Midterm Review Slides

...Welcome to Human Physiology – what makes us tick!

BI 121 Lecture 1

- I. <u>Announcements</u>: Please check & sign attendance roster. Not on list? See Pat during a break or after class. *Lab 1 Histology* tomorrow in 130 HUE: 12 n & 1 pm sections.
- II. <u>Introduction</u>: Staff, office hr, required sources, course overview, grading, expectations & success. Q?
- III. Human Physiology LS ch 1, DC Module 1
 - A. What? cf: Anatomy LS p 1
 - B. Where?Body Levels of Organization LS pp1-6, DC pp1-5
 - C. How? Different Study Approaches LS p 1
- D. Why? Security+Decision-Making Power LS p xxi, DC p v

IV. Homeostasis LS ch 1, DC Module 1

- A. What? Maintenance of ECF LS p 8
- B. Where? ECF = Plasma + Interstitium LS fig 1-4 p 8
- C. How? Simplified Homeostatic Model cf: LS fig 1-7 p 14 Balances LS p 9, DC pp 5-6
- D. Why? Cell survival! LS fig 1-5 p 9, DC p 5

ANATOMY
STRUCTURE
WHAT?
WHERE?

vs PHYSIOLOGY

vs FUNCTION

vs HOW?

vs WHY?

VS

Structure begets function! Structure gives rise to function! Structure & function are inseparable!

High-Tibial Osteotomy (HTO) to Realign the Joint

Body Levels of Organization 1. Molecular Entire Organism. 2. Cellular 3. Tissue 4. Organ 5. System LS fig 1-1 p 2

Nerve conducts

Connective connects!!

Muscle contracts

Epithelial covers

Epithelial tissue gives rise to glands: (a) exocrine & (b) endocrine

Which body systems?

Maintenance of a relative constancy in the Internal environment = ECF = fluid outside of cells

Claude Bernard

100 trillion cells working intimately

Walter B. Cannon

BI 121 Lecture 2

...Histology exploratory fun!! Thanks for signing in!

- I. Announcements Lab today 12 n & 1 pm. Q last time?
- II. Connections Extracellular fluid (ECF) & Homeostasis
 - A. ECF: Plasma vs. Interstitium?
 - B. Dr Evonuk Balances LS pp 5 15
 - C. Physiology in the News Are we like watermelons?
 - D. Simplified Model DO Norris cf: fig 1-8 LS
 - E. Negative feedback? Positive feedback? LS pp 14 15
 - F. Balances & e.g. H₂O, T°C, BP Dr Evonuk + LS pp 8 10
- III. Cell Anatomy, Physiology & Compartmentalization ch 2 (LS)
 - A. How big? What boundaries? Why compartments? pp19-21
 - B. Basic survival skills ch 1 p 3
 - C. Organelles ≡ Membranous, cytoplasmic specialty shops!
 - 1. Endoplasmic Reticulum (ER) 2. Golgi 3. Lysosomes
 - 4. Peroxisomes & 5. Mitochondria. LS 2012 pp 20-34
 - fig 2-1, 2-2, 2-3, 2-4, 2-5, 2-6, 2-7, 2-8 pp 20-7 tab 2-1 p 36
 - D. Physiol News Moms eggs execute Dad's mitochondria?
 - E. What about vaults? LS 2006, p 32 + Science News

ECF = Extracellular

ICF = Intracellular

Interstitium

(eg, between muscle cells)

Metabolic

ANA- CATA-

Dr. Evonuk's 6 Balances

 O_2/CO_2

Drink about 1 L per 1000 calories energy expenditure!!

Human ~ 2/3 H₂O ~ 60 – 70 %

NB: So 2000 kcal → drink 2000 mL ≡ 67.63 fl oz ≡ ~ 8 cups!

 $= \sim 40 - 48 \text{ kg H}_2\text{O}$

NB: Though most often negative feedback, there are exceptions:

Selected +FB eg:

LH Surge + Ovulation
Oxytocin + Uterine Contraction
Blood Clotting Cascade
cAMP Cascade
Na+ influx during AP

BI 121 Lecture 3 Anatomy & Physiology Lab tomorrow!...

