

#### **BI 121 Lecture 13**

- I. <u>Announcements</u> No lab today Study for Exam II!! Optional Lab notebook check after last Lab 6, Mac pulmonary function testing (PFT) next Thursday. Q?
- II. Peripheral Nervous System Connections

LS sections of ch 3, 4, & 7

- A. How do excitable cells signal? ch 3 pp 62-7;ch 4 pp 74-83
- B. How does the signal cross the nerve-muscle gap? ch 7 p 185-92 fig 7-5 p 190
  - 1. Ca<sup>2+</sup> bones!...but what else? p 190
  - 2. What do black widow spider venom, botulism, curare & nerve gas have in common? Botox pp 189-92

#### III. Muscle Structure + Function LS ch 8 + DC Module 12

- A. Muscle types: cardiac, smooth, skeletal LS fig8-1pp194-6
- B. How is skeletal muscle organized? LS fig 8-2, DC fig 12-2
- C. What do thick filaments look like? LS fig 8-4, DC fig 12-4
- D. Thin filaments? Banding pattern LS fig 8-5, 8-3, 8-7
- E. How do muscles contract? LS fig 8-6, 8-10
- F. What's a cross-bridge cycle? LS fig 8-11 +...

# Why are nerve & muscle unique?





They are excitable!!

## Action Potentials ≡ Spikes ≡ Impulses

Ultra-short reversal of membrane potential Only in nerve and muscle cells

Maintains strength over distance

Primary way nerves & muscles communicate!









#### "Resting"/Membrane Potential?



Cells are slightly <u>negative</u> inside!

## Stimulate Cell @ Rest





#### Changes Cell Membrane Permeability to Sodium/Na+!





#### Action Potential has occurred!



Brief (1-2 ms) reversal to + inside cell!







Time (msec)

Synapse =
Generic term =
connection
between
excitable
cells!



DC 2003







#### Other Links That May Be Helpful!

https://www.youtube.com/watch?v=6RbPIOq0O3w

https://www.youtube.com/watch?v=mItV4rC57kM

https://www.youtube.com/watch?v=WhowH0kb7n0

http://sites.sinauer.com/psychopharm2e/animation03.01.html

https://www.youtube.com/watch?v=VitFvNvRIIY





# Time for a break!











Voluntary muscle

Involuntary muscle

# Skeletal Muscle Histology: Microscopic Anatomy





LS 2006, cf: LS 2012 fig 8-2 DC 2013 fig 12-3

**Actin & Myosin** 







# Broccoli Analogy?



Bare Zone



LS 2006, cf: LS 2012 fig 8-5

Thin filament



## A Band = Dark Band Anisotropic = Light Can't Shine Through



/ Band = Light Band
/sotropic = Light Can Shine Through





#### Discussion + Time for Questions!



# What do we guess happens at the molecular level?

#### **Cross-Bridge Cycle**



#### Relaxed: No Cross-Bridge Binding



- (a) Relaxed
- 1 No excitation.
- No cross-bridge binding because cross-bridge binding site on actin is physically covered by troponin-tropomyosin complex.
- 3 Muscle fiber is relaxed.

#### Excited: Calcium Triggers Cross-Bridge Binding



#### (b) Excited

- Muscle fiber is excited and Ca<sup>2+</sup> is released.
- Released Ca<sup>2+</sup> binds with troponin, pulling troponin–tropomyosin complex aside to expose cross-bridge binding site.
- 3 Cross-bridge binding occurs.
- Binding of actin and myosin cross bridge triggers power stroke that pulls thin filament inward during contraction.

  LS 2012 fig 8-6b

# Rope Climb or Tug of War Grasp, then Regrasp!









#### **Relaxation Phase**



- 1. Excitation by nerve fiber
- 2. Conduction by T-tubules
- 3. Ca<sup>2+</sup> release by SR

#### **Contractile Phase**



D Liang & VP Lombardi 1989