BI 121 Lecture 10

- I. <u>Announcements</u> To make Lab 5 educational, fun & safe for all, please read pp 5-1 thru 5-6 in LM twice before Thursday! Remaining exams & notebooks returned > lecture. Key posted in glass box in Huestis near 120 HUE. Estimate grade? Q?
- *II. <u>Blood Chemistry Connections</u>* LS ch 11 p 303, ch 17 pp 525-36 Erythroblastosis fetalis, diabetes, insulin, glucagon
- III. Endocrinology Overview LS ch 17, DC Module 13, SI Fox+
 - A. Vignette: Cushing's syndrome LS fig 17-20 p 521-2
 - B. Endocrine system DC p 103 fig 13-1, LS fig 17-1, tab 17-1
 - C. What's an endocrine? + classes ~ LS pp 495 6
 - D. Hypothalamus (Master) Pituitary (subcontroller) DC pp 104-6 + LS pp 499-506
 - E. Posterior pituitary + hormones DC p 108, LS fig 17-4 p 502
 - F. Anterior pituitary + hormones DC pp 105-7, LS pp 502-6
 - G. GH: Body builder's dream? Fountain of youth? LS pp 506-11
 - H. Peripheral endocrine organs DC pp 109-13, LS pp 513-36
 - 1. Pancreas (insulin glucagon see-saw!) 2. Thyroid 3. Adrenals

Class Frequency Distribution Report for BI 121 Midterm F16, Multiple Choice, Part II

Overall				Mean Score: 71.50%
Grade	Percent Score	Raw Score	Frequency	Percent
A	90.00 - 100.00	36.00 - 40.00	14	8.00
В	80.00 - 89.99	32.00 - 35.99	37	21.14
С	70.00 - 79.99	28.00 - 31.99	56	32.00
D	60.00 - 69.99	24.00 - 27.99	38	21.71
F	0.00 - 59.99	0.00 - 23.99	30	17.14

Grade

\mathbb{E}

Students who succeed are usually those who:

- (1) Attend class regularly
 - (2) Ask questions
 - (3) **Come** to office hours & problem-solving sessions
 - (4) **Study** outside class both alone & in study groups
 - (5) **Seek** to understand methods & overarching principles/concepts rather than specific answers
 - (6) Teach or tutor others &
 - (7) **Discuss** concepts informally with fellow students.

Science Teaching Reconsidered, National Academy Press, 1997.

Q? What do I need on the final, if I want to get...?

A? You can actually calculate given assumptions...

e.g., 62 for Exam I & desire \geq *B*- (assume \geq 80)

Assume 100% for lecture (20% of grade) + lab attendance & participation (20% of grade!) Hope for? Exam I Lecture Lab $X = [80] ((0.3 \times 62) + (0.2 \times 100) + (0.2 \times 100))]/0.3$

X = [80-[(18.6) + (20) + (20)]]/0.3

X = [21.4]/0.3 = 71.3 Need this on Exam II for *B*- for course!

...Fortunately, the lab buffers the grade!

Erythroblastosis Fetalis?

e.g., Rh-mom Rh+baby

https://www.nlm.nih.gov/medlineplus/rhincompatibility.html

http://www.nlm.nih.gov/medlineplus/ency/ imagepages/1665.htm

ADAM.

Erythroblastosis Fetalis or Hemolytic Disease of the Unborn/Newborn

Inject Mom with RhoGam < 48-72 hr > each Rh+ Pregnancy

The Blanket is RhoGam → Masks the Mom's Immune System!

<u>Source</u>: Centers for Disease Control, Division of Diabetes Translation, <u>http://www.cdc.gov/diabetes/statistics</u>, S&W 2014 fig 4-15 p139A.

<u>Source</u>: Centers for Disease Control, Division of Diabetes Translation, <u>http://www.cdc.gov/diabetes/statistics</u>, S&W 2014 fig 4-15 p139B.

Diabetic & Normal Response to Glucose Load

Guyton & Hall 2000

<u>Glucose</u>: Sugar in Blood

Normal: 70-99 <u>Pre-Diabetes</u>: 100-125 <u>Diabetes</u>: ≥ 126 mg/dL

Proinsulin with C-Connecting Peptide

FIG. 10-4. Amino acid sequence of a mammalian proinsulin molecule. Note how the insulin molecule can be formed by cleaving this polypeptide chain at two locations to liberate the C peptide.

DO Norris 1980

Table 4–8

Type 1 and Type 2 Diabetes Compared

	Type 1	Type 2		
Percentage of cases	5–10%	90–95%		
Age of onset	<30 years	>40 years ^a		
Associated characteristics	Autoimmune diseases, viral infections, inherited factors	Obesity, aging, inherited factors		
Primary problems	Destruction of pancreatic beta cells; insulin deficiency	Insulin resistance, insulin deficiency (relative to needs)		
Insulin secretion	Little or none	Varies; may be normal, increased, or decreased		
Requires insulin	Always	Sometimes		
Older names	Juvenile-onset diabetes Insulin-dependent diabetes mellitus (IDDM)	Adult-onset diabetes Noninsulin-dependent diabetes mellitus (NIDDM)		
S&W 2014 tab 4-8 p 139				

Table 4–9

Warning Signs of Diabetes

These signs appear reliably in type 1 diabetes and, often, in the later stages of type 2 diabetes.

- Excessive urination and thirst
- Glucose in the urine
- Weight loss with nausea, easy tiring, weakness, or irritability
- Cravings for food, especially for sweets
- Frequent infections of the skin, gums, vagina, or urinary tract
- Vision disturbances; blurred vision
- Pain in the legs, feet, or fingers
- Slow healing of cuts and bruises
- Itching
- Drowsiness
- Abnormally high glucose in the blood

S&W 2014 tab 4-9 p 140

Diabetics must constantly juggle diet, exercise & medication to control blood glucose!

Like others, diabetics benefit from whole grains, vegetables, fruits, legumes & non-/low-fat milk products!

Exercise is a must based on its insulin-like effect!

S&W 2011 p 135

Cushing's Syndrome = Hypersecretion of Cortisol: Hypothalamic (CRH), Pituitary (ACTH), or Adrenal (Cortisol)

Endocrine System

Hypothalamus & Pituitary: Intimate Relationship

LS 2012 fig 17-3

Hypothalamus-Anterior Pituitary Vascular Connection!

Capillary-Venule-Capillary Intimate Circulation

Krieger & Hughes 1980

Krieger & Hughes 1980

LS 1991

LS 2006, cf: LS 2012 fig 17-10

Progression & Development of Acromegaly

LS 2012 fig 17-11

Growth Hormone = Somatotrophic Hormone Body Builder's Dream?

GH/STH Effects: Insulin Resistance/Type II Diabetes?

- † Amino Acid uptake & Protein synthesis
- † Lipolysis & Fatty Acid mobilization
- ↓ Glucose uptake
 (skeletal muscle & adipocytes)
- † Glucose production
 (liver glycogenolysis)
- 1 Insulin secretion

Increase GH naturally with exercise & sleep!!

Sleep

ng/ml = nanograms per mililiter