BI 121 Lecture 7

- on your lab time. Thanks!!
- I. <u>Announcements</u> Exam I one week from today, Oct 25th! Summary & Review, Sunday Oct 23rd, 6-7:30 pm, here! Q?
- II. <u>Nutrition Final Comments & Discussion</u> Recommended diets? Nutrition Quackery? Kleiner & Monaco. Diet & disease?
- III. <u>Gastrointestinal Physiology</u> DC Module 3 pp 17-23, LS ch 15+
 - A. GI = Donut? GI secretions: What? Where? Why? LS p 438
 - B. How is the gut controlled?
 - C. Organ-by-organ review A&P LS tab 15-1 pp 440-1 +...
 - D. Zymogen? = Inactive precursor LS fig 15-9 p 452...
 - E. Accessory organs? Pancreas, Liver, Recycling! pp 457-63
 - F. Small intestine? Ulcers? LS fig 15-20,15-22 pp 467-8 http://www.cdc.gov/ulcer Beyond the Basics LS p 456
 - G. Large intestine? LS fig 15-24 pp 472-4
- IV. Cardiovascular System DC Mod 4, LS ch 9, Torstar, G&H+...
 - A. Circulatory vs. Cardiovascular (CV)? CV vs. Lymphatic CV Pulmonary & Systemic circuits DC pp23-31+LS p229+ DC fig 4-1 p 24, LS fig 9-2b p 231
 - B. Arteries, capillaries, veins, varicosities? G&H, Torstar, DC
 - C. Values, box, chambers, values, inlets, outlets LS fig 9-4 p 233, fig 9-2a p 231; DC pp 23-6
 - D. Normal vs. abnormal blood flow thru \ & CVS LS, Fox+...

NOT PEER-REVIEWED =

PEER-TEXTS → RESEARCH

LOWER CARBOHYDRATE

ELIMINATE CALORIES or FOOD GROUPS **ENCOURAGE FASTING**

ADEQUACY BALANCE CONSISTENCY & MODERATION

Kleiner's & Monaco's Top 10 Hit List for Nutrition Quackery

- 1. Treatment based on <u>unproven theory</u> calling for non-toxic, painless therapy.
- 2. Author's/purveyor's <u>credentials aren't recognized</u> in scientific community.
- 3. <u>No reports in scientific, peer-reviewed literature</u> but rather mass media used for marketing.
- 4. Purveyors claim <u>medical establishment is against them</u> & play on public's paranoia about phantom greed of medical establishment.
- 5. Treatments, potions, drugs manufactured according to <u>secret</u> <u>formula</u>.
- 6. Excessive claims promising <u>miraculous cures</u>, disease prevention or life extension.
- 7. Emotional images rather than facts used to support claims.
- 8. Treatments <u>require special nutritional support</u> including health food products, vitamins and/or minerals.
- 9. Clients are cautioned about discussing program to avoid negative.
- 10. Programs based on <u>drugs or treatments not labeled</u> for such use.

Digestion Steps

SOURCE: Dr. Eugene Evonuk, 1989. *cf*: L Sherwood, 2012 pp 437-8.

Hydrolysis of Energy Nutrients

 H_2O +

Enzyme

SI Fox 2009 fig 18.1 p 614

What's missing?

• FIGURE 15-1 An example of hydrolysis. In this example, the disaccharide maltose (the intermediate breakdown product of polysaccharides) is broken down into two glucose molecules by the addition of H₂O at the bond site.

Polymer to Monomer (Many to One)

...Central-linking theme!!

Carbohydrate

Glucose

Protein + Fat

Amino Acids

Fatty Acids

+

Glycerol

GI-DONUT ANALOGY

Common Control Mechanisms

- 1. Local (autoregulation)
- 2. Nervous (rapidly-acting)
- 3. Hormonal (slower-acting/reinforcing)

Gut Secretions

<u>Secretion</u> <u>Release Site</u>

1. Mucus into GI Lumen

2. Enzymes into GI Lumen

3. H₂O, acids, bases+ into GI Lumen

4. Hormones into Blood

Anal canal

Rectum

7.<u>Large Intestine</u>

<u>Dehydration</u>

secretion + absorption storage + peristalsis

Where does enzymatic digestion of protein begin?

