BI 121 Lecture 12 Thanks for your help with the blood chemistry lab!...

- I. <u>Announcements</u> Optional notebook check + Lab 6 tomorrow. Pulmonary Function Testing. Final exam > your Q on Thurs. Q?
- II. <u>Endocrine Connections</u> Peripheral endocrine organs
 - A. Pancreas (insulin, glucagon, diabetes) B. Thyroid C. Adrenals DC Module 13 pp 109-13, LS pp 513-36
- III. Nervous System & Excitable Cells DC Module 9, LS ch 5, 4, 7
 - A. How is the nervous system organized? fig 5-1 p 108
 - B. Neurons? What kind? fig 5-2 p 109
 - C. Brain structure & function fig 5-7, 5-8 pp 116 7
 - D. Protect your head with a helmet!
 - **Bicycle head injury statistics, NHTSA & BHSI**
- IV. <u>Brain + Autonomic Nervous System Overview</u> DC pp 71-77, LS
- pp 178 85, tab 7-1 p 183 + stories to remember *fight-or-flight!* V. Neuromuscular Connections LS ch 7 pp 186-92, DC pp 69-71
 - How does the signal cross the nerve-muscle gap? LS fig 7-5
 - A. Normal function? Ca2+ for bones!...but what else? LS p 190
 - B. What do black widow spider venom, botulism, curare & nerve gas have in common? Botox? LS p 189-91

VI.<u>Muscle Structure, Function & Adaptation</u> LS ch 8, DC Module 12

- A. Muscle types: cardiac, smooth, skeletal LS fig 8-1 p 194-6
- B. How is skeletal muscle organized? LS fig 8-2, DC fig 12-2

Endocrine Pancreas: Insulin (I) & Glucagon (G) See-Saw Hormones in Regulating Blood Glucose

4-7 Warning Signs of Diabetes

These signs appear reliably in type 1 diabetes and, often, in the later stages of type 2 diabetes.

- Excessive urination and thirst
- Glucose in the urine
- Weight loss with nausea, easy tiring, weakness, or irritability
- Cravings for food, especially for sweets
- Frequent infections of the skin, gums, vagina, or urinary tract
- Vision disturbances; blurred vision
- Pain in the legs, feet, or fingers
- Slow healing of cuts and bruises
- Itching
- Drowsiness
- Abnormally high glucose in the blood

S&W 2011 tab 4-7 p 131

Diabetics must constantly juggle diet, exercise & medication to control blood glucose!

Like others, diabetics benefit from whole grains, vegetables, fruits, legumes & non-/low-fat milk products!

LS 2012 fig 17-17

Guyton & Hall 2000

Adrenal gland

Kidney

FIGURE 13-12 Adrenal Gland The adrenal glands sit atop the kidney and consist of an outer zone of cells, the adrenal cortex, which produces a variety of steroid hormones, and an inner zone, the adrenal medulla. The adrenal medulla produces adrenalin and noradrenalin.

Stress Promotes Cortisol Secretion

Metabolic fuels and building blocks available to help resist stress

- Blood glucose (by stimulating gluconeogenesis and inhibiting glucose uptake)
 - Blood amino acids (by stimulating protein degradation)
 - Blood fatty acids (by stimulating lipolysis)

LS 2012 fig 17-19

~ 90% of Cells w/in CNS are not neurons but glial cells ≡ neuroglia or nerve glue!

Astrocytes

LS2 2006 fig 5-4 p 112

H. Howard 1980

A single nerve cell may have as many as 200,000 inputs!

Nerve cell with multiple axons grown by adding a mitogen/neurogen ≡ nerve growth factor!

What is myelin? Why is it important?

A large myelinated "survival" nerve can conduct impulses the length of football field in < 1 second!

L. saltare to hop or leap! Fr. salt, sautier, sauté, leap, high air, vault

DC 2003

LS 2012 fig 5-7

LS 2006, cf: LS 2012 fig 5-8a

http://www.bhsi.org/stats.htm

Helmets Cheap, Brains Expensive!!