- I. Announcements Q from lecture or lab?
- II. Cell Physiology Connections LS ch 2 pp 20-34, fig 2-1...2-8
 - A. Organelles ≡ ICF specialty shops: 1. Endoplasmic Reticulum 2. Golgi Apparatus 3. Lysosomes
 4. Peroxisomes 5. Mitochondria tab 2-1 p 36
 - B. Exocytosis vs. Endocytosis fig 2-5 a & b, p 25
 - C. Physiol News Moms eggs execute Dad's mitochondria?
 - D. What about vaults? LS 2006, p 32 + Science News

III. Anaerobic vs Aerobic Metabolism Summary LS ch 2 pp 26-33

- A. Key differences fig 2-15 + vpl
- B. Selected details: Glycolysis, CAC, ETC, fig 2-9 thru 2-12

IV. Introduction to Genetics LS 2012 ch 2 p 20-1 + Appendix C

- A. What's a gene? Where? p A-18, fig C-2, C-3
 - B. Why are genes important? p A-18
 - C. What's DNA & what does it look like? pp A-18 thru A-20
 - D. How does information flow in the cell? fig C-6
 - E. How does DNA differ from RNA? pp A-20 thru A-22
 - F. Genetic code? pp A-22, A-23

Why Compartments? Advantage?

Incompatible reactions can take place

Simultaneously!!

Basic Cell Survival Skills?

- 1. Get food
- 2. Use food
- 3. Rid wastes
- 4. Move

5. Reproduce

Nucleus or nose?

How to live?

Proteins (colored strands) Instructions for building are assembled proteins leave the nucleus on ribosomes and enter the cytoplasm. attached to the ER or free in the cytoplasm. **Nucleus** Ribosomes Rough 0000 Smooth ER **Transport** vesicles Golgi complex Secretory vesiclesvsosome Secretion (exocytosis)

Secretion of Proteins Produced by ER

fig 2-6 LS 2012

Phagocytosis: Cell Eating!

Catalase Enzyme Reaction in Peroxisomes Neutralize Toxin at Production Site!

$$Catalase \\ 2H_2O_2 \longrightarrow 2H_2O + O_2$$

Mitochondria: Energy Organelles

fig 2-8 LS 2012

Mom's eggs execute Dad's mitochondria

In "Hamlet," Rosencrantz and Guildenstern deliver a letter to the rulers of England that carries the ill-fated duo's own death sentence. Perhaps Shakespeare knew a bit about reproductive biology.

Scientists have now found that during a sperm's creation, its mitochondria—energy-producing units that power all cells—acquire molecular tags that mark them for destruction once the sperm fertilizes an egg. This death sentence, a protein called ubiquitin, may explain why mammals inherit the DNA within mitochondria only from their mothers, a bio-

species mitochondrial inheritance. Sperm mitochondria sometimes avoid destruction when two different species of mice mate, and Schatten's team has shown this also holds true in cattle. It's hard to understand how an egg distinguishes between paternal mitochondria of closely related species, says Schon.

When paternal mitochondria escape destruction in normal mating, the resulting embryo may suffer. Schatten notes that a colleague has found sperm mitochondria in some defective embryos from infertility clinics.

ANAEROBIC =

= CYTOSOL

without O_2

- 1. Immediate/ATP-PC
 - 2. Glycolysis

Cleave One High Energy Phosphate Bond To Do Work!!

7 – 10 KiloCalories/KCal

- Synthesis of Macromolecules
- Membrane Transport
- Mechanical Work

Make big things from little things!

Move things! Move things! Microscopic! ← → Macroscopic!

Anaerobic vs. Aerobic Metabolism

Aerobic Metabolism
+mitochondrial processing of
glucose with O₂. Net of 32 ATP
per molecule of glucose

- Exam I next Thursday > 4th of July!!
- I. Announcements Nutrition Analysis Lab next Thursday! Please record your diet on p 3-7 LM & begin analysis using https://www.supertracker.usda.gov/ Estimating quantities. Q?
- II. Cell Metabolism Connections LS 2012 fig 2-9 thru 2-12 +...
- **III. Introduction to Genetics** LS ch 2 p 20-1 + Appendix C
 - A. What's a gene? DNA? Why important? pp A-18 thru A-20 +
 - B. How does information flow in the cell? fig C-6
 - C. How does DNA differ from RNA? pp A-20 thru A-22
 - D. Genetic code? pp A-22, A-23
 - E. How & where are proteins made? fig C-7, C-9
 - F. Class skit: Making proteins @ ribosomes!
- IV. Nutrition Primer DC Module 2, Sizer & Whitney (S&W) Sci Lib
 - A. Essential Nutrients: H₂O, 1^o Carbohydrates, 2º Fats, 3º Proteins, Vitamins, Minerals; Macro- vs Micro-?
 - B. Dietary Guidelines: USDA, AICR, Eat Like the Rainbow!
 - C. Diet or exercise? Diet composition & endurance? Fasting? Zuti & Golding 1976; Sacks AHA NPAM Council 2009;
 - **AMDR? Adjusted Macronutrient Distribution Range!** D. Nutrition Quackery, Balanced Approach Kleiner, Monaco+

 $4 \text{ oz} \rightarrow 3 \text{ oz}$

There are 100,000+ lbs of pumpkins, squash and gourds on the street display.