Zymogen= an inactive precursor

LS 2012 fig 15-9 p 452

Why is the pancreas so unique?

What are other accessory organs of digestion, that is, off-shoots of the primary tube?

Liver: Amazing Recycling of Bile Salts!

What is the major function of the small intestine? Absorption!!

LS 2012 fig 15-20 p 467

http://www.cdc.gov/ulcer/

Ulcer Facts

- •Most ulcers are caused by an infection, not spicy food, acid or stress.
- •The most common ulcer symptom is burning pain in the stomach.
- •Your doctor can test you for *H. pylori* infection.
- •Antibiotics are the new cure for ulcers.
- •Eliminating *H. pylori* infections with antibiotics means that your ulcer can be cured for good.

Clipping a Duodenal Ulcer

Peering through the pylorus into the duodenum, we see some blood and a vessel sticking out of the wall, just at the front edge of a small but deep ulcer.

In the second photograph, a disposable metal clip is applied to the ulcer. The patient remained well and left hospital three days later.

▲ Table 15-5 Digestive Processes for the Three Major Categories of Nutrients

Nutrients	Enzymes for Digesting the Nutrients	Source of Enzymes	Site of Action of Enzymes	Action of Enzymes	Absorbable Units of the Nutrients
Carbohydrates	Amylase	Salivary glands	Mouth and (mostly) body of stomach	Hydrolyzes polysaccha- rides to disaccharides (maltose)	
		Exocrine pancreas	Small-intestine lumen		
	Disaccharidases (maltase, sucrase, lactase)	Small-intestine epithelial cells	Small-intestine brush border	Hydrolyze disaccharides to monosaccharides	Monosaccharides, especially glucose
Proteins	Pepsin	Stomach chief cells	Stomach antrum	Hydrolyzes protein to peptide fragments	
	Trypsin, chymo- trypsin, carboxy- peptidase	Exocrine pancreas	Small-intestine lumen	Attack different peptide fragments	
	Aminopeptidases	Small-intestine epithelial cells	Small-intestine brush border	Hydrolyze peptide frag- ments to amino acids	Amino acids
Fats	Lipase	Exocrine pancreas	Small-intestine lumen	Hydrolyzes triglycerides to fatty acids and monoglycerides	Fatty acids and monoglycerides
	Bile salts (not an enzyme)	Liver	Small-intestine lumen	Emulsify large fat glob- ules for attack by pan- creatic lipase	

Large Intestine Structure & Function

Cardiovascular (CV) = Heart + Vessels + Blood!

NB: Figure-8 loop (b) Capillary beds of lungs where gas exchange occurs Pulmonary circuit

Pulmonary

Dual Pump Action & Parallel Circulation

Lymphatic System

- 1. Lymph Nodes
- 2. Vessels
- 3. Lymph

No pump!

Lymphatic System

Alternative System of Circulation or Drainage System

Lymph Vessels | Veins

Lymphatic System Blockage in Elephantiasis from Mosquito-borne Parasitic Filaria Worm

Lymphatics collect runoff & are parallel to venules/small veins!

Microcirculation Exchange: 10 Billion Capillaries!

Harvey
Experiments:
1-way system
of venous
valves!

Skeletal Muscle Pump

The Heart

The Living Pump

Human = 4-chambered box? 2 separate pumps?

Pulmonary Systemic

Heart Valves Ensure Unidirectional Blood Flow!

Human = 4 unique valves? 2 valve sets?

<u>Semilunar</u> = <u>Half-moon shaped</u>

- More /
- 1. Pulmonic/Pulmonary
- 2. Aortic

- More /
- 3.(R) AV = Tricuspid
- 4. L AV = Mitral/Bicuspid

Heart Valve Orientation & Scaffolding

FIGURE 9-6

Mitral and aortic valves.

<u>V</u>eins → <u>A</u>tria → <u>V</u>entricles → <u>A</u>rteries

LS2007

SI Fox 2009 fig 13.16 p 419

Septal defect in atria

SI Fox 2009 fig 13.17 p 420