celebrity clashes 66 Link with

67 Fictional Flanders and Devine

68 Kind of day for a competitive cyclist 69 Historic English

county

#### DOWN

1 Beiderbecke of jazz 2 Dadaist Jean 3 Guy's mate 4 Regard as identical

5 Fine cotton thread

6 Prefix with -form 7 Parks in front of a

8 Sonnet part

9 Xenophobes' fear 10 Muesli morsel

11 Mrs. Robinson's movie

12 "Fine with me"

13 Classic quintet 18 Response to "Who,

me?°

19 Marked, in a way 23 Menu general

24 Gumbo thickener

25 "Wow!"

26 Actress Harper of 'No Country for Old Men\*

28 Savvy about

31 Until now 34 Cause of a boom and

bust? 35 Young newt

37 Smidge 38 "Take \_\_\_\_ a sign"

39 Subject of a cap, in sports.

40 Didn't go by foot 44 "Dropped" drug 45 Compound in Agent

Orange 46 Venerate

47 More Scroogelike 48 Tee off 49 Equilibrium

51 Battlefield fare: Abbr.

53 Pull together 56 Slaughter in baseball

59 Some highlight reel features, for short

60 Summer hrs.

61 Parisian's possessive 62 Ore suffix

63 Affectionate sign-off

#### SOLUTION





# Deck of Cards K Pumpkin Show at Night





**≡** 1/3 c



**≡** 1 oz









**1.5 oz** 



## Cell type, size, number?



Scientists don't know everything!

#### Phagocytosis: Cell Eating!





## Catalase Enzyme Reaction in Peroxisomes Neutralize Toxin at Production Site!



$$Catalase \\ 2H_2O_2 \longrightarrow 2H_2O + O_2$$



I'm the Mighty Mitochondrion. I give the cell energy.

**SOURCE**: Bot Roda, Illustrator. *Anatomy & Physiology made Incredibly Visual!* Wolters Kluwer Health, Lippincott Williams & Wilkins, 2009.

#### Mitochondria: Energy Organelles



fig 2-8 LS 2012





#### Mom's eggs execute Dad's mitochondria

In "Hamlet," Rosencrantz and Guildenstern deliver a letter to the rulers of England that carries the ill-fated duo's own death sentence. Perhaps Shakespeare knew a bit about reproductive biology.

Scientists have now found that during a sperm's creation, its mitochondria—energy-producing units that power all cells—acquire molecular tags that mark them for destruction once the sperm fertilizes an egg. This death sentence, a protein called ubiquitin, may explain why mammals inherit the DNA within mitochondria only from their mothers, a bio-

species mitochondrial inheritance. Sperm mitochondria sometimes avoid destruction when two different species of mice mate, and Schatten's team has shown this also holds true in cattle. It's hard to understand how an egg distinguishes between paternal mitochondria of closely related species, says Schon.

When paternal mitochondria escape destruction in normal mating, the resulting embryo may suffer. Schatten notes that a colleague has found sperm mitochondria in some defective embryos from infertility clinics.



Inside a fertilized egg, with its two sets of chromosomes (blue), the protein ubiquitin (red) tags sperm mitochondria (yellow).

SOURCE: Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G. *Nature* 1999;402(6760), 371-2.



ANAEROBIC

= CYTOSOL

without  $O_2$ 

- 1. Immediate/ATP-PC
  - 2. Glycolysis



















#### <u>ATP</u> = <u>Adenosine Tri Phosphate</u> The Common Energy Currency or the Cash Cells Understand!!



#### Cleave One High Energy Phosphate Bond To Do Work!!

7 – 10 KiloCalories/KCal



- Synthesis of Macromolecules
- Membrane Transport
- Mechanical Work

Make big things from little things!

Move things! Move things! Microscopic! ← → Macroscopic!

#### Anaerobic vs. Aerobic Metabolism



Aerobic Metabolism
+mitochondrial processing of
glucose with O<sub>2</sub>. Net of 32 ATP
per molecule of glucose



#### Stages of Cellular Metabolism/Respiration

Anaerobic Glycolysis Cytosol Glycolysis
Glucose and other fuel molecules

Pyruvate

Pyruvate

Aerobic Metabolism Mitochondria



**Matrix** 

Inner Membrane

Cashing in electrons at the Electron Transport Chain (ETC) produces an abundance of ATP energy molecules!



#### Goals of Aerobic Metabolism



# Time-out for questions!





**SOURCE**: Bot Roda, Illustrator. *Anatomy & Physiology made Incredibly Visual!* Wolters Kluwer Health, Lippincott Williams & Wilkins, 2009.

# What are DNA's major functions? Heredity + Day-to-Day Cell Function



#### What does DNA look like? Double-helix!!





LS fig C-2

#### Gene = Stretch of DNA that codes for a protein



#### What does DNA do, day-to-day?



cf: LS fig C-6



**SOURCE**: Bot Roda, Illustrator. *Anatomy & Physiology made Incredibly Visual!* Wolters Kluwer Health, Lippincott Williams & Wilkins, 2009.

#### DNA vs RNA?

- 1. Double-stranded
- 2. Deoxyribose (without oxygen)
- 3. A, <u>T</u>, C, G <u>Thymine</u>
- 4. Self-replicative (can copy itself)
- 5. Nucleus (+mitochondria)

- 1. Single-stranded
- 2. Ribose (with oxygen)
- 3. A, <u>U</u>, C, G <u>U</u>racil
- 4. Needs DNA as template
- 5. 1º Cytoplasm (but Nucleus origin)
- 6. mRNA, rRNA, tRNA

# Triplets of bases code for amino acids, the building blocks of proteins

<u>DNA</u> <u>mRNA</u> <u>tRNA</u>

code word codon anti-codon

TAT AUA UAU

ACG UGC ACG

TTT AAA UUU

TAC AUG UAC

#### Second base of codon



D. Silverthorn, *Physiology: An Integrated Approach.* San Francisco: Pearson Education, 2010.

#### Translation? Ribosomes Make Proteins





#### A Polyribosome. Which Way is Synthesis?



#### Class Skit on Translation!



### **Questions + Discussion**

