BI 121 Lecture 7

...Put Lab Notebook in box based on your lab time. Thanks!!

- I. <u>Announcements</u> Exam I one week from today, Oct 24th! Summary & Review, Sunday Oct 22nd, 6-7:30 pm, here! Q?
- II. Gastrointestinal Physiology DC Module 3 pp 17-23, LS ch 15+
 - A. GI = Donut? GI secretions: What? Where? Why? LS p 438
 - B. How is the gut controlled?
 - C. Organ-by-organ review A&P LS tab 15-1 pp 440-1 +...
 - D. Zymogen? = Inactive precursor LS fig 15-9 p 452...
 - E. Accessory organs? Pancreas, Liver, Recycling! pp 457-63
 - F. Small intestine? Ulcers? LS fig 15-20,15-22 pp 467-8 http://www.cdc.gov/ulcer Beyond the Basics LS p 456
 - G. Large intestine? LS fig 15-24 pp 472-4
- III. Cardiovascular System DC Mod 4, LS ch 9, Torstar, G&H+...
 - A. Circulatory vs. Cardiovascular (CV)? CV vs. Lymphatic CV Pulmonary & Systemic circuits DC pp23-31+LS p229+ DC fig 4-1 p 24, LS fig 9-2b p 231
 - B. Arteries, capillaries, veins, varicosities? G&H, Torstar, DC
 - C. layers, box, chambers, valves, inlets, outlets LS fig 9-4 p 233, fig 9-2a p 231; DC pp 23-6
 - D. Normal vs. abnormal blood flow thru \ & CVS LS, Fox+...

Digestion Steps

SOURCE: Dr. Eugene Evonuk, 1989. *cf*: L Sherwood, 2012 pp 437-8.

Hydrolysis of Energy Nutrients

 H_2O +

Enzyme

SI Fox 2009 fig 18.1 p 614

What's missing?

• FIGURE 15-1 An example of hydrolysis. In this example, the disaccharide maltose (the intermediate breakdown product of polysaccharides) is broken down into two glucose molecules by the addition of H₂O at the bond site.

Polymer to Monomer (Many to One)

...Central-linking theme!!

Carbohydrate

Glucose

Protein + Fat

Amino Acids

Fatty Acids

+

Glycerol

GI-DONUT ANALOGY

Common Control Mechanisms

- 1. Local (autoregulation)
- 2. Nervous (rapidly-acting)
- 3. Hormonal (slower-acting/reinforcing)

Gut Secretions

<u>Secretion</u> <u>Release Site</u>

1. Mucus into GI Lumen

2. Enzymes into GI Lumen

3. H₂O, acids, bases+ into GI Lumen

4. Hormones into Blood

Anal canal

Rectum

7.Large Intestine

secretion + absorption

storage + peristalsis

Dehydration

Where does enzymatic digestion of protein begin?

Zymogen= an inactive precursor

LS 2012 fig 15-9 p 452

Why is the pancreas so unique?

What are other accessory organs of digestion, that is, off-shoots of the primary tube?

Liver: Amazing Recycling of Bile Salts!

What is the major function of the small intestine? Absorption!!

LS 2012 fig 15-20 p 467

http://www.cdc.gov/ulcer/

Ulcer Facts

- •Most ulcers are caused by an infection, not spicy food, acid or stress.
- •The most common ulcer symptom is burning pain in the stomach.
- •Your doctor can test you for *H. pylori* infection.
- •Antibiotics are the new cure for ulcers.
- •Eliminating *H. pylori* infections with antibiotics means that your ulcer can be cured for good.

Clipping a Duodenal Ulcer

Peering through the pylorus into the duodenum, we see some blood and a vessel sticking out of the wall, just at the front edge of a small but deep ulcer.

In the second photograph, a disposable metal clip is applied to the ulcer. The patient remained well and left hospital three days later.

Cardiovascular (CV) = Heart + Vessels + Blood!

NB: Figure-8 loop

Pulmonary

Dual Pump Action & Parallel Circulation

Lymphatic System

- 1. Lymph Nodes
- 2. Vessels
- 3. Lymph

No pump!

Lymphatic System

Alternative System of Circulation or Drainage System

Lymph Vessels | Veins

Lymphatic System Blockage in Elephantiasis from Mosquito-borne Parasitic Filaria Worm

Lymphatics collect runoff & are parallel to venules/small veins!

Microcirculation Exchange: 10 Billion Capillaries!

Harvey
Experiments:
1-way system
of venous
valves!

Skeletal Muscle Pump

The Heart

The Living Pump

Human = 4-chambered box? 2 separate pumps?

Pulmonary Systemic

Heart Valves Ensure Unidirectional Blood Flow!

Human = 4 unique valves? 2 valve sets?

<u>Semilunar</u> = <u>Half-moon shaped</u>

- More /
- 1. Pulmonic/Pulmonary
- 2. Aortic

- More /
- 3.(R) AV = Tricuspid
- 4. L AV = Mitral/Bicuspid

Heart Valve Orientation & Scaffolding

FIGURE 9-6

Mitral and aortic valves.

<u>V</u>eins → <u>A</u>tria → <u>V</u>entricles → <u>A</u>rteries

LS2007

SI Fox 2009 fig 13.17 p 420