≡ 1/3 c

■1.5 oz

Goals of Aerobic Metabolism

What does DNA look like? Double-helix!!

Gene = Stretch of DNA that codes for a protein

What does DNA do, day-to-day?

cf: LS fig C-6

DNA vs RNA?

- 1. Double-stranded
- 2. Deoxyribose (without oxygen)
- 3. A, <u>T</u>, C, G <u>Thymine</u>
- 4. Self-replicative (can copy itself)
- 5. Nucleus (+mitochondria)

- 1. Single-stranded
- 2. Ribose (with oxygen)
- 3. A, <u>U</u>, C, G <u>U</u>racil
- 4. Needs DNA as template
- 5. 1º Cytoplasm (but Nucleus origin)
- 6. mRNA, rRNA, tRNA

Triplets of bases code for amino acids, the building blocks of proteins

<u>DNA</u> <u>mRNA</u> <u>tRNA</u>

code word codon anti-codon

TAT AUA UAU

ACG UGC ACG

TTT AAA UUU

TAC AUG UAC

Translation? Ribosomes Make Proteins

Nutrition Lab 3 Thursday! More personal data...

BI 121 Lecture 5

- I. <u>Announcements</u> Data + Flashdrive for Thursday's lab! Q? Thanks for recording dietary data on LM p 3-7 & exploring https://www.supertracker.usda.gov/. Sample Exam Questions.
- II. <u>Nutritional Physiology in the News</u> Pondering Paleo Nutrition Action Health Letter, Marlene Zuk, U Minn. Animal sources, inflammation & disease? Drink Your Calories? *PEBB* Shake the salt habit! *UC Berkeley Newletter*. Successful Dieting?
- III. Nutrition Primer DC Module 2, Sizer & Whitney (S&W) Sci Lib
 - A. Dietary Guidelines: USDA, AICR, Eat Like the Rainbow!
 - B. Best path to weight loss? Diet or exercise or both? Dietary composition & endurance? Fasting? Zuti & Golding 1976; Sacks <u>AHA NPAM</u> 2009; AMDR?
- C. Nutrition Quackery, Balanced Approach Kleiner, Monaco+
- IV. <u>Digestion</u> LS 2012 ch 15, pp 437-9, DC Module 3 pp 17-23
 - A. Steps of digestion Dr. Evonuk + LS pp 437- 9; DC p 23
 - B. Hydrolysis + monomer to polymer: central linking themes! LS p 438, Fox 2009 +
 - C. What's missing? LS fig 15-1 p 438
 - D. Gl-Donut analogy + Control mechanisms. Dr. Brilla @ WWU
 - E. Gut secretions LS p 438, 440-1
 - F. Organ-by-organ review LS tab 15-1 pp 440-1 + DC fig 3-1

The

Paleo

7 DAYS TO LOSE WEIGHT.

FEEL GREAT, STAY YOUNG

LOREN CORDAIN, Ph.D.

The

Evolutionary Biologist Behavioral Ecologist U Minnesota

Gut Bacteria Involved in Inflammation & Atherosclerosis?

Meat & Eggs → L-Carnitine & Choline → Trimethyl Amine (TMA) → TMAO → Inflammation & Atherosclerosis

https://consultqd.clevelandclinic.org/2015/02/gut-flora-dependent-tmao-new-studiesextend-its-reach-beyond-the-arteries-to-the-heart-and-kidneys/

http://www.nejm.org/doi/full/10.1056/NEJMoa1109400#t=article

5 times per wk? \equiv 106,600 calories/yr \equiv \pm 30.5 lb fat/yr

Cinnamon Dolce Latte, whipped cream Venti (20 oz.)

Starbucks 410 calories

Jogging 50 min.

Better choices!

More Reasons to Shake the Salt Habit

- 2 Ca²⁺ excretion bone loss, risk of osteoporosis & fractures.
- May directly impair kidney function & Trisk of kidney stones.

(4) GI cancer risk, inflammation?