Use Your Head, Get a Helmet!!

~ 500,000 bicyclists/yr visit emergency rooms As of 2014, the population estimate of

State of Wyoming 584,153 Albany OR 51,980

Corvallis OR 54,953

Springfield OR 60,263

~ 26,000 traumatic brain injuries

743 of ~900 cyclist deaths, $2013 \equiv ~2\%$ of all traffic fatalities 13% of deaths children \leq 14 yr, 87% of 11% involved wrong-way riding! Bicycle crashes & injuries are under reported, since majority not serious enough for ER visits. Helmets may reduce head & brain injury risk by 85%! \sim \$2.3 billion/yr = indirect injury costs from not using helmets! The "typical" bicyclist killed on our roads is a sober male over 16 riding without a helmet. He's hit by a car on a major road between intersections in an urban area on a summer evening. Please wear a helmet – it can make the difference between life and death.

Hey, I'm alive because I wore a helmet!!

Stories, Discussion, Questions or Comments!

Rest-and-digest: Parasympathetic activity dominates.

Fight-or-flight: Sympathetic activity dominates.

Copyright © 2009 Pearson Education, Inc.

D Silverthorn 2010

PARASYMPATHETIC = RESTING, DIGESTIVE, HOUSEKEEPING FUNCTIONS

TOB.

FIGHT/FLIGHT/ALARM REACTION!!

Autonomic Nervous System

Why overlap or dual innervation?

Fine-tune control & safety!

cf: LS 2012 fig 7-3

Why adrenal activation & response important?

Fight-or-Flight Stories!

or

▲ Table 7-1 Effects of Autonomic Nervous System on Various Organs

Organ	Effect of Sympathetic Stimulation	Effect of Parasympathetic Stimulation
Heart	Increases heart rate and increases force of contraction of the whole heart	Decreases heart rate and decreases force of contrac- tion of the atria only
Blood Vessels	Constricts	Dilates vessels supplying the penis and the clitoris only
Lungs	Dilates the bronchioles (airways)	Constricts the bronchioles
Digestive Tract	Decreases motility (movement)	Increases motility
	Contracts sphincters (to prevent forward movement of tract contents)	Relaxes sphincters (to permit forward movement of tract contents)
	Inhibits digestive secretions	Stimulates digestive secretions
Urinary Bladder	Relaxes	Contracts (emptying)
Eye	Dilates the pupil	Constricts the pupil
	Adjusts the eye for far vision	Adjusts the eye for near vision
Liver (glycogen stores)	Glycogenolysis (glucose is released)	None
Adipose Cells (fat stores)	Lipolysis (fatty acids are released)	None
Exocrine Glands		
Exocrine pancreas	Inhibits pancreatic exocrine secretion	Stimulates pancreatic exocrine secretion (important for digestion)
Sweat glands	Stimulates secretion by sweat glands im- portant in cooling the body	Stimulates secretion by specialized sweat glands in the armpits and genital area
Salivary glands	Stimulates a small volume of thick saliva rich in mucus	Stimulates a large volume of watery saliva rich in enzymes
Endocrine Glands		
Adrenal medulla	Stimulates epinephrine and norepinephrine secretion	None
Endocrine pancreas	Inhibits insulin secretion	Stimulates insulin secretion
Genitals	Controls ejaculation (males) and orgasm contractions (both sexes)	Controls erection (penis in males and clitoris in females)
Brain Activity	Increases alertness	None LS 2012

Node of Ranvier

Myelin

Acetylcholine - Vesicles

LS 2012 ch 8 vignette

Skeletal Muscle Histology: Microscopic Anatomy

Muscle fiber or cylindrical cell

x1000

Nucleii

H Howard 1980.

→ "Threads" = Myofibrils

Broccoli Analogy?

Bare Zone

Triad \equiv T tubule abutting cisternae

Sarcomere

Mitochondria

OF

6

Sarcomere

A Band = Dark Band Anisotropic = Light Can't Shine Through

