Exam II is coming! I'll be ready!!....

BI 121 Lecture 14

Announcements Last Lab 6, Pulmonary Function Testing + Optional notebook this Thurs. Exam II, Dec 7, 8 am Q?
 II. Nervous System Connections LS 7

BI 121 Exam II!

- A. How does the signal cross the nerve-muscle gap? ch 7 p 185-92 fig 7-5 p 190
- B. What do black widow spider venom, botulism/Botox, curare & nerve gas have in common? LS fig 7-5 p 190

III.<u>Muscle Structure-Function & Adaptation</u> LS ch 8 + DC Mod 12

- A. Muscle types: cardiac, smooth, skeletal LS fig 8-1 pp194-6
- B. How is skeletal muscle organized? LS fig 8-2, DC fig 12-2
- C. What do thick filaments look like? LS fig 8-4, DC fig 12-4
- D. Thin filaments? Banding pattern LS fig 8-5, 8-3, 8-7
- E. How do muscles contract? LS fig 8-6, 8-10
- F. What's a cross-bridge cycle? LS fig 8-11 +...
- G. Summary of skeletal muscle contraction, videos courtesy David Bolinsky, XVIVO & Malcolm Campbell, Davidson C.
- H. Exercise adaptation variables, strength vs. endurance tr.

LS 2012 fig 4-14 neurotransmitter

Postsynaptic neuron

Links That May Be Helpful!

https://www.youtube.com/watch?v=6RbPIOq003w

https://www.youtube.com/watch?v=mltV4rC57kM

https://www.youtube.com/watch?v=WhowH0kb7n0

http://sites.sinauer.com/psychopharm2e/animation03.01.html

https://www.youtube.com/watch?v=VitFvNvRIIY

LS 2012 ch 8 vignette

Skeletal Muscle Histology: Microscopic Anatomy

Muscle fiber or cylindrical cell

x1000

Nucleii

H Howard 1980.

→ "Threads" = Myofibrils

Broccoli Analogy?

Bare Zone

Triad \equiv T tubule abutting cisternae

Sarcomere

Mitochondria

OF

6

Sarcomere

A Band = Dark Band Anisotropic = Light Can't Shine Through

Discussion + Time for Questions!

What do we guess happens at the molecular level?

Cross–Bridge Cycle

Relaxed: No Cross-Bridge Binding

(a) Relaxed

1 No excitation.

No cross-bridge binding because cross-bridge binding site on actin is physically covered by troponin-tropomyosin complex.

3 Muscle fiber is relaxed.

LS 2012 fig 8-6a

Excited: Calcium Triggers Cross-Bridge Binding

(b) Excited

Muscle fiber is excited and Ca²⁺ is released.

Released Ca²⁺ binds with troponin, pulling troponin–tropomyosin complex aside to expose cross-bridge binding site.

Cross-bridge binding occurs.

Binding of actin and myosin cross bridge triggers power stroke that pulls thin filament inward during contraction. LS 2012 fig 8-6b

Rope Climb or Tug of War Grasp, then Regrasp!

LLM p C - 4

Relaxation Phase

- 1. Excitation by nerve fiber
- 2. Conduction by T-tubules
- 3. Ca²⁺ release by SR

Contractile Phase

D Liang & VP Lombardi 1989

https://www.youtube.com/watch?v=jUBBW2Yb5KI

https://www.youtube.com/watch?v=sJZm2YsBwMY

A. Malcolm Campbell Davidson College, Davidson, NC <u>www.bio.davidson.edu/courses/movies.html</u>

> David Bolinsky, XVIVO Rocky Hill, CT <u>http://www.xvivo.net/</u>

Adaptations to Exercise?

Mode, Intensity, Duration, Frequency, Distribution of Training Sessions? Conditions of Environment? Individual?

Adaptations to Exercise? Body Levels of Organization? Which Body System?

Cell/Tissue

A typical lipoprotein

Body System

Organ

Echocardiography documents hypertrophy...

Cardiac Adaptations to Exercise: (1) Endurance vs. (2) StrengthTraining

<u>*NB*</u>:(1)>↑LBM

As muscles tug on bones, bones get stronger, too!...many systems adapt!!

Muscle Adaptations to Exercise

Atrophy decrease in size & strength Hypertrophy increase in size & strength

Women & Hypertrophy?

What happens in muscles at cellular & subcellular levels?

Hypertrophy: Increased

Number of Myofibrils

Thick & Thin Filaments

Myosin & Actin Molecules

Characteristics of Skeletal Muscle Fibers

	TYPE OF FIBER		
Characteristic	Slow Oxidative (Type I)	Fast Oxidative (Type IIa)	Fast Glycolytic (Type IIb)
Myosin-ATPase Activity	Low	High	High
Speed of Contraction	Slow	Fast	Fast
Resistance to Fatigue	High	Intermediate	Low
Aerobic Capacity	High	High	Low
Anaerobic Capacity	Low	Intermediate	High
Mitochondria	Many	Many	Few
Capillaries	Many	Many	Few
Myoglobin Content	High	High	Low
Color of Fibers	Red	Red	White
Glycogen Content	Low	Intermediate	High
LS 2012 tab 8-1 modified			

LS 2012 tab 8-1 modified > VP Lombardi 1989

Changes in Muscle Due to <u>Strength Training</u>

- Size of larger fast vs smaller slow fibers
 CP as well as creatine phosphokinase (CPK) which enhances short-term power output
- † Key enzymes which help store and dissolve sugar including glycogen phosphorylase (GPP) & phosphofructokinase (PFK)
- Mitochondrial # relative to muscle tissue
- Vascularization relative to muscle tissue
 Splitting of fast fibers? Hyperplasia?
 With growth hormone (GH), androgenicanabolic steroids (AAS)?

Changes in Muscle Due to Endurance Training

- Mitochondria, # & size † Mitochondrial (aerobic) enzymes including those specific for fat burning Vascularization of muscles (better blood flow) Stores of fat in muscles accompanied by Triglycerides/fats in bloodstream † Enzymes: activation, transport, breakdown (β -oxidation) of fatty acids 1 Myoglobin (enhances O₂ transport) † Resting energy levels which inhibit sugar breakdown
- Aerobic capacity of all three fiber types.

Which end of continuum?

Which energy nutrient/s?

+ Which specific muscles?

Dancing can be super aerobic exercise, too, & you don't have to be a star!

Extremes of the energy continuum!