I'm outta

Successful Dieting - National Weight Control Registry

- <u>High-carbohydrate</u> (55-60%), <u>low-fat</u> (24%) diet with the rest (~16-21%) from protein
- Wholesome vs. high-sugar carbohydrates including <u>fruits</u>, <u>vegetables</u>, <u>high-fiber</u> foods

 Conscious of calories knowing that total calories count, no matter what diet type

• Eight of 10 ate <u>breakfast daily</u> which may help better manage calories during the day

 Self-monitor, weigh themselves ≥ 1x/wk & many still keep food dairies

Much planned <u>physical activity</u>, 60-90 min/d, 1^o
 walking + looked for other ways to be active

Macronutrients & Micronutrients Essential for Life

Macronutrients

H₂O/Water

≠10 Carbohydrates

✓3⁰ Proteins

Sample Food Sources

Water, other drinks, fruits & vegetables Grains, vegetables, fruits, dairy products Meats, full-fat dairy products, oils

Meats, legumes, dairy vegetables

(Micronutrients) NB: Need only minute quantities!

Vitamins (A, D, E, K; C + B)

Minerals (K+, Na+, Ca²⁺, Mg²⁺ Fe²⁺, Zn²⁺,...

Vegetables, vegetable oils, fruits, citrus, grains, dairy Fruits, vegetables, grains, nuts, dairy, meats, processed foods

Energy nutrients = yield ATP

MyPlate launched June 2, 2011

2. Focus on fruits. Whole fruit preferable to juice, but any fruit counts! Fill ½ your plate with fruits & vegetables!

- 3. Make at least ½ of your grains whole grains!
 - 5. Get your calcium-rich foods. Buy skim or 1% milk. Go easy on cheese!

1. Vary your veggies. Fill ½ your plate with fruits & vegetables!

4. <u>Go lean with protein</u>. Keep protein to < ¼ plate! Nuts, beans, peas, seeds, poultry, lean meat, seafood,...

Diet & Health Guidelines for Cancer Prevention

- 1. Choose a diet rich in variety of plant-based foods.
- 2. Eat plenty of vegetables & fruits.
- 3. Maintain a healthy weight & be physically active.
- 4. Drink alcohol only in moderation, if at all.
- 5. Select foods low in fat & salt.
- 6. Prepare & store food safely.And <u>always</u>, remember...

Do not smoke or use tobacco in any form.

American Institute for Cancer Research (AICR)

Figure 4–9. Changes in body weight, body fat, and lean body weight for diet, exercise, and combination groups. (From Zuti W. B., and Golding, L. A.: Comparing diet and exercise as weight reduction tools. **Phys. Sportsmed.** 4:49–53, 1976.)

NB: Each group 500 kcal deficit/day, 16 weeks

Dietary Composition & Physical Endurance

Negative Effects of Low Carbohydrate

- 1) 1 fatigue/exhaustion central & peripheral!
- 2 ↓ glucose brain+spinal cord, rbcs thrive upon.
- 3 ↓ variety which reduces intake of phytochemicals, vitamins, minerals & fiber.
- 4 ↑ risk of respiratory infections.
- + gall stones, ↓ thermoregulation...

We're better at storing fat vs carbohydrate!

Dietary Fat

3 % Kcal

Body Fat

23 % Kcal

Dietary Carbohydrate

To Help Lower Body Wt & %Fat EXERCISE!! + *Minimize* These!!

FAT 9 Kcal/g

ETOH 7 Kcal/g

CARB 4 Kcal/g

PRO 4 Kcal/g

NB: <u>Minimize</u> not <u>Eliminate!</u> <u>Moderation</u> not <u>Abstinence!!</u>

60-day Fast???

<u>Lost 60 lb!! Wow!!</u>

```
Yet

> 3/4

26 lb Water

20 lb Lean Body Mass

(14 lb Fat

Fat < 1/4 total wt loss!
```

Kleiner's & Monaco's Top 10 Hit List for Nutrition Quackery

- 1. Treatment based on <u>unproven theory</u> calling for non-toxic, painless therapy.
- 2. Author's/purveyor's <u>credentials aren't recognized</u> in scientific community.
- 3. <u>No reports in scientific, peer-reviewed literature</u> but rather mass media used for marketing.
- 4. Purveyors claim <u>medical establishment is against them</u> & play on public's paranoia about phantom greed of medical establishment.
- 5. Treatments, potions, drugs manufactured according to <u>secret</u> <u>formula</u>.
- 6. Excessive claims promising <u>miraculous cures</u>, disease prevention or life extension.
- 7. Emotional images rather than facts used to support claims.
- 8. Treatments <u>require special nutritional support</u> including health food products, vitamins and/or minerals.
- 9. Clients are cautioned about discussing program to avoid negative.
- 10. Programs based on <u>drugs or treatments not labeled</u> for such use.

NOT PEER-REVIEWED =

TRADE BOOKS

ADEQUACY
BALANCE
CONSISTENCY
& MODERATION

Digestion Steps

SOURCE: Dr. Eugene Evonuk, 1989. *cf*: L Sherwood, 2012 pp 437-8.

