BI 121 Lecture 15

- More personal data today! Hooray!...
- I. <u>Announcements</u> Civil War Blood Drive! Lab 6, <u>Pulmonary Function Testing</u> (PFT) + optional notebook check today. Exam II Dec 7 Thursday, 8 am!
- II. Skeletal Muscle Structure & Function Connections
 Banding pattern, crossbridge cycling, crucial calcium!
 Contraction & relaxation LS ch 8, DC Module 12
- III. Skeletal Muscle & Other Exercise Adaptations Endurance vs. Strength training, the Energy Continuum LS ch 8 +...
- IV.<u>Introduction to PFT Lab 6</u> Pulmonary Function TestingLab Manual, pp 6-1 thru 6-8
- V. Respiratory System LS ch 12, DC Module 7, Fox +...
 - A. Steps of respiration? External *vs.* cellular/internal? LS fig 12-1 pp 345-347
 - B. Respiratory anatomy LS fig 12-2 p 347, DC, Fox +...
 - C. Histology LS fig 12- 4 pp 347-349, DC

Rivals for Life!

Last year's totals:

OSU 2629

UO 2153

Score of the game?

Donate @ Lillis today!

CIVILIA R BLOOD DRIVE

http://www.redcrossblood.org/info/pnw/civil-war-blood-drive-scoreboard

A Band = Dark Band Anisotropic = Light Can't Shine Through

/ Band = Light Band /sotropic = Light Can Shine Through

What do we guess happens at the molecular level?

Cross-Bridge Cycle

Relaxed: No Cross-Bridge Binding

- (a) Relaxed
- 1 No excitation.
- No cross-bridge binding because cross-bridge binding site on actin is physically covered by troponin-tropomyosin complex.
- 3 Muscle fiber is relaxed.

Excited: Calcium Triggers Cross-Bridge Binding

(b) Excited

- Muscle fiber is excited and Ca²⁺ is released.
- Released Ca²⁺ binds with troponin, pulling troponin–tropomyosin complex aside to expose cross-bridge binding site.
- Cross-bridge binding occurs.
- Binding of actin and myosin cross bridge triggers power stroke that pulls thin filament inward during contraction.

 LS 2012 fig 8-6b

Rope Climb or Tug of War Grasp, then Regrasp!

Relaxation Phase

- 1. Excitation by nerve fiber
- 2. Conduction by T-tubules
- 3. Ca²⁺ release by SR

Contractile Phase

D Liang & VP Lombardi 1989

Muscle Contraction Resources

https://www.ncbi.nlm.nih.gov/books/NBK9961/

https://www.youtube.com/watch?v=jUBBW2Yb5KI

https://www.youtube.com/watch?v=sJZm2YsBwMY

A. Malcolm Campbell
Davidson College, Davidson, NC
www.bio.davidson.edu/courses/movies.html

David Bolinsky, XVIVO Rocky Hill, CT http://www.xvivo.net/

Adaptations to Exercise?

Body Levels of Organization? Which Body System?

Molecular

Cell/Tissue

Echocardiography documents hypertrophy...

Cardiac Adaptations to Exercise:

1 Endurance vs. 2 StrengthTraining

As muscles tug on bones, bones get stronger, too!...many systems adapt!!

Muscle
Adaptations
to Exercise

Atrophy

decrease in size

& strength

Hypertrophy
increase in size
& strength

Women & Hypertrophy?

What happens in muscles at cellular & subcellular levels?

Hypertrophy: Increased

Number of Myofibrils Thick & Thin Filaments

Characteristics of Skeletal Muscle Fibers

	TYPE OF FIBER		
Characteristic	Slow Oxidative (Type I)	Fast Oxidative (Type IIa)	Fast Glycolytic (Type IIb)
Myosin-ATPase Activity	Low	High	High
Speed of Contraction	Slow	Fast	Fast
Resistance to Fatigue	High	Intermediate	Low
Aerobic Capacity	High	High	Low
Anaerobic Capacity	Low	Intermediate	High
Mitochondria	Many	Many	Few
Capillaries	Many	Many	Few
Myoglobin Content	High	High	Low
Color of Fibers	Red	Red	White
Glycogen Content	Low	Intermediate	High

LS 2012 tab 8-1 modified > VP Lombardi 1989

Changes in Muscle Due to Strength Training

- Size of larger fast vs smaller slow fibers
- † CP as well as <u>creatine phosphokinase</u> (CPK) which enhances short-term power output
- † Key enzymes which help store and dissolve sugar including glycogen phosphorylase (GPP) & phosphofructokinase (PFK)
- | Mitochondrial # relative to muscle tissue
- | Vascularization relative to muscle tissue
- † Splitting of fast fibers? Hyperplasia? With growth hormone (GH), androgenic-anabolic steroids (AAS)?

Changes in Muscle Due to Endurance Training

- Mitochondria, # & size
- † Mitochondrial (aerobic) enzymes including those specific for fat burning
- 1 Vascularization of muscles (better blood flow)
- Stores of fat in muscles accompanied by
- ↓ Triglycerides/fats in bloodstream
- † Enzymes: activation, transport, breakdown (β-oxidation) of fatty acids
- † Myoglobin (enhances O₂ transport)
- † Resting energy levels which inhibit sugar breakdown
- Aerobic capacity of all three fiber types.

Which end of continuum?

Which energy nutrient/s?

+ Which specific muscles?

Dancing can be super aerobic exercise, too, & you don't have to be a star!

Extremes of the energy continuum!

Discussion + Time for Questions!

Cancer.

Lab 6 Review: Pulmonary Function Testing (PFT)

Respirometer ->
measures complete
Pulmonary Function
Test or PFT!

NB: Should be able to blow out ≥ 75 - 85% of VC/FVC in 1 second! That's FEV_{1.0}/FVC \geq 0.75 - 0.85. If less, may indicate asthma or other lung disease.

Normal = Steep

Abnormal =
Flatter
Downslope
(eg, Asthma)

Normal Spirogram of Healthy Young Adult Male

Spirogram graphing complete *PFT* from computer simulation.

Time (sec)

TV = Tidal volume (500 ml)

IRV = Inspiratory reserve volume (3,000 ml)

IC = Inspiratory capacity (3,500 ml)

ERV = Expiratory reserve volume (1,000 ml)

RV = Residual volume (1,200 ml)

FRC = Functional residual capacity (2,200 ml)

VC = Vital capacity (4,500 ml)

TLC = Total lung capacity (5,700 ml)

More modern-day computerized Pulmonary Function Testing

Complete with HH!
Happy Helpers!

LS 2012 fig 12-1 modified

Respiratory System Anatomy

Pulmonary Latex Cast with Colored Segmentation

<u>Bronchograms</u>: bronchial tree x-rays > injecting contrast

Source: Gardner, Gray, O'Rahilly, Anatomy, fig 29-11, p 295.

The last cilium on a smoker's lung