Hydrolysis of Energy Nutrients

 H_2O +

Enzyme

BI 121 Lecture 6 + Q + ½ Midterm Review

- I. <u>Announcements</u> Next session Q? ~½ review, then Midterm. Fun Lab 3 Nutrition today! Sample Suisse Calculation? Q?
- II. <u>Nutrition in the News</u> Be a whiz at healthy grilling! American Institute for Cancer Research, Grilling Quiz!
- III. <u>Digestion Connections</u> LS ch 15, DC Module pp 17-23
 - A. Histology of the gut LS fig 15-2, 15-3 p 442-3
 - B. Stomach protein digestion + zymogens? LS fig 15-7, 15-9
 - C. Accessory organs: Pancreas & Liver + Recycling! LS pp 457-63
 - D. Small intestine? Ulcers? LS fig 15-20,15-22 pp 467-8 http://www.cdc.gov/ulcer Beyond the Basics LS p 456
 - E. Summary of chemical digestion LS tab 15-5 p 466
 - F. Large intestine? LS fig 15-24 pp 472-4
- IV. <u>Midterm Review</u> Discussion + Q?

How Do I Calculate the % of Total Calories from Carbohydrate, Fat & Protein?

Fat 39 g x 9 kcal/g = 351 kcal % Fat = 351/567 = 0.619
$$\equiv (-62\%)$$

Protein 8 g x 4 kcal/g = 32 kcal % Protein =
$$32/567 = 0.056 \equiv (\sim 6\%)$$

 \sum = 567 kcal

American Institute for Cancer Research (AICR) Healthy Grilling Quiz Summary

- 1. <u>Marinade, marinade</u>! By doing so, you can decrease carcinogens formed during grilling by ≤ 96%!
- 2. Cover the grill with aluminum foil, turn gas down or wait for low-burning embers, cook to the side.
- 3. Best choices for grilling include vegetables and fruits (no HCAs + enzymes to inactivate HCAs!), and lean meats (e.g., fish & skinless chicken | PAHs).
- 4. Flip meat every minute to reduce charring & remove charred portions prior to eating.
- 5. <u>To limit cancer risk, eat no more than 3 oz grilled red meat</u>. Cook small portions/kebabs.

GI-DONUT ANALOGY

Gut Secretions

<u>Secretion</u> <u>Release Site</u>

1. Mucus into GI Lumen

2. Enzymes into GI Lumen

3. H₂O, acids, bases+ into GI Lumen

4. Hormones into Blood

Anal canal

Rectum

7.<u>Large Intestine</u>

<u>Dehydration</u>

secretion + absorption storage + peristalsis

Zymogen= an inactive precursor

LS 2012 fig 15-9 p 452

LS 2012 fig 15-20 p 467

Ulcer Facts

- •Most ulcers are caused by an infection, not spicy food, acid or stress.
- •The most common ulcer symptom is burning pain in the stomach.
- •Your doctor can test you for *H. pylori* infection.
- •Antibiotics are the new cure for ulcers.
- •Eliminating *H. pylori* infections with antibiotics means that your ulcer can be cured for good.

▲ Table 15-5 Digestive Processes for the Three Major Categories of Nutrients

Nutrients	Enzymes for Digesting the Nutrients	Source of Enzymes	Site of Action of Enzymes	Action of Enzymes	Absorbable Units of the Nutrients
Carbohydrates	Amylase	Salivary glands	Mouth and (mostly) body of stomach	Hydrolyzes polysaccha- rides to disaccharides (maltose)	
		Exocrine pancreas	Small-intestine lumen		
	Disaccharidases (maltase, sucrase, lactase)	Small-intestine epithelial cells	Small-intestine brush border	Hydrolyze disaccharides to monosaccharides	Monosaccharides, especially glucose
Proteins	Pepsin	Stomach chief cells	Stomach antrum	Hydrolyzes protein to peptide fragments	
	Trypsin, chymo- trypsin, carboxy- peptidase	Exocrine pancreas	Small-intestine lumen	Attack different peptide fragments	
	Aminopeptidases	Small-intestine epithelial cells	Small-intestine brush border	Hydrolyze peptide frag- ments to amino acids	Amino acids
Fats	Lipase	Exocrine pancreas	Small-intestine lumen	Hydrolyzes triglycerides to fatty acids and monoglycerides	Fatty acids and monoglycerides
	Bile salts (not an enzyme)	Liver	Small-intestine lumen	Emulsify large fat glob- ules for attack by pan- creatic lipase	

Large Intestine Structure & Function

